JPH04240195A - Production of single-crystalline ferrite - Google Patents

Production of single-crystalline ferrite

Info

Publication number
JPH04240195A
JPH04240195A JP3041410A JP4141091A JPH04240195A JP H04240195 A JPH04240195 A JP H04240195A JP 3041410 A JP3041410 A JP 3041410A JP 4141091 A JP4141091 A JP 4141091A JP H04240195 A JPH04240195 A JP H04240195A
Authority
JP
Japan
Prior art keywords
ferrite
temperature
single crystal
firing
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3041410A
Other languages
Japanese (ja)
Other versions
JPH0796475B2 (en
Inventor
Ryuichi Ouchi
龍一 大内
Hiroyasu Tsuji
寛保 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP3041410A priority Critical patent/JPH0796475B2/en
Publication of JPH04240195A publication Critical patent/JPH04240195A/en
Publication of JPH0796475B2 publication Critical patent/JPH0796475B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain single-crystalline ferrite nearly free from pores and grown over a long range by joining polycrystalline ferrite to single-crystalline ferrite as a seed, heating them and growing the single-crystalline ferrite by a solid phase reaction. CONSTITUTION:A prescribed ferrite sintered body is successively subjected to primary firing by treatment at 1,100-1,280 deg.C in vacuum, calcining in an He atmosphere or an He atmosphere contg. <=3% oxygen and cooling in N2 or by the treatment and cooling and to secondary calcining by hot isostatic pressing at 1,150-1,350 deg.C above the primary calcining temp. under >=60kg/cm<2> pressure to obtain polycrystalline ferrite. This ferrite is joined to single-crystalline ferrite as a seed and they are heated at 1,300-1,560 deg.C in nitrogen or a nitrogen atmosphere contg. <=3% oxygen to produce single-crystalline ferrite by a solid phase reaction.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、多結晶体と単結晶体と
を接触させて加熱し、その固相反応によって単結晶を育
成成長する単結晶フェライトの製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing single crystal ferrite in which a polycrystal and a single crystal are brought into contact with each other and heated to grow a single crystal through a solid phase reaction.

【0002】0002

【従来の技術】従来、多結晶体と単結晶体とを接触させ
て加熱し、その固相反応によって単結晶を育成成長させ
る固相反応法によるMn−Zn フェライトの製造方法
は、例えば特公昭61ー10438号公報や特公昭61
ー3313号公報において知られている。
[Prior Art] Conventionally, a method for manufacturing Mn-Zn ferrite using a solid phase reaction method in which a polycrystalline body and a single crystalline body are brought into contact with each other and heated to grow and grow a single crystal through the solid phase reaction has been described, for example, by Publication No. 61-10438 and Special Publication No. 61
It is known from the publication No. 3313.

【0003】しかしながら、上述した製造方法では、育
成成長した単結晶フェライト中に気孔が多く発生し、条
件によっては好適な材料とならない問題があった。
However, in the above-mentioned manufacturing method, there is a problem that many pores are generated in the grown single crystal ferrite, and the material is not suitable depending on the conditions.

【0004】0004

【発明が解決しようとする課題】この点に関し、固相反
応に使用する多結晶体中の気孔を減らせば育成した単結
晶中の気孔も減るであろうとも考えられ、HIP処理で
多結晶フェライトの気孔を低減することが知られている
[Problem to be solved by the invention] Regarding this point, it is thought that if the pores in the polycrystalline material used for the solid phase reaction are reduced, the pores in the grown single crystal will also be reduced. is known to reduce pores.

【0005】しかしながら、多結晶体中の気孔を低減し
ても、その後の単結晶育成のための高温加熱によって育
成した単結晶体中の気孔が増加してしまい、製品として
好ましいもの、すなわち1μm 以上の気孔が0.54
mm2当たり20個以下、気孔率換算で0.01%以下
の製品を得ることができなかった。
However, even if the pores in the polycrystal are reduced, the number of pores in the single crystal grown by high-temperature heating for subsequent single crystal growth increases. The pore size is 0.54
It was not possible to obtain a product with 20 particles or less per mm2, or 0.01% or less in terms of porosity.

【0006】これは、固相反応法による単結晶育成が普
通一般的な焼鈍温度以上、すなわち1300℃から15
60℃程度の高温で処理されるため、いったん見かけ上
は消滅した気孔の蘇生が発生するためであった。
[0006] This means that single crystal growth using the solid phase reaction method is performed at a temperature higher than the general annealing temperature, that is, from 1300°C to 15°C.
This is because the treatment is carried out at a high temperature of about 60° C., which causes the stomata that had seemingly disappeared to be revived.

【0007】また、本願人による特開昭62ー4179
7号公報では、単結晶フェライトを育成した後、得られ
た単結晶フェライトを熱間静水圧プレス法により加圧熱
処理する技術が開示されている。
[0007] Also, Japanese Patent Application Laid-Open No. 62-4179 by the applicant
No. 7 discloses a technique of growing single crystal ferrite and then subjecting the obtained single crystal ferrite to pressure heat treatment using a hot isostatic pressing method.

【0008】しかしながら、この方法では磁気ヘッドに
した場合帯磁ノイズが大きい、すなわち帯磁ノイズに寄
与する保持力Hcが0.05Oe以下という磁気ヘッド
に必要な条件を越えて、0.1 Oe程度まで劣化する
場合がある問題があった。
However, with this method, when a magnetic head is used, the magnetization noise is large, that is, the coercive force Hc contributing to the magnetization noise exceeds the necessary condition for a magnetic head of 0.05 Oe or less, and deteriorates to about 0.1 Oe. There was a problem sometimes.

【0009】本発明の目的は上述した課題を解消して、
固相反応法により育成した単結晶フェライト中の気孔が
少なく、単結晶成長距離も長く、量産に適した単結晶フ
ェライトの製造方法を提供しようとするものである。
[0009] The purpose of the present invention is to solve the above-mentioned problems,
The present invention aims to provide a method for producing single crystal ferrite grown by a solid-phase reaction method, which has fewer pores, a longer single crystal growth distance, and is suitable for mass production.

【0010】0010

【課題を解決するための手段】本発明の単結晶フェライ
トの製造方法は、酸化鉄としてスピネル構造を有するか
、あるいはその履歴を有する酸化鉄を主として用いたフ
ェライト原料から成形体を製造し、この成形体に対し、
1100℃から1280℃の温度領域で真空処理した後
ヘリウム雰囲気または3%以下の酸素を含むヘリウム雰
囲気で焼成し窒素中で冷却するか、前記真空処理後ただ
ちに窒素中で冷却する第一次焼成を行い、平均粒子径1
0μm 以下の焼結体を作製し、この焼結体に対し、6
0kg/cm2以上の静水圧下で第一次焼成の温度以上
であって1150℃から1350℃の温度領域で焼成す
る第二次焼成を行い、第一次焼成後の焼結体の平均粒子
径より大きく粒成長させた多結晶フェライト焼結体を作
製し、この多結晶フェライト焼結体を種子単結晶に接合
し、この接合体を第二次焼成の温度以上であって130
0℃から1560℃の温度領域で窒素または3%以下の
酸素を含む窒素雰囲気で加熱処理することを特徴とする
ものである。
[Means for Solving the Problems] The method for producing single-crystal ferrite of the present invention involves producing a molded body from a ferrite raw material mainly using iron oxide having a spinel structure or a history of spinel structure as iron oxide. For the molded body,
After vacuum treatment in a temperature range of 1100°C to 1280°C, firing is performed in a helium atmosphere or a helium atmosphere containing 3% or less oxygen and cooling in nitrogen, or primary firing is performed by cooling in nitrogen immediately after the vacuum treatment. and average particle size 1
A sintered body with a diameter of 0 μm or less is produced, and a
A second firing is performed under a hydrostatic pressure of 0 kg/cm2 or more at a temperature higher than the first firing temperature and in a temperature range of 1150°C to 1350°C, and the average particle diameter of the sintered body after the first firing is A polycrystalline ferrite sintered body with larger grain growth is produced, this polycrystalline ferrite sintered body is joined to a seed single crystal, and this joined body is heated at a temperature higher than the second firing temperature to 130°C.
It is characterized by heat treatment in a temperature range of 0° C. to 1560° C. in nitrogen or a nitrogen atmosphere containing 3% or less oxygen.

【0011】[0011]

【作用】上述した構成において、まず、フェライト成形
体に対して所定の一次焼成を低酸素雰囲気中で行い、酸
素空格子量を多くして、その後の所定のHIP処理(静
水圧プレス処理)を用いた二次焼成において一次焼成よ
り処理温度を上げ、一次焼成より粒成長させ、粒界の界
面をずらし気孔をバルク内に拡散させた多結晶フェライ
トを種子単結晶フェライトと接触させ、所定の加熱処理
により固相反応を行っているため、育成した単結晶フェ
ライト中に気孔が少なく、結晶成長距離の長い単結晶を
得ることができる。
[Operation] In the above-described structure, first, the ferrite molded body is subjected to a prescribed primary firing in a low oxygen atmosphere to increase the amount of oxygen vacancies, and then subjected to a prescribed HIP treatment (hydrostatic pressing treatment). In the secondary firing used, the treatment temperature was higher than that in the primary firing, and the polycrystalline ferrite, which had been made to grow grains by shifting the grain boundaries and diffusing pores into the bulk, was brought into contact with the seed single-crystal ferrite, and heated to a predetermined temperature. Since a solid phase reaction is carried out during the treatment, there are few pores in the grown single crystal ferrite, and a single crystal with a long crystal growth distance can be obtained.

【0012】ここで、HIP処理後の固相反応を実施す
る温度が1300℃から1560℃とそれ以前の処理温
度より高いため、従来と同様に気孔蘇生が生じるように
思えるが、本発明では、多結晶フェライトのHIP処理
の粒成長に伴い粒界が移動することに着目し、生成され
る酸素空格子量を多くするとともに低い酸素濃度を選ぶ
ことにより、気孔蘇生が少なく実質的に気孔が皆無に近
い好適な単結晶フェライトを得ている。
[0012] Here, since the temperature at which the solid phase reaction is carried out after the HIP treatment is 1300°C to 1560°C, which is higher than the previous treatment temperature, stomatal resuscitation seems to occur as in the conventional case, but in the present invention, Focusing on the movement of grain boundaries as grains grow during HIP treatment of polycrystalline ferrite, by increasing the amount of oxygen vacancies generated and selecting a low oxygen concentration, pore regeneration is minimal and there are virtually no pores. A suitable single-crystal ferrite close to the above was obtained.

【0013】HIP焼成の条件として温度及び圧力を規
定したのは、この範囲が実質的に粒成長が起きる温度で
あるとともに、HIP処理で気孔低減が可能な圧力であ
ったためである。なお、本発明の温度範囲で圧力を20
00kg/cm2まであげても、単結晶化に障害となる
液相物質のFeO は発生しなかった。
[0013] The reason why the temperature and pressure were specified as the conditions for HIP firing is that this range is the temperature at which grain growth substantially occurs, and the pressure is such that the HIP treatment can reduce pores. Note that the pressure is 20% within the temperature range of the present invention.
Even when the weight was increased to 0.00 kg/cm2, FeO 2 , a liquid phase substance that would be an obstacle to single crystallization, was not generated.

【0014】固相反応における単結晶育成条件として焼
成雰囲気と温度を規定したのは、この範囲内では気孔蘇
生が少ない条件であるためである。
The reason why the firing atmosphere and temperature are specified as the single crystal growth conditions in the solid phase reaction is that within these ranges, pore regeneration is less likely to occur.

【0015】また、本発明において単結晶育成距離が長
いのは、以下の理由による。まず、第1の理由は、フェ
ライトを構成するスピネル単位格子では、酸素の存在が
少ないと格子ユニットが不安定となり単結晶化に必要な
駆動力が小さくなる。このため多結晶を維持する力が弱
く、単結晶育成温度が若干低下したりあるいは異常成長
開始温度と単結晶育成温度が離れ、異種結晶からの単結
晶化が抑制されるためである。
Furthermore, the reason why the single crystal growth distance is long in the present invention is as follows. The first reason is that in the spinel unit lattice that constitutes ferrite, if there is little oxygen, the lattice unit becomes unstable and the driving force required for single crystallization becomes small. For this reason, the power to maintain polycrystals is weak, and the single crystal growth temperature is slightly lowered, or the abnormal growth start temperature and the single crystal growth temperature are different, and the formation of a single crystal from a different type of crystal is suppressed.

【0016】第2の理由は、多結晶体の酸素空格子量が
多く、またフェライトにHIP処理時の加圧によってス
ピネル格子が歪み、またHIP処理自体がフェライトに
とって還元作用として働くため、スピネル格子が不安定
な状態になることにより、その後の外部からの加熱によ
って容易にドライビング力が大きくなり、単結晶育成距
離を長くすることができるためである。実際に単結晶化
は、試料の外側が早く伸び異種結晶の発生以前に多結晶
体が成長した単結晶に覆われることにより、単結晶育成
距離が大きくなった。
The second reason is that the amount of oxygen vacancies in the polycrystal is large, and the spinel lattice is distorted due to the pressure applied to the ferrite during the HIP process, and the HIP process itself acts as a reducing effect on the ferrite. This is because when the crystal becomes unstable, the driving force can be easily increased by subsequent external heating, and the single crystal growth distance can be increased. In fact, during single crystallization, the outer side of the sample expanded quickly and was covered by the single crystal grown by polycrystals before the generation of foreign crystals, resulting in a longer single crystal growth distance.

【0017】なお、フェライト成形体を作製するのに使
用する酸化鉄原料としては、従来から公知のように、ス
ピネル構造を有するかあるいはその履歴を有することが
、単結晶フェライトの製造に必須であるため、本発明で
も原料を規定している。
[0017] As is conventionally known, it is essential for the production of single crystal ferrite that the iron oxide raw material used to produce the ferrite molded body has a spinel structure or a history thereof. Therefore, the present invention also specifies the raw materials.

【0018】[0018]

【実施例】酸化鉄原料として湿式合成されたマグネタイ
トを焙焼し、これをMnO 31.0mol%,ZnO
 16.4mol%,Fe2O3 52.6mol% 
の組成に調合し、混合、1050℃で仮焼、粉砕を経由
した後、35000psiで成形した。
[Example] Wet-synthesized magnetite was roasted as a raw material for iron oxide, and mixed with 31.0 mol% of MnO and ZnO.
16.4 mol%, Fe2O3 52.6 mol%
After mixing, calcining at 1,050°C, and crushing, it was molded at 35,000 psi.

【0019】この成形体を、ロータリポンプを用いて1
50 ℃/hの昇温速度で800℃まで昇温した後、4
0℃/hの昇温速度に切り換え1000℃まで昇温した
。この温度で8時間保持した後、10℃/hの昇温速度
で1060℃まで昇温し、この温度で8時間保持した。 さらに、10℃/hの昇温速度で以下に示す表1の本発
明範囲内および範囲外の一次焼成温度まで昇温し、この
温度で8時間保持した。
[0019] This molded body was pumped using a rotary pump.
After heating up to 800°C at a heating rate of 50°C/h,
The temperature was increased to 1000°C by changing the heating rate to 0°C/h. After holding at this temperature for 8 hours, the temperature was raised to 1060°C at a heating rate of 10°C/h and held at this temperature for 8 hours. Furthermore, the temperature was raised at a heating rate of 10° C./h to the primary firing temperature within and outside the range of the present invention shown in Table 1 below, and held at this temperature for 8 hours.

【0020】この後、焼成雰囲気を表1に示すようにH
e雰囲気(酸素濃度0%と表示)または3%以下のO2
 を含むHe雰囲気で4時間保持後N2 雰囲気に切り
換えて冷却するか、表2に示すようにただちに窒素に切
り換え、以後 950℃まで 300℃/hの降温速度
で冷却し、窒素を止め密閉した。得られた多結晶フェラ
イトの一例の気孔率は0.5%で、結晶粒子径は7.1
 μm であった。
After that, the firing atmosphere was changed to H as shown in Table 1.
e atmosphere (displayed as 0% oxygen concentration) or 3% or less O2
After being maintained in a He atmosphere containing He for 4 hours, the atmosphere was changed to N2 for cooling, or as shown in Table 2, the atmosphere was immediately changed to nitrogen, and thereafter, the atmosphere was cooled to 950° C. at a rate of 300° C./h, and the nitrogen gas was stopped and sealed. The porosity of an example of the obtained polycrystalline ferrite was 0.5%, and the crystal grain size was 7.1%.
It was μm.

【0021】得られた多結晶フェライトをGr−HIP
 N2 ガスの使用のもとアルミナ坩堝の中に埋粉なし
でセットし、300 ℃/hの昇温速度で昇温し、表1
および表2に示す本発明範囲内および範囲外の温度で3
時間、60kg/cm2に保持してHIP処理を行った
後冷却した。得られた多結晶フェライトの一例の気孔は
2個/0.54mm2 であり、結晶粒子径は8.2 
μm であった。また、本発明の範囲内の条件による多
結晶フェライトでは、還元に伴うFeO の析出は観察
されなかった。
[0021] The obtained polycrystalline ferrite was subjected to Gr-HIP
The crucible was placed in an alumina crucible without powder using N2 gas, and the temperature was raised at a rate of 300 °C/h. Table 1
and 3 at temperatures within and outside the invention range shown in Table 2.
After performing HIP treatment while maintaining the pressure at 60 kg/cm2 for an hour, the sample was cooled. The number of pores in an example of the obtained polycrystalline ferrite is 2/0.54 mm2, and the crystal grain size is 8.2.
It was μm. Further, in polycrystalline ferrite under conditions within the scope of the present invention, precipitation of FeO 2 due to reduction was not observed.

【0022】得られた多結晶フェライトを従来から行わ
れているフェライトの加工条件で切削研磨して、研磨し
た多結晶フェライトと種子単結晶とを硝酸で仮接合し、
内側をフェライトで覆ったアルミナ匣鉢中に入れ、窒素
雰囲気中で300 ℃/hの昇温速度で昇温し、115
0℃で表1に示す本発明範囲内および範囲外の酸素濃度
の窒素雰囲気に切り換えて15分保持した。
The obtained polycrystalline ferrite was cut and polished under conventional ferrite processing conditions, and the polished polycrystalline ferrite and seed single crystal were temporarily joined with nitric acid.
It was placed in an alumina sagger whose inside was covered with ferrite, and the temperature was raised at a rate of 300 °C/h in a nitrogen atmosphere to 115 °C.
At 0°C, the atmosphere was changed to a nitrogen atmosphere with an oxygen concentration within and outside the range of the present invention shown in Table 1, and maintained for 15 minutes.

【0023】その後、300 ℃/hの昇温速度でさら
に昇温し1340℃に達した後、15℃/hの昇温速度
に切り換えて単結晶育成を行った。さらに、1480℃
まで同じ雰囲気を維持し、以後300 ℃/hの昇温速
度、窒素単独雰囲気に切り換えサブグレインを無くすた
め1500℃で0.5h保持し、以後窒素雰囲気で冷却
した。
Thereafter, the temperature was further increased at a rate of 300° C./h until reaching 1340° C., and then the rate was changed to 15° C./h to grow a single crystal. Furthermore, 1480℃
The same atmosphere was maintained until then, and thereafter the temperature was increased at a rate of 300° C./h, and the atmosphere was switched to a nitrogen-only atmosphere, and the temperature was maintained at 1500° C. for 0.5 h to eliminate subgrains, and thereafter, it was cooled in a nitrogen atmosphere.

【0024】各接合体に対して、育成して得られた単結
晶フェライトのサブグレインはなかった。成長距離は、
種子単結晶フェライトと多結晶フェライトとの接合面か
らの単結晶フェライトの育成した距離として求めた。ま
た、気孔数は、高速ラップ研磨機で仕上げた面を、10
00倍のスケール視野内の1μm 以上の気孔を光学顕
微鏡で肉眼観察して求めた。結果を併せて表1に記載す
る。なお、気孔率は以下の式1
[0024] For each bonded body, there were no single-crystal ferrite subgrains grown. The growth distance is
It was determined as the distance that the single crystal ferrite grew from the joint surface between the seed single crystal ferrite and the polycrystalline ferrite. In addition, the number of pores is 10
Pores of 1 μm or more within a 00x scale field of view were determined by visual observation using an optical microscope. The results are also listed in Table 1. In addition, the porosity is calculated using the following formula 1

【式1】 ただし、di :気孔径(長径)、ni :気孔径di
 の個数より求めた。
[Formula 1] where di: pore diameter (longer diameter), ni: pore diameter di
It was calculated from the number of pieces.

【0025】[0025]

【表1】[Table 1]

【0026】[0026]

【表2】[Table 2]

【0027】表1および表2の結果から、本発明の範囲
内の試験No1〜11及びNo19〜22は、育成して
得た単結晶中の気孔も少なく単結晶成長距離も大きいの
に対し、本発明の範囲外の試験No12〜18及びNo
23〜25は、単結晶中の気孔が多く単結晶成長距離も
小さいことがわかる。なお、本発明試験No4の単結晶
フェライトの磁気特性のμ特性は、0.1MHz=48
00,1MHz=2400 となり、本発明範囲外の比
較例試験No14では、0.1MHz=1800,1M
Hz=1100 となり、本発明例では比較例に比べて
磁気的特性が大幅に改善されていることがわかる。
From the results in Tables 1 and 2, it can be seen that in tests Nos. 1 to 11 and Nos. 19 to 22 within the scope of the present invention, the pores in the grown single crystals were small and the single crystal growth distance was large; Tests No. 12 to 18 and No. outside the scope of the present invention
It can be seen that samples Nos. 23 to 25 have many pores in the single crystal and the single crystal growth distance is short. In addition, the μ characteristic of the magnetic property of the single crystal ferrite of the present invention test No. 4 is 0.1 MHz = 48
00.1MHz=2400, and in comparative example test No. 14 outside the scope of the present invention, 0.1MHz=1800.1M
Hz=1100, and it can be seen that the magnetic properties of the inventive example are significantly improved compared to the comparative example.

【0028】[0028]

【発明の効果】以上の説明から明らかなように、本発明
の単結晶フェライトの製造方法によれば、所定のフェラ
イト成形体に対し、所定温度及び雰囲気の第一次焼成、
その後の所定温度及び圧力のHIP処理による第二次焼
成、種子単結晶と接合後の所定温度及び雰囲気の固相反
応の為の加熱処理を行うことにより、育成した単結晶中
の気孔数を減らすことができるとともに、単結晶成長距
離を大きくすることができるため、良好な磁気的特性を
有する単結晶フェライトを量産することができる。
Effects of the Invention As is clear from the above explanation, according to the method for producing single crystal ferrite of the present invention, a predetermined ferrite molded body is subjected to primary firing at a predetermined temperature and atmosphere.
After that, the number of pores in the grown single crystal is reduced by performing secondary firing by HIP treatment at a predetermined temperature and pressure, and heat treatment for solid phase reaction at a predetermined temperature and atmosphere after joining with the seed single crystal. In addition, since the single crystal growth distance can be increased, single crystal ferrite having good magnetic properties can be mass-produced.

【0029】また、本発明により得た単結晶フェライト
は、その製造に当たって、埋粉を必要とせず、また、G
r−HIP N2 ガスの処理でも還元に伴うFeO 
の析出とか、還元によって粒界強度が低下し機械加工が
劣るといった問題はなかった。かくして得られた単結晶
は、従来の固相反応で得られた単結晶と比べ気孔率が格
段に改良されたため、寸法仕様が厳しいRDD 用基板
あるいはVTR 用基板となって、ヘッド特性が優れる
ものとなった。
Furthermore, the single crystal ferrite obtained according to the present invention does not require powder in its production, and
Even in the treatment of r-HIP N2 gas, FeO is generated due to reduction.
There were no problems such as precipitation of grains or reduction in grain boundary strength resulting in poor machining. The single crystal thus obtained has significantly improved porosity compared to single crystals obtained by conventional solid-phase reactions, so it can be used as a substrate for RDDs or VTRs with strict dimensional specifications, and has excellent head characteristics. It became.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  酸化鉄としてスピネル構造を有するか
、あるいはその履歴を有する酸化鉄を主として用いたフ
ェライト原料から成形体を製造し、この成形体に対し、
1100℃から1280℃の温度領域で真空処理した後
ヘリウム雰囲気または3%以下の酸素を含むヘリウム雰
囲気に切り換えて焼成し窒素中で冷却するか、前記真空
処理後ただちに窒素中で冷却する第一次焼成を行い、平
均粒子径10μm 以下の焼結体を作製し、この焼結体
に対し、60kg/cm2以上の静水圧下で第一次焼成
の温度以上であって1150℃から1350℃の温度領
域で焼成する第二次焼成を行い、第一次焼成後の焼結体
の平均粒子径より大きく粒成長させた多結晶フェライト
焼結体を作製し、この多結晶フェライト焼結体を種子単
結晶に接合し、この接合体を第二次焼成の温度以上であ
って1300℃から1560℃の温度領域で窒素または
3%以下の酸素を含む窒素雰囲気で加熱処理することを
特徴とする単結晶フェライトの製造方法。
Claim 1: A molded body is produced from a ferrite raw material mainly using iron oxide that has a spinel structure or a history of spinel structure, and for this molded body,
After vacuum treatment in a temperature range of 1100°C to 1280°C, the first step is to switch to a helium atmosphere or a helium atmosphere containing 3% or less oxygen and then sinter it and cool it in nitrogen, or to cool it in nitrogen immediately after the vacuum treatment. Firing is performed to produce a sintered body with an average particle size of 10 μm or less, and the sintered body is heated at a temperature of 1150°C to 1350°C, which is higher than the temperature of the primary firing, under a hydrostatic pressure of 60 kg/cm2 or more. A polycrystalline ferrite sintered body is produced by performing a second firing in which the grains are grown to be larger than the average particle diameter of the sintered body after the first firing, and this polycrystalline ferrite sintered body is seeded as a single seed. A single crystal that is bonded to a crystal, and the bonded body is heat-treated in a temperature range of 1300°C to 1560°C above the temperature of the secondary firing in nitrogen or a nitrogen atmosphere containing 3% or less oxygen. Ferrite manufacturing method.
JP3041410A 1991-01-18 1991-01-18 Method for producing single crystal ferrite Expired - Lifetime JPH0796475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3041410A JPH0796475B2 (en) 1991-01-18 1991-01-18 Method for producing single crystal ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3041410A JPH0796475B2 (en) 1991-01-18 1991-01-18 Method for producing single crystal ferrite

Publications (2)

Publication Number Publication Date
JPH04240195A true JPH04240195A (en) 1992-08-27
JPH0796475B2 JPH0796475B2 (en) 1995-10-18

Family

ID=12607589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3041410A Expired - Lifetime JPH0796475B2 (en) 1991-01-18 1991-01-18 Method for producing single crystal ferrite

Country Status (1)

Country Link
JP (1) JPH0796475B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115368127A (en) * 2022-08-22 2022-11-22 深圳顺络电子股份有限公司 Ferrite material, preparation method and common-mode inductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115368127A (en) * 2022-08-22 2022-11-22 深圳顺络电子股份有限公司 Ferrite material, preparation method and common-mode inductor

Also Published As

Publication number Publication date
JPH0796475B2 (en) 1995-10-18

Similar Documents

Publication Publication Date Title
US4339301A (en) Method for producing a single crystal of ferrite
JP2003505316A (en) Method for growing single crystal of barium titanate and barium titanate solid solution
JP2003267796A (en) Oxide having perovskite structure and method for producing the same
JPH04240195A (en) Production of single-crystalline ferrite
JPS6215518B2 (en)
JPH04254497A (en) Production of single crystal ferrite
JPS6241797A (en) Single crystal ferrite and production thereof
JPS6215517B2 (en)
JPH0696931A (en) High-density polycrystalline ferrite
JPH0375517B2 (en)
JPS582289A (en) Manufacture of single crystal body
JPH0217517B2 (en)
JPH0440318B2 (en)
JPH06279108A (en) Production of high density polycrystalline yig ferrite
JPH0796476B2 (en) Manufacturing method of single crystal ferrite
JPS5918188A (en) Preparation of ferrite of single crystal
JPS62223099A (en) Production of single crystal ferrite
JPS6215519B2 (en)
JPS5978997A (en) Manufacture of oxide single crystal
JPH01242499A (en) Method of decreasing dislocation of znse single crystal
JPS5926994A (en) Preparation of oxide single crystal
JPS629559B2 (en)
JP2579728B2 (en) Method for producing Mn-Zn single crystal ferrite
JPH04240194A (en) Production of combined ferrite
JPH0471874B2 (en)