JPS5950618B2 - Manufacturing method of ferrite element assembly - Google Patents

Manufacturing method of ferrite element assembly

Info

Publication number
JPS5950618B2
JPS5950618B2 JP50112354A JP11235475A JPS5950618B2 JP S5950618 B2 JPS5950618 B2 JP S5950618B2 JP 50112354 A JP50112354 A JP 50112354A JP 11235475 A JP11235475 A JP 11235475A JP S5950618 B2 JPS5950618 B2 JP S5950618B2
Authority
JP
Japan
Prior art keywords
bonded
joined
ferrite
bodies
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50112354A
Other languages
Japanese (ja)
Other versions
JPS5236797A (en
Inventor
美勝 竹岡
順夫 広瀬
辰己 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP50112354A priority Critical patent/JPS5950618B2/en
Publication of JPS5236797A publication Critical patent/JPS5236797A/en
Publication of JPS5950618B2 publication Critical patent/JPS5950618B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Magnetic Ceramics (AREA)
  • Ceramic Products (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 この発明は二個以上のフェライト素体を一体に接合した
フェライト素体接合体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a ferrite element assembly in which two or more ferrite elements are joined together.

複数個の磁器素体を一体に接合した接合体は、電子回路
の小型化、集積回路化等の要請につれて開発され、列え
ばマイクロ波集積回路素子でよく使用されている。
BACKGROUND ART A bonded body in which a plurality of ceramic bodies are bonded together has been developed in response to demands for miniaturization and integrated circuits of electronic circuits, and is often used in microwave integrated circuit elements.

磁器誘電体のアルミン酸マグネシウム又はチタン酸マン
ガン素体を基板として、この基板上に磁器磁性体のイッ
トリウム鉄ガーネット素体を一体に接合した接合体は、
この一種で、集積型マイクロ波非相反素子基板として知
られるものである。このような接合体は(1)既に焼結
された基板上に他方素体用磁器原料粉体を載置して熱間
加圧することにより形成させるか、又は(2)各磁器素
体毎に原料粉体成型体或いは仮焼結成型体を準備し所望
に対向接触させた状態で熱間加圧することにより形成さ
せるか、或いは(3)各素体とも焼結体又は単結晶体と
し接合予定面にフラックスとしてガラス薄板を介在させ
て熱間加圧することによりー体に接合させるかしている
。エポキシ樹脂のような有機接着剤を使用することはな
い。この種の接合体では接合面は素体同志が実質的に無
空隙で密接しなければならなくて接合界面に接着剤層を
残置出来ないためである。しかしこれ等現行方法は以下
に述べる理由から満足されていない。
A bonded body in which a porcelain dielectric magnesium aluminate or manganese titanate element is used as a substrate and a porcelain magnetic yttrium iron garnet element is integrally bonded to this substrate is:
This type is known as an integrated microwave non-reciprocal element substrate. Such a bonded body can be formed by (1) placing the porcelain raw material powder for the other element on an already sintered substrate and hot-pressing it, or (2) forming it for each porcelain element separately. Either a raw material powder molded body or a calcined molded body is prepared and formed by hot pressing in a state where they are brought into contact with each other as desired, or (3) each element body is planned to be joined as a sintered body or a single crystal body. It is bonded to the body by hot pressing with a thin glass plate interposed as flux on the surface. No organic adhesives such as epoxy resins are used. This is because, in this type of bonded body, the bonding surfaces must be in close contact with each other with substantially no voids, and it is not possible to leave an adhesive layer at the bonding interface. However, these current methods are not satisfactory for the reasons described below.

まずこれ等接合体では接合界面に接着剤層を介すること
なく接合面が密接すると共に各素体境界は明確にしなけ
ればならない第一の要請がある。この要請に対して素体
の一方に磁器原料粉体をあてる(1)の方法では、熱間
加圧による焼結時固相反応で、粉体高活性度にもとずき
素体接合界面の一方から他方へ、他方から一方へと行わ
れる界面に垂直方向に深い相互拡散を防止出来ない。こ
の場合の相互拡散は急激に起り制御は極めて困難である
。このため得られる接合体は素体境界が不明確となる。
素体原料粉体を加圧成型した成型体について接合体を得
させる(2)の方法では、粉体成型体の場合扱いが機械
的強度を欠くために困難である。又粉体成型体、仮焼結
成型体の何れを用いても焼結時の大きい収縮変形がそれ
ぞれに異るため接合界面を予定平面に得させず、不明確
にすることを避けることが出来ない。又フラツクスとし
てガラス薄板を介在させる(3)の方法ではフラツクス
効果を良好に得させるのにガラス薄板の厚さを要し、接
合体形成後画素体の接合面組織内にこのガラス成分を分
布する。どのようにフラツクスガラスを選ぶとしても接
合予定素体と同一材料を選ぶことはないから、このよう
にして得られる接合体は接合界面付近に素体以外の異組
成材を残置するものとなる。それ故接合体は磁気特性を
劣化し、磁気抵抗を増大する所から好まれないのである
。この発明はこのような現行方法の欠点を除き接合界面
に異質物を介在することなく素体を直接に密接させたフ
エライト素体接合体を得させる方法を提供するものであ
る。
First of all, in these bonded bodies, there is a first requirement that the bonding surfaces be brought into close contact without intervening an adhesive layer at the bonding interface, and that the boundaries of each element body must be clear. In response to this request, in method (1), in which porcelain raw material powder is applied to one side of the element, a solid phase reaction occurs during sintering by hot pressing, and based on the high activity of the powder, the bonding interface of the element is Deep interdiffusion in the direction perpendicular to the interface, which occurs from one side to the other and from the other to one side, cannot be prevented. In this case, mutual diffusion occurs rapidly and is extremely difficult to control. Therefore, in the resulting zygote, the elementary body boundaries are unclear.
In method (2), in which a bonded body is obtained from a molded body obtained by pressure-molding the raw material powder, it is difficult to handle the powder molded body because it lacks mechanical strength. In addition, since the large shrinkage deformation during sintering is different regardless of whether a powder molded body or a calcined molded body is used, it is possible to avoid making the joint interface not in the planned plane and making it unclear. do not have. Furthermore, in method (3) in which a thin glass plate is interposed as a flux, the thickness of the thin glass plate is required to obtain a good flux effect, and this glass component is distributed within the structure of the bonded surface of the pixel body after the bonded body is formed. . No matter how you choose the flux glass, you will never choose the same material as the element to be bonded, so the bonded body obtained in this way will have a material with a different composition other than the element remaining near the bonding interface. . Therefore, bonded bodies are not preferred because they deteriorate magnetic properties and increase magnetic resistance. The present invention eliminates the drawbacks of the current methods and provides a method for obtaining a ferrite element bonded body in which the element bodies are directly brought into close contact with each other without intervening foreign matter at the bonding interface.

即ち既接合体又は単結晶体の何れかである二個以上のフ
エライト素体の各素体を±5%以内に熱膨張率を近似し
且つ対向する各接合予定面を研磨砥粒600番による仕
上面以上の平滑性を備えるよう選択し、対応する接合予
定面を直接対向接触させ融点より600〜200℃低い
温度で50〜500kg/Cm2の圧力を対向面に垂直
に少く共10分間印加することにより相互拡散層を形成
させて一体に接合することを特徴とするフエライト素体
接合体の製造方法にある。それ故この発明の方法で接合
される各素体は既に焼結されているか又は単結晶化され
ているフエライト固体である。
In other words, the coefficient of thermal expansion of two or more ferrite bodies, either already bonded bodies or single crystal bodies, is approximated to within ±5%, and each of the opposing surfaces to be joined is polished with No. 600 abrasive grains. The surfaces to be joined are selected to have a smoothness higher than that of the finished surface, and the corresponding surfaces to be joined are brought into direct opposing contact and a pressure of 50 to 500 kg/cm2 is applied perpendicularly to the opposing surfaces for at least 10 minutes at a temperature 600 to 200°C lower than the melting point. The method of manufacturing a ferrite element assembly is characterized in that a mutual diffusion layer is formed and the ferrite element assembly is joined together. Each element to be joined by the method of the invention is therefore an already sintered or monocrystalline ferrite solid.

特に焼結体は以後の加熱又は熱間加圧工程で実質的に収
縮変形しない程度焼結されていな<てはならない。各素
体の接合予定面は対向接触させた時密接するような砥粒
による研磨仕上面の程度の平滑性を付与する。この意味
で.鏡面仕上げの要はない。接合体形成後に対向する双
方の接合予定面にはどのような物質も塗布、散布するこ
とがなく、対向配置する際に挟在させることもしない。
接合体形成工程は加熱加圧工程である。各素体の対向す
る接合予定面を対向接触さ・せて加圧出来るように炉内
に配置する。まず炉内温度を高温度に上昇させる。炉内
雰囲気は所望に例えば酸素雰囲気に制御する。各素体は
何れも焼結体又は単結晶体であるから変形する懸念はい
らない。所望の高温におかれた素体を次に加圧する。温
度及び圧力条件が適正にとられると、対向接触する各素
体の接合予定面には塑性流動が起り、全体の形状を殆ど
変形しないにもかかわらず、又接合予定面にそれぞれ存
在する多少の凹凸にかかわりなく両接合予定面が密着状
態をとる。ここで圧力を除き又は加圧状態のま・高温に
保持すると接合界面で相互にイオン拡散が起り、素体双
方は相互拡散領域を界面近傍に形成して強固に接合され
る。この拡散領域は接合界面近傍に限り形成され、拡散
速度は緩慢であるから領域形成を制御することは極めて
容易である。もし又各素体の接合予定面を対向接触させ
る配置に際して対向間隙に封じ込められた酸素等雰囲気
ガスが存在したとしても、このようなガス体はこの相互
拡散の際に画素体に吸収されるか又は雰囲気中に除去さ
れて実際上消失する。こ・で接合体が加圧されているな
らば圧力を除き、そうでないならばそのま・除冷し冷却
してフエライト素体接合体が得られる。このようにして
接合体を形成するにあたり良好な製法条件を次に述べる
In particular, the sintered body must be sintered to such an extent that it will not undergo substantial shrinkage and deformation during subsequent heating or hot pressing steps. The surfaces to be joined of each element body are polished with abrasive grains so that they come into close contact when facing each other and are polished to a level of smoothness. In this sense. There is no need for a mirror finish. After the bonded body is formed, no substance is applied or sprayed on the opposing surfaces to be bonded, nor is it sandwiched between the surfaces when they are placed facing each other.
The bonded body forming process is a heating and pressing process. Each element body is placed in a furnace so that opposing surfaces to be joined are brought into contact with each other and pressurized. First, the temperature inside the furnace is raised to a high temperature. The atmosphere in the furnace is controlled to, for example, an oxygen atmosphere as desired. Since each element body is a sintered body or a single crystal body, there is no need to worry about deformation. The element body placed at a desired high temperature is then pressurized. When the temperature and pressure conditions are set appropriately, plastic flow occurs on the surfaces to be joined of each of the opposing contacting elements, and although the overall shape is hardly deformed, some of the Both surfaces to be joined are in close contact regardless of unevenness. When the pressure is removed or the pressure is maintained at a high temperature, ion diffusion occurs between the two elements at the bonding interface, and both elements are firmly bonded by forming a mutual diffusion region near the interface. This diffusion region is formed only near the bonding interface, and the diffusion rate is slow, so it is extremely easy to control the region formation. Even if there is an atmospheric gas such as oxygen trapped in the opposing gap when the surfaces to be joined of each element body are placed in opposing contact with each other, will such a gas be absorbed by the pixel body during this mutual diffusion? or be removed into the atmosphere and virtually disappear. If the bonded body is pressurized in this step, the pressure is removed; if not, the bonded body is left to cool slowly to obtain a ferrite element body bonded body. The favorable manufacturing conditions for forming a bonded body in this manner will be described below.

まず接合予定面の研磨仕上げについて述べる。例えば同
一化学組成のマンガン亜鉛系フエライト、 (MnO)
。.。,(ZnO)0.19(Fe2O3)0,52に
ついて一方は単結晶体、他方は焼結多結晶体である画素
体各組の接合予定面を酸化アルミニウム研磨砥粒の40
0、600、又は800各番でそれぞれ平滑仕上げを施
し対向させ、窒素雰囲気中1000℃に50kg/Cm
・で加熱加圧する。接合体形成後冷却して接合面に垂直
に切断した垂直断面について鏡面研磨し蝕刻して光学顕
微鏡観察を行つてみた。600番又は800番砥粒によ
る研磨素体例組合わせでは接合界面で塑性流動、相互拡
散により普通焼結多結晶体組織にみられるような結晶粒
界が観測されて一体化している。
First, we will discuss the polishing of the surfaces to be joined. For example, manganese-zinc ferrite with the same chemical composition, (MnO)
. .. . , (ZnO) 0.19 (Fe2O3) 0.52, one side is a single crystal and the other is a sintered polycrystal.
0, 600, or 800, each with a smooth finish and facing each other, and heated at 1000℃ in a nitrogen atmosphere at 50kg/cm
・Heat and pressurize. After forming the bonded body, it was cooled, and a vertical section cut perpendicular to the bonded surface was mirror-polished and etched, and then observed using an optical microscope. In the example combination of abrasive bodies using No. 600 or No. 800 abrasive grains, grain boundaries similar to those seen in a normal sintered polycrystalline structure are observed and integrated due to plastic flow and mutual diffusion at the joint interface.

第1図は600番砥流仕上例により形成された接合体の
顕微鏡下組織図で、焼結多結晶体1と単結晶体2との界
面が密実に一体化していることが知られよう。この例と
同様の観測は800番仕上げ例についてもなされるが、
400番仕上げ組合わせ例では第2図に示すような接合
界面に沿つて延びる空隙が観察される。この空隙は例え
ば焼結体で観測される独立球形空隙とは異り、接合面に
垂直方向の磁気抵抗を著しく増大させ、更に接合体の強
度を損うためこのような砥粒仕上げは斥けなくてはなら
ない。この関係を適例を○印で、不適例。を×印で第1
表に表示する。第1表から各素体とも接合予定面を少く
とも600番砥粒仕上げの程度平滑に準備する要がある
FIG. 1 is a microscopic structure diagram of a bonded body formed by No. 600 abrasive finishing example, and it can be seen that the interface between the sintered polycrystalline body 1 and the single crystalline body 2 is tightly integrated. Observations similar to this example can also be made for the 800 finish example,
In the No. 400 finish combination example, voids extending along the bonding interface as shown in FIG. 2 are observed. Unlike the independent spherical voids observed, for example, in sintered bodies, these voids significantly increase the magnetic resistance in the direction perpendicular to the joint surface and further impair the strength of the joint, so such abrasive finishing is rejected. Must-have. Mark the appropriate example of this relationship with a circle, and mark the unsuitable example. Mark the first
Display in table. From Table 1, it is necessary to prepare the surfaces to be joined for each element body so that they are smooth enough to be finished with at least No. 600 abrasive grain.

次に加圧に際して要する温度条件について述べる。第1
表に於けると同様組成のマンガン亜鉛系フエライト単結
晶素体、多結晶素体についてアルミナ研磨砥粒600番
仕上げ接合予定面を対向配置した各例につき窒素雰囲気
中で900℃、950℃又は1000℃に50kg/C
m2の圧力をそれぞれ10分間印加後冷却した。各接合
体の接合面について垂直断面を,とり鏡面研磨し蝕刻し
光学顕微鏡観察を行つた結果、950℃、1000℃で
の加圧例では第1図例と同様接合界面に沿つて延びる空
隙を観測しない。しかし900℃での加圧例では塑性流
動相互拡散を不全にして第2図例と同様延長された空隙
が観測さ,れる。この温度は従つて適当ではなく少く共
950℃を必要とする。このことから低温側で融点から
600℃低い範囲を限定する。この加圧温度はこのフエ
ライトの融点1550℃付近で少く共200℃低い温度
までは高くとつてさし支えない。次に印加する圧力条件
について述べる。
Next, the temperature conditions required for pressurization will be described. 1st
As shown in the table, manganese-zinc ferrite single-crystal and polycrystalline bodies with the same composition were prepared at 900°C, 950°C, or 1000°C in a nitrogen atmosphere for each example in which the alumina abrasive grain No. 600 finish and the surfaces to be bonded were placed facing each other. 50kg/℃
A pressure of m2 was applied for 10 minutes each and then cooled. As a result of taking a vertical cross section of the joint surface of each joint, mirror polishing it, etching it, and observing it with an optical microscope, we found that in the pressurized examples at 950°C and 1000°C, voids extending along the joint interface were observed as in the example in Figure 1. Not observed. However, in the case of pressurization at 900° C., plastic flow interdiffusion is impaired, and elongated voids are observed as in the example in FIG. 2. This temperature is therefore not suitable and requires at least 950°C. For this reason, a range 600° C. lower than the melting point is limited on the low temperature side. The pressurizing temperature may be as high as about 1550° C., which is the melting point of this ferrite, at least 200° C. lower. Next, the pressure conditions to be applied will be described.

前述と同様接合予定面600番仕上げ単結晶素体、多結
晶素体組合わせ各例につき窒素雰囲気中1000℃の同
一温度条件とし、圧力を10g/CTn2、1kg/d
、50kg/Cm・にかえてそれぞれ10分間比較印加
した。冷却.後同様に行つた接合面垂直断面の光学顕微
鏡観測によると、圧力10g/Cnl・印加例では観測
用組織片の研磨中に再素体が剥離し観測を不可能にし、
1kg/Cm2印加例では第2図例に観測されたと同様
の接合界面に沿う延びた空隙をと・゛めるが、50kg
/Cm2・印加例では空隙をと・゛めず良好な接合界面
を呈する。従つて圧力としては50kg/Cm2以上を
要する。圧力印加時刻については接合予定面600番仕
上げ、窒素雰囲気中950℃、50kg/Cm2の圧力
印加の単結晶主体、多結晶素体各組合わせ例につき印加
時間を1分、5分、10分にかえて比較経過させた。冷
却後接合面垂直断面の光学顕微鏡観測を同様に行い、1
分経過例で観測用組織片の研磨中に剥離し観測を不可能
にし、5分経過例で接合界面に沿う延びた空隙がと・゛
められるのに対し10分経過例は空隙をと・゛めず接合
を完全に得させている。従つて接合予定面の平滑性、温
度、印加する圧力とも条件を良好に選択しても圧力下に
保持する時間は少くとも10分間を要する。接合される
フエライト素体は、接合予定面の研磨仕上げ、加熱加圧
工程での温度、圧力、保持時間を既述の条件に適合させ
た時接合界面で塑性流動、相互拡散が活発に行われるな
らば素体の組成は異つてもさし支えない。
Same as above, each combination of single-crystal element and polycrystal element with No. 600 finish on the planned surface to be joined was made under the same temperature condition of 1000°C in nitrogen atmosphere, and the pressure was 10 g/CTn2, 1 kg/d.
, 50 kg/Cm· were applied for 10 minutes for comparison. cooling. According to the optical microscope observation of the vertical cross section of the bonded surface, which was carried out in the same manner, in the case where a pressure of 10 g/Cnl was applied, the re-elementary body peeled off during polishing of the observation tissue piece, making observation impossible.
In the example of applying 1 kg/Cm2, an extended void along the bonding interface similar to that observed in the example in Fig. 2 is created, but when applying 50 kg
/Cm2. In the case of application, a good bonding interface is exhibited without any voids. Therefore, a pressure of 50 kg/Cm2 or more is required. Regarding the pressure application time, the application time was set to 1 minute, 5 minutes, and 10 minutes for each combination of single-crystal and polycrystalline elements with a No. 600 finish on the surface to be joined, 950°C in a nitrogen atmosphere, and a pressure of 50 kg/Cm2. Instead, I let the comparison pass. After cooling, optical microscope observation of the vertical cross section of the joint surface was performed in the same manner.
In the example after 10 minutes, the tissue piece for observation peeled off during polishing, making observation impossible.In the example after 5 minutes, an extended gap along the bonding interface was observed, whereas in the example after 10 minutes, no gaps were observed.゛It rarely achieves complete bonding. Therefore, even if the conditions for the smoothness of the surfaces to be joined, the temperature, and the applied pressure are well selected, the time required to maintain the joint under pressure is at least 10 minutes. The ferrite bodies to be joined undergo plastic flow and mutual diffusion actively at the joining interface when the surfaces to be joined are polished and the temperature, pressure, and holding time in the heating and pressurizing process are adjusted to the conditions described above. If so, there is no problem even if the composition of the elementary bodies is different.

しかしこの場合、熱膨張率を孝慮しないと高温で接合さ
れた後冷却過程で収縮率の相違から素体の一方又は双方
が破壊する。それ故各フエライト素体は単結晶体である
か又はよく焼結されて接合温度での収縮率に到達してい
るものであることを要し、仮焼結体であつてはならない
。いま第2表に示すモル比化学組成(1)、(2)、(
3)、(4)、(5)、(6)、(7)で何れも窒素中
1350℃に焼結したマンガン亜鉛多結晶フエライトと
、化学組成が(MnO)0.280(ZnO)0.19
5(Fe2O3)0.525で示されるマンガン亜鉛単
結晶フエライトの各素体接合予定面を鏡面に研磨し対応
面を対向接触させ、窒素中950℃又は1150℃の接
合温度50kg/Cm2の圧力で10分間加圧しそれぞ
れ接合させた。各接合例につき前述と同様にして接合界
面の顕微鏡観察を行つたところ、界面に沿う空隙は認め
られないが界面近傍にクラツクを発生した例を認めた。
However, in this case, if the coefficient of thermal expansion is not taken into consideration, one or both of the elements will break due to the difference in shrinkage rate during the cooling process after being joined at high temperatures. Therefore, each ferrite element body must be a single crystal body or well sintered to reach the shrinkage rate at the bonding temperature, and must not be a pre-sintered body. The molar ratio chemical compositions (1), (2), (
3), (4), (5), (6), and (7) all contain manganese-zinc polycrystalline ferrite sintered at 1350°C in nitrogen and a chemical composition of (MnO) 0.280 (ZnO) 0. 19
5 (Fe2O3) 0.525 of manganese zinc single crystal ferrite, the surfaces to be bonded were polished to a mirror surface, the corresponding surfaces were brought into opposing contact, and the bonding temperature and pressure of 50 kg/cm2 were held in nitrogen at 950°C or 1150°C. They were bonded by applying pressure for 10 minutes. When the bonded interface was observed under a microscope for each bonded example in the same manner as described above, no voids were observed along the interface, but in some cases cracks were observed near the interface.

各接合例につき横軸に対向する多結晶、単結晶画素体の
熱膨張率比を縦軸に接合温度をとつてクラツク発生接合
例を×印で、クラツク不発生接合例を○印で第3図に示
す。第3図×印の一例について接合界面の顕微鏡組織図
を第4図に示す。第3図で熱膨張率比は±5%以内にと
どめる理由が理解されよう。
For each bonding example, the thermal expansion coefficient ratio of the polycrystalline and single-crystalline pixel bodies facing each other on the horizontal axis is taken as the bonding temperature on the vertical axis. As shown in the figure. FIG. 4 shows a microscopic structure diagram of the bonding interface for an example of the cross mark in FIG. 3. It will be understood from FIG. 3 why the thermal expansion coefficient ratio is kept within ±5%.

実施例によつて得られる接合例で、化学組成がFe2O
352モル%、MnO29モル%、ZnOl9モル%の
単結晶及び1350℃で焼結された多結晶マンガン亜鉛
フエライトの各素体接合予定面を鏡面に研磨して対向さ
せ、窒素雰囲気中1000℃で50kg/Cm2の圧力
を印加10分間保持後除冷して得た接合界面で画素体識
別困難に接合し、空孔分布から多結晶体側を認め得る程
度である。
This is a bonding example obtained in the example, and the chemical composition is Fe2O.
352 mol %, MnO 29 mol %, ZnOl 9 mol % single crystal and polycrystalline manganese zinc ferrite sintered at 1350°C. The surfaces to be joined were polished to mirror surfaces and faced each other, and 50 kg was prepared at 1000°C in a nitrogen atmosphere. A pressure of /Cm2 was applied and held for 10 minutes and then allowed to cool. At the bonding interface, it was difficult to identify the pixel body, and the polycrystalline side could be recognized from the pore distribution.

接合面に垂直に切断した薄板から磁路中に接合面が含ま
れるようなリング状試料及び単結晶又は多結晶域のみを
含む各リング状試料を超音波加工して扛ち抜き捲線を施
して磁性体素子を作製した。IKH。の透磁率は単結晶
域のみから形成された磁性体素子例で最大、多結晶域の
みから形成された素子例で最小であり、実施例による磁
性体素子例で中間値を示す。従つて実施例による磁性体
素子では接合界面で磁気抵抗を増大させることがなく磁
気的に完全な状態にあることが認められる。
A ring-shaped sample in which the bonding surface is included in the magnetic path from a thin plate cut perpendicular to the bonding surface, and each ring-shaped sample containing only a single crystal or polycrystalline region are processed by ultrasonic processing to perform winding. A magnetic element was fabricated. IKH. The magnetic permeability is maximum in the example of the magnetic material element formed only from a single crystal region, is minimum in the example of the element formed only from the polycrystalline region, and exhibits an intermediate value in the example of the magnetic material element according to the example. Therefore, it is recognized that the magnetic element according to the example is in a magnetically perfect state without increasing the magnetic resistance at the junction interface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例により、第2図は比較例により得られた
何れもフエライト素体接合体の接合面垂直断面の顕微鏡
組織図、第3図は実施例並びに比較例により得られた何
れもフエライト素体接合体について接合界面近傍のクラ
ツク発生有無を×、○印で示す図面、第4図は第3図×
印例接合体について示す接合面垂直断面顕微鏡下組織図
である。
Fig. 1 is a microscopic structure diagram of a vertical cross section of the joining surface of a ferrite element assembly obtained in Examples and Comparative Examples. Figure 4 shows the presence or absence of cracks near the bonding interface with × and ○ marks for the ferrite element assembly.
FIG. 2 is a microscopic microstructure diagram showing a vertical cross-section of the bonded surface of the stamped bonded body.

Claims (1)

【特許請求の範囲】[Claims] 1 既焼結体又は単結晶体の何れかである二個以上のフ
ェライト素体の各素体を±5%以内に熱膨張率を近似し
且つ対向する各接合予定面を研磨砥粒600番による仕
上げ面以上の平滑性を備えるように選択し、対応する接
合予定面を直接対向接触させ融点より600〜200℃
低い温度で50〜500kg/cm^2の圧力を対向面
に垂直に少く共10分間印加することにより相互拡散層
を形成させて一体に接合することを特徴とするフェライ
ト素体接合体の製造方法。
1 Approximate the thermal expansion coefficient of two or more ferrite bodies, which are either pre-sintered bodies or single-crystal bodies, within ±5%, and polish each opposing joint surface with No. 600 abrasive grains. The surfaces to be joined should be brought into direct opposing contact with each other at a temperature of 600 to 200°C above the melting point.
A method for manufacturing a ferrite element assembly, characterized in that a pressure of 50 to 500 kg/cm^2 is applied perpendicularly to the opposing surfaces for at least 10 minutes at a low temperature to form a mutual diffusion layer and join them together. .
JP50112354A 1975-09-17 1975-09-17 Manufacturing method of ferrite element assembly Expired JPS5950618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50112354A JPS5950618B2 (en) 1975-09-17 1975-09-17 Manufacturing method of ferrite element assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50112354A JPS5950618B2 (en) 1975-09-17 1975-09-17 Manufacturing method of ferrite element assembly

Publications (2)

Publication Number Publication Date
JPS5236797A JPS5236797A (en) 1977-03-22
JPS5950618B2 true JPS5950618B2 (en) 1984-12-10

Family

ID=14584585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50112354A Expired JPS5950618B2 (en) 1975-09-17 1975-09-17 Manufacturing method of ferrite element assembly

Country Status (1)

Country Link
JP (1) JPS5950618B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55154705A (en) * 1979-05-23 1980-12-02 Toshiba Corp Manufacture of conjoined ferrite
JPS5727980A (en) * 1980-07-21 1982-02-15 Matsushita Electric Ind Co Ltd Manufacture of composite ferrite
US4487644A (en) * 1981-10-02 1984-12-11 Kernforschungsanlage J/u/ lich Binderless weld-bonding of preshaped sic-base parts into solid bodies
US4406722A (en) * 1982-05-03 1983-09-27 International Business Machines Corp. Diffusion bonding of dissimilar ceramics
JP2590476B2 (en) * 1987-05-06 1997-03-12 ソニー株式会社 Ferrite bonding method
ATE162832T1 (en) 1988-12-27 1998-02-15 Asahi Chemical Ind POROUS CRYSTALIZED AROMATIC POLYCARBONATE PREPOLYMER, A POROUS CRYSTALIZED AROMATIC POLYCARBONATE AND METHOD FOR PRODUCING

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4826810A (en) * 1971-08-13 1973-04-09

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4826810A (en) * 1971-08-13 1973-04-09

Also Published As

Publication number Publication date
JPS5236797A (en) 1977-03-22

Similar Documents

Publication Publication Date Title
US4261781A (en) Process for forming compound semiconductor bodies
US20050257877A1 (en) Bonded assemblies
JPH01315159A (en) Dielectric-isolation semiconductor substrate and its manufacture
CN107735386B (en) Method for repairing equipment parts used in semiconductor processing
WO2006057408A1 (en) Composite ceramic body, method for producing same, microchemical chip, and reformer
EP0123212B1 (en) Ceramic bonded structure and method of manufacturing the same
WO2014157430A1 (en) Handle substrate for compound substrate for use with semiconductor
EP0093199B1 (en) Diffusion bonding of dissimilar ceramics
JPS5950618B2 (en) Manufacturing method of ferrite element assembly
JPH07335511A (en) Bonded wafer
JP2000143349A (en) Aluminum nitride-based sintered compact and electrostatic chuck using the same
JP2868131B2 (en) Method of manufacturing electronic component substrate
JP3061573B2 (en) Manufacturing method of multilayer ceramics
JPH0234912B2 (en) SERAMITSUKUSUTOKINZOKUTAITONOSETSUGOHOHO
JPH0855713A (en) Manufacture of composite magnetic material
JP2639961B2 (en) Superconducting element manufacturing method
JPH09172247A (en) Ceramic circuit board and manufacture thereof
JP2754405B2 (en) Method of manufacturing electronic component substrate
JPH01165147A (en) Ceramic substrate
JPS61101473A (en) Method of bonding ceramic and metal
JPH07130526A (en) Manufacture of compound magnetic material
JPH0346308A (en) Manufacture of electronic component
JPS6045158B2 (en) Method for manufacturing thin plate-like single crystal ferrite
JPH03112638A (en) Directly connected symmetrical metal layered body/substrate structure
JPH0725663A (en) Sintered aluminum nitride and production thereof