JPS6045158B2 - Method for manufacturing thin plate-like single crystal ferrite - Google Patents

Method for manufacturing thin plate-like single crystal ferrite

Info

Publication number
JPS6045158B2
JPS6045158B2 JP6613579A JP6613579A JPS6045158B2 JP S6045158 B2 JPS6045158 B2 JP S6045158B2 JP 6613579 A JP6613579 A JP 6613579A JP 6613579 A JP6613579 A JP 6613579A JP S6045158 B2 JPS6045158 B2 JP S6045158B2
Authority
JP
Japan
Prior art keywords
ferrite
single crystal
crystal ferrite
polycrystalline
partial pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6613579A
Other languages
Japanese (ja)
Other versions
JPS55158199A (en
Inventor
美勝 竹岡
辰巳 前田
力 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP6613579A priority Critical patent/JPS6045158B2/en
Publication of JPS55158199A publication Critical patent/JPS55158199A/en
Publication of JPS6045158B2 publication Critical patent/JPS6045158B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 本発明は単結晶フェライトの製造方法に係り、特に任意
の結晶方位が選択出来且つ均一な組成で且つ収率高く薄
板状単結晶フェライトが得られる製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing single-crystal ferrite, and particularly to a method for producing thin-plate-like single-crystal ferrite in which any crystal orientation can be selected, the composition is uniform, and the yield is high.

従来、単結晶フェライトは、原料フェライトを熔融後、
徐々に冷却し直接単結晶化するブリツヂマン法、或いは
低融点のPbO、PbF。
Conventionally, single-crystal ferrite is produced by melting the raw material ferrite.
Bridgmann method, which involves gradual cooling and direct single crystallization, or low melting point PbO, PbF.

等の融液に原料フェライトを熔融し、徐々に冷却、析出
させ単結晶化するフラックス法で製作されている。とこ
ろでブリツヂマン法の長所は、比較的容易に大形の単結
晶フェライトの得られることだが、フェライトの融点が
1600℃前後と極めて高いため、加熱装置が大形化す
るため高価になること、及び、フェライト融液の化学的
活性が高いため、融液を保持するルツボに高価な貴金属
製のものを使用しなければならないと云う短所がある。
一方、フラックス法は比較的低温で単結晶化出来ると云
う長所はあるものの、やはりフラックスの化学的活性が
高いため貴金属製のルツボを使用しなければならず、更
にフラックスに用いるPbOやPbF2等の低融点物質
に有害なものが多く、単結晶育成中にこれらが蒸発し易
いと云う難点がある。本発明はかかる従来の単結晶フェ
ライト製造方法の難点を改良した薄板状フェライトの製
造方法を提供することにある。
It is manufactured using the flux method, in which raw ferrite is melted in a melt such as, and gradually cooled and precipitated to form a single crystal. By the way, the advantage of the Bridgmann method is that large-sized single crystal ferrite can be obtained relatively easily, but since the melting point of ferrite is extremely high at around 1600°C, the heating device becomes large and expensive, and Since the chemical activity of the ferrite melt is high, there is a disadvantage that the crucible for holding the melt must be made of an expensive noble metal.
On the other hand, although the flux method has the advantage of being able to produce single crystals at relatively low temperatures, it still requires the use of a crucible made of precious metals due to the high chemical activity of the flux, and it also requires the use of crucibles made of precious metals such as PbO and PbF2 used for the flux. There are many low melting point substances that are harmful, and there is a problem in that they tend to evaporate during single crystal growth. The object of the present invention is to provide a method for manufacturing thin plate-like ferrite that improves the drawbacks of the conventional single-crystal ferrite manufacturing method.

本発明によれば予め製作された単結晶フェライトと多結
晶フェライトとを接触させ、接触面に垂直に圧力を印加
しながら、比較的低温の熱処理を行ない、単結晶フェラ
イトと多結晶フェライトとの直接的な固相反応により両
者を接合(併合)するに当り、接合時の温度・酸素分圧
条件を単結晶フェライト作製時の温度・酸素分圧条件に
比べ酸J化性に、また多結晶フェライト作製時の温度・
酸素分圧条件に比べ還元性に選択することにより、多結
晶フェライトが著しく早い速度で単結晶フェライト部分
に併合され、一体化しうるもので、種々の実験により見
出したことにより為されたものである。
According to the present invention, a pre-fabricated single crystal ferrite and a polycrystalline ferrite are brought into contact with each other, and heat treatment is performed at a relatively low temperature while applying pressure perpendicular to the contact surface. When joining (merging) the two through a solid phase reaction, the temperature and oxygen partial pressure conditions at the time of joining were made to be more oxidizable than the temperature and oxygen partial pressure conditions used for producing single crystal ferrite, and Temperature during manufacturing
By selecting a reducing property compared to the oxygen partial pressure conditions, polycrystalline ferrite can be merged and integrated into single crystal ferrite parts at a significantly faster rate, and this was discovered through various experiments. .

以下に本発明を実施例に基づき説明する。The present invention will be explained below based on examples.

実施例1 Mn0.60zn0.34Fe2.1。Example 1 Mn0.60zn0.34Fe2.1.

04なる組成の単結晶フェライトを空気中で1700℃
の熔融状態から製作した。
Single-crystal ferrite with a composition of 04 was heated at 1700°C in air.
It was manufactured from the molten state of

次に同組成の多結晶フェライトを1400℃、1300
℃、1200℃の焼成温度で熱間加圧して製作した。熱
間加圧時の酸素分圧はいずれも0.05気圧とした。次
にこれらの単結晶フェライトと多結晶フェライトとを組
合せ、いずれも1300℃で0kg/dの圧力を印加し
、1時間保持し、3種の接合されたフェライトを製作し
た。熱間加圧時の酸素分圧はいずれも0.05気圧とし
た。第1図はMrlO.6OznO.34Fe2.l2
O4なる組成のフェライトの平衡状態図であり、第1図
中Aは相境界で、Aの右上はフェライトとα−Fe2O
3等とが共存する多相領域で、Aの左下はフェライト単
相の領域である。
Next, polycrystalline ferrite of the same composition was heated at 1400℃ and 1300℃.
It was manufactured by hot pressing at a firing temperature of 1200°C. The oxygen partial pressure during hot pressurization was 0.05 atm in both cases. Next, these single crystal ferrite and polycrystalline ferrite were combined, and a pressure of 0 kg/d was applied to both at 1300° C. and held for 1 hour to produce three types of bonded ferrite. The oxygen partial pressure during hot pressurization was 0.05 atm in both cases. Figure 1 shows MrlO. 6OznO. 34Fe2. l2
This is an equilibrium phase diagram of ferrite with a composition of O4. In Figure 1, A is the phase boundary, and the upper right of A is the phase boundary between ferrite and α-Fe2O.
The lower left of A is a single-phase ferrite region.

A,b,c,d,e,f,gはフェライト中に含まれる
(Fe2つの量(重量%)を示すもので、順次1.87
,1.8,1。7,1.5,1.3,1.1,0.9%
に対応している。
A, b, c, d, e, f, g are contained in ferrite (indicate the amount (weight %) of two Fe, sequentially 1.87
, 1.8, 1.7, 1.5, 1.3, 1.1, 0.9%
It corresponds to

第1図から読みとれるように、接合処理を行なつた13
00℃、酸素分圧0.05気圧と云う条件は、単結晶フ
ェライト及び1400℃で製作した多結晶フェライトに
関し、Fe2+の濃度が減少し、Fe3+の濃度が増加
する条件、即ち酸化性の条件であり、1300℃で製作
した多結晶フェライトに関し中性の条件であり、120
0℃で製作した多結晶フェライトに関し、Fe2+の濃
度が増加し、Fe3+の濃度が減少する条件、即ち還元
性の条件である。第2図は、これら3種の接合されたフ
ェライトの接合境界部近傍の顕微鏡写真である。
As can be seen from Figure 1, the joining process was carried out 13
The conditions of 00℃ and oxygen partial pressure of 0.05 atm are conditions in which the concentration of Fe2+ decreases and the concentration of Fe3+ increases, that is, oxidizing conditions for single crystal ferrite and polycrystalline ferrite manufactured at 1400℃. Yes, this is a neutral condition for polycrystalline ferrite produced at 1300℃, and 120
Regarding polycrystalline ferrite produced at 0° C., this is a condition in which the concentration of Fe2+ increases and the concentration of Fe3+ decreases, that is, a reducing condition. FIG. 2 is a micrograph of the vicinity of the junction boundary of these three types of joined ferrites.

イは接合時の温度・酸素分圧条件が単結晶フェライトに
関し酸化性、多結晶フェライトに関し還元性の場合、明
ま単結晶フェライトに関し酸化性、多結晶!フェライト
に関し中性の場合、ハは単結晶フェライトに関し酸化性
、多結晶フェライトに関し酸化性の場合に対応している
。また、aは単結晶フェライト部分、bは多結晶フェラ
イト部分、1は接合前の単結晶フェライトと多結晶フェ
ライトとの1境界部の位置であり、2は接合後の境界で
あり、3は接合に伴ない単結晶フェライト部分に併合さ
れた多結晶フェライト粒子層である。第2図から判るよ
うに、接合時の温度・酸素分圧条件が単結晶フェライト
に関し酸化性、多結晶フェライトに関し還元性である場
合(第2図イ)には、接合過程で単結晶フェライト部分
に併合される多結晶フェライト部分の厚さは約200μ
mにも達している。
A: If the temperature and oxygen partial pressure conditions during bonding are oxidizing for single-crystal ferrite and reducing for polycrystalline ferrite, oxidizing for bright single-crystal ferrite and polycrystalline! When ferrite is neutral, C corresponds to oxidizing single-crystal ferrite, and oxidizing polycrystalline ferrite. In addition, a is the single crystal ferrite part, b is the polycrystalline ferrite part, 1 is the position of one boundary between the single crystal ferrite and the polycrystalline ferrite before joining, 2 is the boundary after joining, and 3 is the position of the boundary after joining. This is a layer of polycrystalline ferrite particles that is merged with a single crystal ferrite portion. As can be seen from Figure 2, when the temperature and oxygen partial pressure conditions during bonding are oxidizing for single crystal ferrite and reducing for polycrystalline ferrite (Figure 2 A), the single crystal ferrite part The thickness of the polycrystalline ferrite part merged with is approximately 200μ
It has reached m.

一方、単結晶フェライトに関し酸化性、多結晶フェライ
トに関し、中性若しくは酸化性の場合(第2図叫ハ)に
は、接合過程で単結晶フェライト部分に併合される多結
晶フェライト部分の厚さは極めてわずかである。なお、
接合フ処理により単結晶フェライト部分に併合された多
結晶フェライト部分は、この併合層にエッチビットが多
いことから明瞭に判別出来る。以上の結果から明らかの
ように、単結晶フェライトと多結晶フェライトとを接触
させ、圧力を加門え、熱処理を行ない両者の直接的な固
相反応により両者を一体化、接合する際の温度・酸素分
圧条件を、単結晶フェライト製作時の温度・酸素分圧条
件に比べ酸化性とし、多結晶フェライト製作時の温度・
酸素分圧条件に比べ還元性とした場合、゛多結晶フェラ
イト部分は著しく早い速度で単結晶フェライト部分に併
合されること、即ち単結晶フェライト化出来ることが判
る。
On the other hand, when single crystal ferrite is oxidizing, and polycrystalline ferrite is neutral or oxidizing (see Figure 2), the thickness of the polycrystalline ferrite part that is merged with the single crystal ferrite part during the bonding process is Very little. In addition,
The polycrystalline ferrite portion that has been merged with the single-crystalline ferrite portion by the bonding process can be clearly identified because there are many etch bits in this merged layer. As is clear from the above results, it is clear that the temperature and The oxygen partial pressure conditions are oxidizing compared to the temperature and oxygen partial pressure conditions when manufacturing single crystal ferrite, and the temperature and oxygen partial pressure conditions when manufacturing polycrystalline ferrite are oxidizing.
It can be seen that when the condition is reduced compared to the oxygen partial pressure condition, the polycrystalline ferrite portion is merged into the single crystal ferrite portion at a significantly faster rate, that is, it can be turned into single crystal ferrite.

実施例2 Mn0◆60zn0・34Fe2◆1204なる組成の
単結晶フェライトを空気中で1700℃の熔融状態から
製作した。
Example 2 A single crystal ferrite having a composition of Mn0◆60zn0.34Fe2◆1204 was produced from a molten state at 1700° C. in air.

次に同組成の多結晶フェライトを酸素分圧0.05気圧
のガス気流中、1200℃の焼成温度で熱間加圧して製
作した。しかる後これらの単結晶フェライトと多結晶フ
ェライトとを407!Rmφ×1TI!Mtの寸法に仕
上げ、両者を組合せ、酸素分圧0.05気圧のガス気流
中、1400℃で5kg/Cltの圧力を印加し、2時
間保持した。かくして製作した接合(併合)されたフェ
ライトを切断し、研磨、エッチングを施したところ多結
晶フェライト部分は全て単結晶フェライトに併合されて
いた。以上説明したように、本発明によれば比較的低温
で、高価な貴金属製のルツボを使用することなく、また
有害物質を使用することなく薄板状の単結晶フェライト
を製造することが出来る。
Next, polycrystalline ferrite having the same composition was produced by hot pressing at a firing temperature of 1200° C. in a gas stream with an oxygen partial pressure of 0.05 atm. After that, these single-crystal ferrite and polycrystalline ferrite were combined into 407! Rmφ×1TI! The pieces were finished to a size of Mt, and both were combined, and a pressure of 5 kg/Clt was applied at 1400° C. in a gas stream with an oxygen partial pressure of 0.05 atm, and maintained for 2 hours. When the thus produced bonded (merged) ferrite was cut, polished, and etched, all of the polycrystalline ferrite parts were merged into single-crystal ferrite. As explained above, according to the present invention, thin plate-shaped single crystal ferrite can be produced at a relatively low temperature without using an expensive precious metal crucible or using harmful substances.

また本発明によれば組成の均一な多結晶フェライトを単
結晶化するため得られる単結晶フェライトの組成が均一
になると云う利点もある。
Further, according to the present invention, since polycrystalline ferrite having a uniform composition is converted into a single crystal, there is an advantage that the composition of the obtained single-crystal ferrite becomes uniform.

更に予め製作された単結晶フェライトを単結晶化のシー
トとするため得られる単結晶フェライトの結晶方位がシ
ートと同一、即ち、所望の結晶方位の単結晶フェライト
を得ることが出来る。しかして、単結晶フェライトを部
品化、回路素子化する工程において単結晶フェライトは
所定の寸法に仕上げられることが通例だが、本発明によ
れば所定の寸法のものを容易に得ることが出来る。なお
、上記説明或いは実施例から容易に類推出来るように、
本発明は組成、成分比の異なるフェライトについても摘
用出来る。
Further, since the single crystal ferrite produced in advance is made into a single crystallized sheet, the crystal orientation of the obtained single crystal ferrite is the same as that of the sheet, that is, it is possible to obtain a single crystal ferrite having a desired crystal orientation. However, in the process of converting single crystal ferrite into components and circuit elements, single crystal ferrite is usually finished to a predetermined size, but according to the present invention, a single crystal ferrite having a predetermined size can be easily obtained. In addition, as can be easily inferred from the above explanation or examples,
The present invention can also be applied to ferrites having different compositions and component ratios.

また、接合時の温度・酸素分圧条件を多結晶フェライト
製作時の温度・酸素分圧条件に比べ還元性にするには、
多結晶フェライトの製作温度と接合処理温度とが同一の
場合でも、酸素分圧条件のみを還元性にすれば良い。
In addition, in order to make the temperature and oxygen partial pressure conditions during bonding more reducible than those during polycrystalline ferrite production,
Even if the manufacturing temperature of polycrystalline ferrite and the bonding treatment temperature are the same, only the oxygen partial pressure conditions need to be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はMrlO..ZrXO.34Fe2.l2O4
なる組成のフェライトの平衡状態図、第2図は多結晶フ
ェライトと単結晶フェライトとを接合(併合)して得た
単結晶フェライトの顕微鏡写真であり、イは本発明方法
によつた場合を、町ハは本発明外の方法によつた場合を
それぞれ示す。
Figure 1 shows MrlO. .. ZrXO. 34Fe2. l2O4
Figure 2 is a micrograph of single crystal ferrite obtained by joining (merging) polycrystalline ferrite and single crystal ferrite; C indicates cases in which a method other than the present invention was used.

Claims (1)

【特許請求の範囲】[Claims] 1 単結晶フェライトと多結晶フェライトとを接触させ
、熱間で加圧し、両者の直接的な固相反応により相互拡
散層を形成せしめ、単結晶フェライトを製造するに当り
、前記熱間加圧時の温度、酸素分圧条件を素体である単
結晶フェライトに関し酸化性、多結晶フェライトに関し
還元性に選択することを特徴とする薄板状単結晶フェラ
イトの製造方法。
1. When producing single crystal ferrite by bringing single crystal ferrite and polycrystalline ferrite into contact and hot pressurizing them to form an interdiffusion layer through a direct solid phase reaction between the two, during the hot press A method for producing thin plate-like single crystal ferrite, characterized in that temperature and oxygen partial pressure conditions are selected to be oxidizing for single crystal ferrite as an element body and reducing for polycrystalline ferrite.
JP6613579A 1979-05-30 1979-05-30 Method for manufacturing thin plate-like single crystal ferrite Expired JPS6045158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6613579A JPS6045158B2 (en) 1979-05-30 1979-05-30 Method for manufacturing thin plate-like single crystal ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6613579A JPS6045158B2 (en) 1979-05-30 1979-05-30 Method for manufacturing thin plate-like single crystal ferrite

Publications (2)

Publication Number Publication Date
JPS55158199A JPS55158199A (en) 1980-12-09
JPS6045158B2 true JPS6045158B2 (en) 1985-10-08

Family

ID=13307113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6613579A Expired JPS6045158B2 (en) 1979-05-30 1979-05-30 Method for manufacturing thin plate-like single crystal ferrite

Country Status (1)

Country Link
JP (1) JPS6045158B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628864U (en) * 1985-07-03 1987-01-20

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162496A (en) * 1979-05-31 1980-12-17 Ngk Insulators Ltd Manufacture of single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628864U (en) * 1985-07-03 1987-01-20

Also Published As

Publication number Publication date
JPS55158199A (en) 1980-12-09

Similar Documents

Publication Publication Date Title
US7222775B2 (en) Process for the metallization and/or brazing with a silicon alloy of parts made of an oxide ceramic unable to be wetted by the said alloy
JPS6045158B2 (en) Method for manufacturing thin plate-like single crystal ferrite
GB2059323A (en) Bonding metals to non-metallic substrates
JP3264508B2 (en) Method for producing magnesia single crystal
JPS6215518B2 (en)
JPS5944956B2 (en) Low temperature adhesion method
JPS5950618B2 (en) Manufacturing method of ferrite element assembly
JPH0475879B2 (en)
JPS6241797A (en) Single crystal ferrite and production thereof
JPH01154886A (en) Manufacture of al clad steel plate
JP3705368B2 (en) Ti-based functionally gradient material and manufacturing method thereof
JPS5918188A (en) Preparation of ferrite of single crystal
JPS59152285A (en) Preparation of single crystal
JPS6335496A (en) Production of single crystal garnet
JPH09142948A (en) Method for joining ceramic structure
JPS61101484A (en) Production of single crystal ferrite
JPS582289A (en) Manufacture of single crystal body
JPS61186297A (en) Production of ferrite single crystal
JPS5926994A (en) Preparation of oxide single crystal
JPS58155719A (en) Manufacture of single crystal body
JPS58179560A (en) Production of composite metallic material
JPS5926993A (en) Preparation of oxide single crystal
JPH02199094A (en) Production of single crystalline ferrite
JPH0561238B2 (en)
JPH07126775A (en) Production of super-magnetostriction alloy rod