JPS61236679A - Preparation of single crystal ferrite sphere - Google Patents

Preparation of single crystal ferrite sphere

Info

Publication number
JPS61236679A
JPS61236679A JP7948985A JP7948985A JPS61236679A JP S61236679 A JPS61236679 A JP S61236679A JP 7948985 A JP7948985 A JP 7948985A JP 7948985 A JP7948985 A JP 7948985A JP S61236679 A JPS61236679 A JP S61236679A
Authority
JP
Japan
Prior art keywords
ferrite
crystal
spherical
polycrystalline
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7948985A
Other languages
Japanese (ja)
Other versions
JPH0240038B2 (en
Inventor
Hiroyuki Ito
博之 伊藤
Takashi Tsuboi
隆 坪井
Hitoshi Ueda
等 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Nippon Ferrite Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ferrite Ltd filed Critical Nippon Ferrite Ltd
Priority to JP7948985A priority Critical patent/JPH0240038B2/en
Publication of JPS61236679A publication Critical patent/JPS61236679A/en
Publication of JPH0240038B2 publication Critical patent/JPH0240038B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To prepare single crystal of ferrite easily by arranging polycrystalline ferrite sphere which have been formed previously to spherical form on a flat plate consisting of single crystal ferrite having a same crystal structure with the spherical ferrite and keeping the polycrystalline ferrite spheres at a temp. below the temp. where discontinuous growth of crystal particles is caused. CONSTITUTION:Polycrystalline ferrite is formed to spherical formed bodies or spherical sintered bodies. The polycrystalline ferrite bodies are arranged on a flat plate of single crystal ferrite having the same or almost same crystal structure as the polycrystalline ferrite to contact with the flat plate, and the polycrystalline ferrite spheres are held by heating at below a temp. where discontinuous growth of crystal particles of the polycrystalline ferrite is caused. By this method, growth of the spherical polycrystalline ferrite to spherical single crystal ferrite is caused.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、単結晶フェライト球を製造する方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for manufacturing single crystal ferrite spheres.

(従来の技術) 従来、単結晶フェライト球を製造する場合、まずバルク
状の単結晶を作成し、その後直方体に切断し、その後球
形に研磨するものであり、この球形に加工研磨する方法
には、2パイプ法、ボンド法等の方法がある。実際には
、これらの方法を組み合わせ、多大の労力と時間をかけ
て球研磨を行なっていた。
(Prior art) Conventionally, when manufacturing single crystal ferrite spheres, a bulk single crystal is first created, then cut into rectangular parallelepipeds, and then polished into a spherical shape. There are methods such as , 2-pipe method, and bond method. In reality, these methods have been combined and a great deal of effort and time has been spent to polish the balls.

また、単結晶フェライトの製造法としては、原料を溶融
点以上の高温にして液相とし、冷却する方法、例えばブ
リッヂマン法、フラックス法、チョクラルスキー法、ゾ
ーンメルティング法などがある。この従来の溶融点以上
の高温で液相から単結晶を得る方法では、得られる単結
晶の形状を一定の球状とすることは困難であり、上記の
様にバルク状単結晶の球状研磨加工により、単結晶を得
ていた。
Methods for producing single crystal ferrite include methods in which a raw material is brought to a high temperature above its melting point to form a liquid phase and then cooled, such as the Bridgeman method, flux method, Czochralski method, and zone melting method. With this conventional method of obtaining a single crystal from a liquid phase at a high temperature above the melting point, it is difficult to make the shape of the obtained single crystal into a certain spherical shape. , a single crystal was obtained.

(発明が解決しようとする問題点) 従来の方法では、バルク状の大きな単結晶を得るために
、 1600℃以上の高温が必要であり、また高価で複
雑かつ大型の製造装置を必要とし、また製造の際の加熱
条件等を正確に制御することが困難なため、址産性に乏
しく、さらにバルク状昨結晶から切断、球研磨といった
加工工程を必要とし、工数がかかり、立方形状への切断
しろ、及び立方形状から球状への研磨しろ等により、バ
ルク状単結晶から球状n1結晶を得るのに、バルク状畦
結晶の体積の半分以上が加工により削り取られるため、
効率が極めて悪く、得られる単結晶味が極めて高価にな
るといった欠点を有していた。
(Problems to be Solved by the Invention) Conventional methods require high temperatures of 1,600°C or higher to obtain large bulk single crystals, require expensive, complicated, and large manufacturing equipment, and Because it is difficult to accurately control the heating conditions during manufacturing, it has poor productivity, and requires processing steps such as cutting from bulk crystals and polishing balls, which takes a lot of man-hours and requires cutting into cubic shapes. In order to obtain a spherical n1 crystal from a bulk single crystal, more than half of the volume of the bulk ridge crystal is removed by machining due to the margin and the polishing margin from a cubic shape to a spherical shape.
The drawbacks were that the efficiency was extremely low and the resulting single-crystal taste was extremely expensive.

(問題点を解決するための手段) 本発明は、−に記の欠点を解決するものであり、多結晶
フェライトの球状成形体又は球状焼結体を該多結晶フェ
ライトと同一の結晶構造である単結晶板上に、点接触す
る様に配置し、前記多結晶フェライトの不連続粒子成長
の起こる温度未満の温度で、かつ前記単結晶フェライト
の成長開始温度以上の温度で加熱し、前記球状成形体又
は球状焼結体と41結晶板との点接触部より単結晶を成
長させ、単結晶フェライト球を得るものである。
(Means for Solving the Problems) The present invention solves the drawbacks listed in -, and provides a spherical molded body or a spherical sintered body of polycrystalline ferrite having the same crystal structure as the polycrystalline ferrite. The spherical shape is formed by placing the plate in point contact with the single crystal plate and heating it at a temperature lower than the temperature at which discontinuous grain growth of the polycrystalline ferrite occurs and higher than the growth start temperature of the single crystal ferrite. A single crystal is grown from a point contact between a sintered body or a spherical sintered body and a 41 crystal plate to obtain a single crystal ferrite sphere.

(作用) 微細な結晶粒子からなる多結晶フェライト体をフェライ
トの溶融点以下のある一定の温度で加熱すると多結晶フ
ェライト体を構成する結晶粒子が成長し、この多結晶フ
ェライト体の結晶粒子の成長の速さは、加熱温度か高い
程速い。ここで、はとんどの多結晶フェライト体の場合
、加熱温度が第1図に示す様に、ある一定の温度(多結
晶フェライト体の組成、結晶系、製造条件等によって異
なる) Tb’lll’:以上である場合、焼結中の粒
子群の中のある小部分の粒子が周囲の結晶群を併合して
1つの大きな結晶に成長し、いったん1つの粒子が回り
の粒子より大きい粒子に成長すると、それは周囲よりも
速い速度で成長し、これが継続して不連続結晶粒子成長
が起こる。
(Function) When a polycrystalline ferrite body consisting of fine crystal grains is heated at a certain temperature below the melting point of the ferrite, the crystal grains constituting the polycrystalline ferrite body grow, and the crystal grains of this polycrystalline ferrite body grow. The higher the heating temperature, the faster the speed. Here, in the case of most polycrystalline ferrite bodies, the heating temperature is a certain constant temperature (varies depending on the composition, crystal system, manufacturing conditions, etc. of the polycrystalline ferrite body) as shown in Figure 1. : If the above is the case, a small part of the particles in the particle group during sintering will merge with the surrounding crystal group and grow into one large crystal, and once one particle grows into a larger particle than the surrounding particles. It then grows at a faster rate than its surroundings, and this continues, resulting in discontinuous grain growth.

本発明は、予め球形状に形成した多結晶フェライト球を
、多結晶フェライト球と同−又は略同−の結晶構造をも
つ単結晶フェライト体平板の」二に接触させて配置した
後、多結晶フェライ1−球に不連続結晶粒子成長が起こ
る加熱温度Tb”C以下の温度で加熱保持する事により
、多結晶フェライト球のm結晶フェライト体平板に接触
する部分に、周囲の結晶粒子より大きく、かつ低結晶フ
ェライト体と同一の結晶面方向をもった粒子を成長させ
、さらにその粒子を核として多結晶フェライト球全体に
不連続結晶粒子成長を起こさせて単結晶フェライト体を
製造するものである。
In the present invention, a polycrystalline ferrite sphere previously formed into a spherical shape is placed in contact with a single crystal ferrite flat plate having the same or substantially the same crystal structure as the polycrystalline ferrite sphere, and then Ferrite 1 - By heating and maintaining the sphere at a temperature below Tb''C, which is the heating temperature at which discontinuous crystal grain growth occurs, the portion of the polycrystalline ferrite sphere that contacts the m-crystal ferrite body plate has larger crystal grains than the surrounding crystal grains. A single-crystal ferrite body is produced by growing particles with the same crystal plane direction as the low-crystal ferrite body, and using these particles as nuclei to cause discontinuous crystal grain growth throughout the polycrystalline ferrite sphere. .

また、本発明で用いる多結晶フェライト球は、単結晶フ
ェライト体平板との接触点に形成される不連続結晶粒子
成長の核となる粒子が速い速度でスムーズに成長するた
めに、小粒径で不純物が少なく、気孔のほとんどないも
のが望ましい。つまり、小粒径である程、核となる粒子
が辺数の多い粒子となり、その各辺の曲率は増加し、核
となる粒子の粒界が周囲の多結晶体側に移動する駆動力
は大きい。また、不純物や気孔は、粒界が移動する際粒
界をピン止めする作用があるため、不純物や気孔が少な
い方が粒界が移動しやすい。また多結晶フェライト球は
、バルク状多結晶焼成体゛を加工しても得られるが、焼
成前に従来一般的に行なわれている粉末成形法等により
球状成形体を作製し、それを焼成しても得られる。また
単結晶フェライト体平板の上に配置する球状多結晶フェ
ライト体として最初から成形体を配置し、成形体を焼成
じ多結晶フェライト焼成体を得る工程と、球状の多結晶
フェライト体から球状の単結晶フェライト体を製造する
工程を連続して行なう事ができる。
In addition, the polycrystalline ferrite sphere used in the present invention has a small particle size because the particles that form the nucleus of discontinuous crystal grain growth formed at the contact point with the single crystal ferrite flat plate grow smoothly at a high speed. It is desirable that there are few impurities and almost no pores. In other words, the smaller the grain size, the more the number of sides of the core grain, the curvature of each side increases, and the greater the driving force that moves the grain boundary of the core grain toward the surrounding polycrystalline body. . In addition, since impurities and pores have the effect of pinning grain boundaries when they move, it is easier for grain boundaries to move when there are fewer impurities and pores. Polycrystalline ferrite spheres can also be obtained by processing a bulk polycrystalline sintered body, but before firing, a spherical molded body is produced by a conventional powder compaction method, etc., and then fired. You can also get it. In addition, there is a process in which a molded body is placed from the beginning as a spherical polycrystalline ferrite body placed on a single crystal ferrite body flat plate, and the molded body is fired to obtain a polycrystalline ferrite fired body. The process of manufacturing a crystalline ferrite body can be performed continuously.

つまり、従来の接合型単結晶の製造法では、多結晶フェ
ライトと単結晶フェライトとの接合面に用いる面は、S
iC砥粒等でラップし、さらにダイヤモンド砥粒等によ
り鏡面まで仕上げた後、貼り合わせ、さらに加熱処理等
による接合処理を必要としていた。しかし、本発明によ
る球状単結晶フェライトの製造法においては、単結晶フ
ェライトと多結晶フェライトの接合は、点であるために
、この様な接合処理を行なう必要がない。また、本発明
で用いる単結晶フェライト板は、製造しようとする球状
単結晶と同一の組成をもつ必要はなく、また、結晶格子
定数、熱膨張係数も同一である必要はない。つまり、従
来の接合型単結晶の製造法では、第2図に示す断面図の
様に多結晶フェラントと単結晶フェライトとの接合は面
Cであるため、単結晶フエライI・の部分Aと、単結晶
フェライ1〜と接合させる事により、もと多結晶フェラ
イトであった部分がqt結晶化した部分Bの格子定数、
熱膨張係数が異なった場合には、A、B相互間に歪が生
じて、冷却後にQt結晶に割れが生したり、また格子欠
陥が発生し、高品質の単結晶を得る事が困難であるのに
対し、本発明による製造法では、単結晶フェライト板は
異なる成分系のものでも良い。ただし、Qi結晶フェラ
イト板に含まれる成分の中には、球状の多結晶フェライ
ト中に拡散しゃすい物質は含まない方が良い。
In other words, in the conventional method for manufacturing bonded single crystals, the surface used for the bonding surface between polycrystalline ferrite and single crystal ferrite is S
After lapping with iC abrasive grains or the like, finishing to a mirror surface with diamond abrasive grains or the like, bonding, and further bonding treatment such as heat treatment was required. However, in the method for manufacturing spherical single-crystal ferrite according to the present invention, since the single-crystal ferrite and polycrystalline ferrite are joined at a point, there is no need to perform such a joining process. Further, the single crystal ferrite plate used in the present invention does not need to have the same composition as the spherical single crystal to be manufactured, nor does it need to have the same crystal lattice constant and coefficient of thermal expansion. In other words, in the conventional method for manufacturing a bonded single crystal, the bond between the polycrystalline ferrant and the single crystal ferrite is on the plane C, as shown in the cross-sectional view of FIG. By bonding with single crystal ferrite 1~, the lattice constant of part B, where the part that was originally polycrystalline ferrite has become qt crystallized,
If the coefficients of thermal expansion are different, strain will occur between A and B, causing cracks in the Qt crystal after cooling, and lattice defects will occur, making it difficult to obtain a high-quality single crystal. On the other hand, in the manufacturing method according to the present invention, the single crystal ferrite plate may be of a different composition system. However, it is preferable that the components contained in the Qi crystal ferrite plate do not include substances that diffuse into the spherical polycrystalline ferrite.

(実施例) 実施例1 純度99.9%の酸化イツトリウムと純度99.5%の
酸化第二鉄とを用い、Y2O3が37.5m o ]%
、Fe2O3が62.5m o ]%である混合物を作
成した。
(Example) Example 1 Using yttrium oxide with a purity of 99.9% and ferric oxide with a purity of 99.5%, Y2O3 was 37.5m o ]%
, a mixture containing 62.5 m o ]% of Fe2O3 was prepared.

この混合物は、1490℃以」二で加熱保持した場合に
不連続結晶粒成長が起こることが実験により判明した。
Experiments have revealed that discontinuous grain growth occurs in this mixture when it is heated and maintained at temperatures above 1490°C.

この混合物を直径2mmに成形し、この球状成形体を作
製し、98%以上の酸素雰囲気中で1400℃まで20
0℃/ h rの速度で加熱昇温し、さらに1400℃
で6時間加熱保持した後200℃/hrの速度で冷却し
て球状多結晶体を得た。その後得られた球状多結晶体を
、YIG単結晶薄板」二に配置し、再び98%以上の酸
素雰囲気中で1400℃まで200°C/hrの速度で
加熱昇温し、さらに1400℃から1470℃まで10
℃/ h rで加熱4温し、その後100℃/hrの速
度で冷却してYTG単結単結晶骨ることが出来た。
This mixture was molded to a diameter of 2 mm, this spherical molded body was produced, and the mixture was heated to 1400°C in an oxygen atmosphere of 98% or more.
Heating temperature increased at a rate of 0℃/hr, and then further raised to 1400℃
After heating and holding for 6 hours, the mixture was cooled at a rate of 200° C./hr to obtain a spherical polycrystal. Thereafter, the obtained spherical polycrystalline body was placed on a YIG single crystal thin plate, heated again at a rate of 200°C/hr to 1400°C in an oxygen atmosphere of 98% or more, and further heated from 1400°C to 1470°C. ℃ up to 10
It was heated to 4 degrees Celsius/hour and then cooled at a rate of 100 degrees Celsius/hr, yielding YTG single-crystalline bones.

実施例2 純度99.9%の酸化イツトリウムと純度99.5%の
酸化第二鉄と純度99.6%の酸化アルミニウムを用い
、Y2O3が37.5m o 1%、Fe2O3が50
.0m 。
Example 2 Using 99.9% pure yttrium oxide, 99.5% pure ferric oxide, and 99.6% pure aluminum oxide, Y2O3 was 37.5 m o 1%, Fe2O3 was 50 m
.. 0m.

1%、AI、03が12.5m o 1%である混合物
を作成した。この混合物は、1490℃以上で加熱保持
した場合に不連続結晶粒成長が起こることが実験により
判明した。この混合物を直径2mmに成形し、この球状
成形体を作製し、98%以」二の酸素雰囲気中で140
0℃まで200℃/ h rの速度で加熱昇温しさらに
1420℃で6時間加熱保持した後200℃/hrの速
度で冷却して球状多結晶焼結体を得た。その後得られた
多結晶焼結体を、ガドリニウムガリウムガーネットqt
結晶薄板」二に配置し、再び、98%以上の酸素雰囲気
中で1420℃まで200℃/hrの速度で加熱昇温し
、さらに1420℃から1470℃まで5℃/hrで加
熱昇温し、その後100℃/hrの速度で冷却してAl
置換型YIG単結晶球を得ることができた。
A mixture of 1% AI, 03 and 12.5 m o 1% was prepared. Experiments have revealed that discontinuous grain growth occurs in this mixture when it is heated and held at 1490° C. or higher. This mixture was molded to a diameter of 2 mm to produce a spherical molded body, and heated to 140% in an oxygen atmosphere of 98% or more.
The temperature was raised to 0°C at a rate of 200°C/hr, and the temperature was further maintained at 1420°C for 6 hours, followed by cooling at a rate of 200°C/hr to obtain a spherical polycrystalline sintered body. Thereafter, the obtained polycrystalline sintered body was converted into gadolinium gallium garnet qt
The crystal thin plate was heated again at a rate of 200°C/hr to 1420°C in an oxygen atmosphere of 98% or more, and further heated at a rate of 5°C/hr from 1420°C to 1470°C. After that, the Al was cooled at a rate of 100°C/hr.
Substituted YIG single crystal spheres could be obtained.

実習例3 純度99.9%の酸化イツトリウムと純度99.5%の
酸化第二鉄とを用い、Y2O3が37.5m o 1%
Practical example 3 Using 99.9% pure yttrium oxide and 99.5% pure ferric oxide, Y2O3 is 37.5m o 1%
.

Fe2O,が62.5m o ]%である混合物を作成
した。この混合物は、1490℃以上で加熱保持した場
合に不連続結晶粒成長が起こることが実験により判明し
た。この混合物を直径2mmに成形し、この球状成形体
を作製し、その後、球状成形体を、ガドリニウムガリウ
ムガーネット重粘品薄板上に配置し、98%以上の酸素
雰囲気中で1400℃まで20θ℃/hrの速度で加熱
昇温し、さらに1400℃が一〇− ら1470℃まで10℃/ h rで加熱封温し、その
後100℃/hrの速度で冷却してYIG単結晶球を得
ることができた。
A mixture containing 62.5 m o ]% of Fe2O was prepared. Experiments have revealed that discontinuous grain growth occurs in this mixture when it is heated and held at 1490° C. or higher. This mixture was molded to a diameter of 2 mm to produce a spherical molded body, and then the spherical molded body was placed on a gadolinium gallium garnet heavy viscous thin plate, and the mixture was heated to 1400°C at a temperature of 20θ°C in an oxygen atmosphere of 98% or higher. It is possible to obtain YIG single crystal spheres by heating at a rate of 1,400°C to 1,470°C, then heating and sealing at a rate of 10°C/hr, and then cooling at a rate of 100°C/hr. did it.

(発明の効果) 本発明は、フェライトの単結晶球を簡単な方法で得るこ
とができ、大幅な工数低減が図れ、安価な単結晶球を製
造できるものであり、産業」二極めて有益なものである
(Effects of the Invention) The present invention is capable of obtaining single crystal spheres of ferrite by a simple method, greatly reducing the number of man-hours, and producing inexpensive single crystal spheres, which is extremely useful for industry. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、多結晶体の加熱温度と平均粒子径との関係を
示す説明図であり、第2図は、単結晶と多結晶を面接触
させ、多結晶中に単結晶を成長させた場合の断面図であ
る。
Figure 1 is an explanatory diagram showing the relationship between the heating temperature and average particle diameter of polycrystals, and Figure 2 is an explanatory diagram showing the relationship between heating temperature and average particle size of polycrystals, and Figure 2 is an illustration of the relationship between a single crystal and a polycrystal, and a single crystal is grown in the polycrystal by bringing the single crystal into surface contact with the polycrystal. FIG.

Claims (1)

【特許請求の範囲】[Claims] 多結晶フェライトと単結晶フェライトを接触させ、多結
晶フェライトの不連続結晶粒子成長の起こる温度未満の
温度で、かつ単結晶フェライトの成長開始温度以上の温
度で加熱する単結晶フェライトの製造方法において、多
結晶フェライトとして球状成形体又は球状焼成体を用い
、また単結晶フェライトとして前記多結晶フェライトと
同一の結晶構造である単結晶板を用い、該単結晶板上に
前記球状成形体又は球状焼結体を点接触する様に配置し
、該球状成形体又は球状焼結体を球状単結晶に成長させ
る事を特徴とする単結晶フェライト球の製造法。
A method for producing single-crystal ferrite in which polycrystalline ferrite and single-crystal ferrite are brought into contact and heated at a temperature lower than the temperature at which discontinuous crystal grain growth of polycrystalline ferrite occurs and at a temperature higher than the growth start temperature of single-crystal ferrite, A spherical molded body or a spherical sintered body is used as the polycrystalline ferrite, and a single crystal plate having the same crystal structure as the polycrystalline ferrite is used as the single crystal ferrite. 1. A method for producing a single-crystal ferrite sphere, which comprises arranging the spherical molded bodies or spherical sintered bodies so as to make point contact with each other, and growing the spherical molded bodies or spherical sintered bodies into spherical single crystals.
JP7948985A 1985-04-15 1985-04-15 TANKETSUSHOFUERAITOKYUNOSEIZOHO Expired - Lifetime JPH0240038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7948985A JPH0240038B2 (en) 1985-04-15 1985-04-15 TANKETSUSHOFUERAITOKYUNOSEIZOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7948985A JPH0240038B2 (en) 1985-04-15 1985-04-15 TANKETSUSHOFUERAITOKYUNOSEIZOHO

Publications (2)

Publication Number Publication Date
JPS61236679A true JPS61236679A (en) 1986-10-21
JPH0240038B2 JPH0240038B2 (en) 1990-09-10

Family

ID=13691311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7948985A Expired - Lifetime JPH0240038B2 (en) 1985-04-15 1985-04-15 TANKETSUSHOFUERAITOKYUNOSEIZOHO

Country Status (1)

Country Link
JP (1) JPH0240038B2 (en)

Also Published As

Publication number Publication date
JPH0240038B2 (en) 1990-09-10

Similar Documents

Publication Publication Date Title
JPWO2002022920A6 (en) Rare earth-iron garnet single crystal, method for producing the same, and device using rare earth-iron garnet single crystal
JPWO2002022920A1 (en) Rare earth-iron garnet single crystal and method for producing the same
JPS61236679A (en) Preparation of single crystal ferrite sphere
JPS6215518B2 (en)
JPH0475879B2 (en)
JPS6241797A (en) Single crystal ferrite and production thereof
CN105586638A (en) Preparation method of potassium and lead niobate piezoelectric monocrystal
JPH0375517B2 (en)
JPH0217517B2 (en)
JPS5918188A (en) Preparation of ferrite of single crystal
JPS60195097A (en) Production of ferrite single crystal
JPS61101484A (en) Production of single crystal ferrite
JPS5926994A (en) Preparation of oxide single crystal
JPS6215519B2 (en)
JPS61146780A (en) Manufacture of single crystal
Carter et al. Growing single crystals
JPH0143719B2 (en)
JPS62167283A (en) Production of single crystal ferrite
JPS62216986A (en) Production of single crystal ferrite
JPH04240195A (en) Production of single-crystalline ferrite
JP2579728B2 (en) Method for producing Mn-Zn single crystal ferrite
JPS62223098A (en) Production of single crystal ferrite
JPS62223099A (en) Production of single crystal ferrite
JPS58156589A (en) Preparation of single crystal
JPS62113787A (en) Production of single crystal ferrite material