JPS6215517B2 - - Google Patents

Info

Publication number
JPS6215517B2
JPS6215517B2 JP57132731A JP13273182A JPS6215517B2 JP S6215517 B2 JPS6215517 B2 JP S6215517B2 JP 57132731 A JP57132731 A JP 57132731A JP 13273182 A JP13273182 A JP 13273182A JP S6215517 B2 JPS6215517 B2 JP S6215517B2
Authority
JP
Japan
Prior art keywords
ferrite
crystal
polycrystalline
single crystal
coprecipitated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57132731A
Other languages
Japanese (ja)
Other versions
JPS5921591A (en
Inventor
Ken Hirota
Harufumi Sakino
Eiichi Hirota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13273182A priority Critical patent/JPS5921591A/en
Publication of JPS5921591A publication Critical patent/JPS5921591A/en
Publication of JPS6215517B2 publication Critical patent/JPS6215517B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Compounds Of Iron (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 本発明は、単結晶フエライトの製造法に関する
もので、その目的は、従来の単結晶フエライト製
造法に比べて組成偏析が少なく、均質で制御され
た結晶方位を有する単結晶を、高歩留りで多量に
生産する方法を提供することにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing single-crystal ferrite, and its purpose is to produce a single-crystal ferrite having less compositional segregation and a homogeneous and controlled crystal orientation compared to conventional methods for producing single-crystal ferrite. An object of the present invention is to provide a method for producing crystals in large quantities with high yield.

現在、酸化物系単結晶は、磁気記録用磁気ヘツ
ド材料のMn−Znフエライト単結晶、水晶発振素
子、レーザー用YAG単結晶、センサー用LiNbO3
単結晶等、電子工業の分野で多数使われている。
従来の単結晶製造法には、チヨクラルスキー法、
ブリツジマン法、ベルヌーイ法、フラツクス法、
水熱合成法、高温高圧反応法等各種の方法があ
る。
Currently, oxide-based single crystals include Mn-Zn ferrite single crystals for magnetic head materials for magnetic recording, YAG single crystals for crystal oscillation elements, lasers, and LiNbO 3 for sensors.
Single crystals are widely used in the electronic industry.
Conventional single crystal manufacturing methods include the Czyochralski method,
Bridgeman method, Bernoulli method, flux method,
There are various methods such as hydrothermal synthesis method and high temperature high pressure reaction method.

これらの技術は、単結晶育成に相当な時間がか
かり、かつ得られた単結晶内部に、組成の偏析、
クラツクの発生、インゴツトが1つの単結晶にな
らずに複数個のものになる多結晶があり、良品の
歩留り率が低く、解決されなければならない問題
が多く残されている。
These techniques require a considerable amount of time to grow single crystals, and the resulting single crystals suffer from compositional segregation and
There are cracks, polycrystalline ingots do not become one single crystal, but multiple ingots, the yield rate of good products is low, and many problems remain to be solved.

本発明は、これら従来からなる単結晶体の製造
法とは異なつた、固相反応による単結晶体の育成
法、すなわち、所望の単結晶フエライトと、この
単結晶フエライトと同組成もしくはそれに近い組
成で、同じ結晶構造を有する多結晶フエライトと
を接合し、この接合体を熱処理することにより、
多結晶フエライトを単結晶フエライトと同じ結晶
方位と結晶構造をもつ単結晶フエライトに育成す
る単結晶フエライトの製造法(以後、「接合型単
結晶フエライトの製造法」と呼ぶ)において湿式
法で合成された共沈フエライト粉体を出発原料と
し、これを焼成した多結晶フエライトを単結晶化
させる出発多結晶体として用いることを特徴とす
る単結晶フエライトの製造法である。
The present invention provides a method for growing a single crystal by solid-phase reaction, which is different from these conventional methods for producing a single crystal. By joining polycrystalline ferrite with the same crystal structure and heat-treating this joined body,
Synthesized by a wet method in the single-crystal ferrite manufacturing method (hereinafter referred to as the "junction type single-crystal ferrite manufacturing method") in which polycrystalline ferrite is grown into single-crystal ferrite with the same crystal orientation and crystal structure as single-crystal ferrite. This is a method for producing single crystal ferrite, which is characterized in that a coprecipitated ferrite powder is used as a starting material and used as a starting polycrystal for monocrystallizing a fired polycrystalline ferrite.

さらに、発明者等は、湿式法で合成される共沈
フエライト粉体について、その平均粒径が単結晶
化に及ぼす影響を調べた。その結果、本発明で用
いる共沈フエライト粉体は平均粒径0.01〜1.0μ
mの範囲のものが適していることが判明した。
Furthermore, the inventors investigated the influence of the average particle size on single crystallization of coprecipitated ferrite powder synthesized by a wet method. As a result, the coprecipitated ferrite powder used in the present invention has an average particle size of 0.01 to 1.0μ.
It has been found that a range of m is suitable.

以下、本発明の方法について、さらに詳しく説
明する。
The method of the present invention will be explained in more detail below.

第1図は、本発明で用いる単結晶フエライトと
多結晶フエライトとの接合体を模式的に示したも
ので、同図Aは熱処理前のもの、同図Bは適当な
熱処理後の接合体を示している。A−1は種子に
使う単結晶フエライト、A−2は単結晶フエライ
ト化しようとする多結晶フエライト、A−3は、
単結晶フエライトと多結晶フエライトの接合界面
である。B−1はA−1と同じ種子単結晶フエラ
イト、B−2はまだ単結晶化していない多結晶フ
エライト、B−3は最初、熱処理前接合界面のあ
つた位置、B−4は多結晶フエライトから単結晶
フエライトに変つた部分(単結晶化した部分)、
B−5は単結晶フエライト化した領域と多結晶の
境界(界面)である。LはB−3の位置から界面
B−5まで測つた単結晶化した長さである。本発
明で用いる多結晶フエライトは、一般に接合界面
A−3,B−5の多結晶フエライト側へ移動がス
ムーズに行なわれるように、小粒径で、不純物が
少なく、気孔のほとんどないものが望ましい。つ
まり小粒径であればある程、接合界面が単結晶側
に移動するために受ける駆動力が大きい。一方、
異相の析出物、気孔等は界面が移動するときの抵
抗として働くため、これらが少なければ少ない
程、単結晶フエライト化しやすい。
Figure 1 schematically shows a bonded body of single-crystal ferrite and polycrystalline ferrite used in the present invention. Figure A shows the bonded body before heat treatment, and Figure B shows the bonded body after appropriate heat treatment. It shows. A-1 is a single-crystal ferrite used for seeds, A-2 is a polycrystalline ferrite that is to be made into a single-crystal ferrite, and A-3 is a
This is the bonding interface between single-crystal ferrite and polycrystalline ferrite. B-1 is the same seed single-crystal ferrite as A-1, B-2 is polycrystalline ferrite that has not yet become a single crystal, B-3 is the initial position of the bonding interface before heat treatment, and B-4 is polycrystalline ferrite. The part that changed from to single crystal ferrite (the part that became single crystal),
B-5 is the boundary (interface) between the single crystal ferrite region and the polycrystal. L is the single crystallized length measured from the position of B-3 to the interface B-5. In general, the polycrystalline ferrite used in the present invention preferably has a small grain size, contains few impurities, and has almost no pores so that the polycrystalline ferrite can smoothly move toward the polycrystalline ferrite side of the bonding interfaces A-3 and B-5. . In other words, the smaller the grain size, the greater the driving force received to move the bonding interface toward the single crystal. on the other hand,
Different phase precipitates, pores, etc. act as resistance when the interface moves, so the less they are present, the easier it is to form a single crystal ferrite.

発明者等は、この接合型単結晶フエライトの製
造法において、短時間にいかに効率よく均質な単
結晶フエライトを、高い歩留りで育成するかにつ
いて種々検討した。その結果、単結晶多結晶体の
セラミツクス的特性すなわち多結晶を構成する結
晶粒の形状、粒径、粒径分布、気孔率、気孔の形
状、気孔の分布個所、粒界の形状、粒界層の厚さ
等の性質およびフエライトとしての電磁気特性を
決定する主要因子である出発原料粉体の選択が非
常に重要であるという知見から、多数の種類の原
料粉体の組み合わせを作り、これを用いて焼成し
た多結晶フエライトを準備し、これでもつて接合
型単結晶の実験を行なつた。出発原料粉の組み合
わせる方法として、混合系と非混合系の二種があ
る。混合系は各種の酸化物、水酸化物、炭酸塩等
を混合し、焼成してフエライト化させるものであ
り、非混合系は最初からフエライト化しているも
のである。混合系として、水酸化鉄(α−
FeOOH、γ−FeOOH)、立方晶系酸化鉄(γ−
Fe2O3、Fe3O4)、六方晶系酸化鉄(α−
Fe2O3)、炭酸マンガン(MnCO3)、水酸化マン
ガン(γ−MnOOH)、酸化亜鉛(ZnO)の中か
ら最終組成がFe2O350モル%、MnO25モル%、
ZnO25モル%になるように、鉄やマンガン、亜鉛
の種々の原料を秤量して用い、非混合系では、湿
式法で作製された前述のものと同組成の共沈フエ
ライトを用いる。多結晶体として、混合系では、
秤量された配合原料を、ステンレス鋼製ボールミ
ルで湿式混合し、仮焼してから、再度ボールミル
で湿式混合した。混合後、乾燥し、造粒、成形を
行ない、これを1250℃〜1300℃の範囲内の温度で
ホツトプレス(300Kg/cm2、3時間)し、結晶粒
径が10〜20μmのものを作製した。一方、非混合
系の共沈フエライトを用いた場合には、混合系の
工程のうち、最初の配合、湿式混合工程のみを省
いた、残余の工程に従つて、多結晶フエライトを
作製した。共沈フエライトから作製した多結晶フ
エライトは、混合系の他の原料粉を用いて作製し
た多結晶フエライトに比べてその内部に残存する
気孔が少なく、気孔率が約1/3〜1/5になり、かつ
気孔の最大値径も0.1μm以下と小さなものにな
る。また、湿式法で合成された共沈原料は、混合
系の原料粉体に比べて不純物の含有量が少ない。
特に多結晶フエライトの結晶粒界に析出しやすい
CaOとSiO2については、含有量の少ない共沈フ
エライトを比較的容易に合成、製造ができるの
で、高純度原料を低コストで得られるという点で
も優れたものである。また、一般に、共沈フエラ
イト粉体を焼成して作つた多結晶フエライトは、
同一製造条件で作つた混合系粉体を焼成した多結
晶フエライトに比べて10%〜数10%小さい結晶粒
径のものが得られる。このことは、単結晶化する
場合には、界面移動のための駆動力が大きくなる
ので、好ましいものである。これらの性質すなわ
ち高密度(気孔率小)、小粒径で、粒界析出物が
少ないという性質は、本発明で用いる多結晶フエ
ライトとして望ましい特性である。
The inventors conducted various studies on how to efficiently grow homogeneous single crystal ferrite in a short period of time with a high yield in this method for manufacturing bonded single crystal ferrite. As a result, the ceramic properties of single-crystalline polycrystals, namely the shape, grain size, grain size distribution, porosity, shape of pores, location of distribution of pores, shape of grain boundaries, and grain boundary layer, are determined. Based on the knowledge that the selection of the starting raw material powder is very important as it is the main factor that determines the properties such as the thickness of the ferrite and the electromagnetic properties of the ferrite, we created a combination of many types of raw material powder and used it. We prepared a polycrystalline ferrite fired using the same method, and conducted experiments on bonded single crystals using it. There are two methods for combining starting material powders: a mixed system and a non-mixed system. Mixed systems are those in which various oxides, hydroxides, carbonates, etc. are mixed and fired to form ferrite, while non-mixed systems are those in which ferrite is formed from the beginning. As a mixed system, iron hydroxide (α-
FeOOH, γ-FeOOH), cubic iron oxide (γ-
Fe 2 O 3 , Fe 3 O 4 ), hexagonal iron oxide (α-
The final composition is Fe 2 O 3 50 mol%, MnO 25 mol % ,
Various raw materials such as iron, manganese, and zinc are weighed and used so that ZnO is 25 mol %, and in a non-mixed system, coprecipitated ferrite with the same composition as the above-mentioned one produced by a wet method is used. As a polycrystal, in a mixed system,
The weighed raw materials were wet-mixed in a stainless steel ball mill, calcined, and wet-mixed again in a ball mill. After mixing, the mixture was dried, granulated and molded, and then hot pressed (300Kg/cm 2 , 3 hours) at a temperature within the range of 1250°C to 1300°C to produce crystal grains with a crystal grain size of 10 to 20 μm. . On the other hand, when a non-mixing coprecipitated ferrite was used, polycrystalline ferrite was produced by following the remaining steps of the mixing system, excluding only the initial blending and wet mixing steps. Polycrystalline ferrite made from coprecipitated ferrite has fewer pores remaining inside it than polycrystalline ferrite made using other mixed raw material powders, and the porosity is about 1/3 to 1/5. In addition, the maximum diameter of the pores is as small as 0.1 μm or less. In addition, coprecipitated raw materials synthesized by a wet method have a lower content of impurities than mixed raw material powders.
Particularly easy to precipitate at grain boundaries of polycrystalline ferrite.
Regarding CaO and SiO 2 , co-precipitated ferrite with a low content can be synthesized and produced relatively easily, so it is also excellent in that high-purity raw materials can be obtained at low cost. In general, polycrystalline ferrite made by firing coprecipitated ferrite powder is
Compared to polycrystalline ferrite produced by firing a mixed powder produced under the same manufacturing conditions, crystal grain sizes 10% to several 10% smaller can be obtained. This is preferable in the case of single crystallization because the driving force for interfacial movement becomes large. These properties, namely high density (low porosity), small grain size, and few grain boundary precipitates, are desirable properties for the polycrystalline ferrite used in the present invention.

本発明でいう、湿式法で合成される共沈フエラ
イト粉体は、Fe2+、M2+(=Mn2+、Ni2+
Zn2+、CO2+、Mg2+………等)を含む塩を所望の
組成になるようにして配合し、水溶液にして、こ
れにアルカリを添加し中性化して沈降させ、沈降
時に液を撹拌し酸素を吹き込んだり、熟成等を行
なつたりして、粒径を制御して得られるものであ
る。
In the present invention, the coprecipitated ferrite powder synthesized by the wet method contains Fe 2+ , M 2+ (=Mn 2+ , Ni 2+ ,
Salts containing Zn 2+ , CO 2+ , Mg 2+ , etc.) are blended to the desired composition, made into an aqueous solution, and an alkali is added to neutralize and settle. It is obtained by controlling the particle size by stirring the liquid, blowing oxygen into it, aging it, etc.

このようにして混合系、非混合系から焼成して
得られたこれらの多結晶フエライトを30×15×20
mmの大きさに切断し、30×15mm2の接合面を粒度
2000番、4000番のSiC砥粒、ダイヤモンド砥粒
(3μm径)にて鏡面にまで仕上げた。ほぼ同組
成のMn−Zn−Feフエライト単結晶を(100)面
が30×15mm2の接合面になるように結晶方位を確か
めて、1.5mm〜1.7mmの厚さに切断し、多結晶フエ
ライトと同様に、接合面を鏡面に仕上げた。多結
晶フエライトと単結晶フエライト双方の接合面
に、希硝酸を塗布した後、両者を貼り合わせ、こ
れを、N2ガスを流した電気炉内にて1250℃で30
分、続いて1300℃で3時間、30Kg/cm2でホツトプ
レスし、接合界面の固相反応と多結晶フエライト
の単結晶化熱処理を行なつた。熱処理後、接合体
を、接合界面と垂直な方向に中央部を切断し、切
断面を、2000番、4000番のSiC砥粒でラツプし、
さらに粒径3μmのダイヤモンド砥粒で鏡面ラツ
プした後、熱濃リン酸でエツチングを行ない、単
結晶化距離(第1図BのL)を測定した。
These polycrystalline ferrites obtained by firing the mixed and non-mixed systems in this way are 30×15×20
Cut to a size of mm 3 , and the joint surface of 30 x 15 mm 2
Finished to a mirror finish using No. 2000 and No. 4000 SiC abrasive grains and diamond abrasive grains (3 μm diameter). A Mn-Zn-Fe ferrite single crystal with almost the same composition was cut into polycrystalline ferrite by checking the crystal orientation so that the (100) plane was a 30 x 15 mm 2 joint surface and cutting it into a thickness of 1.5 mm to 1.7 mm. Similarly, the joint surfaces were finished to a mirror finish. After applying dilute nitric acid to the joint surfaces of both polycrystalline ferrite and single crystal ferrite, they were bonded together and heated at 1250℃ for 30 minutes in an electric furnace with N2 gas flowing.
Then, hot pressing was carried out at 1300° C. for 3 hours at 30 kg/cm 2 to perform a solid phase reaction at the bonding interface and a heat treatment for single crystallization of the polycrystalline ferrite. After heat treatment, the bonded body was cut at the center in a direction perpendicular to the bonding interface, and the cut surface was wrapped with No. 2000 and No. 4000 SiC abrasive grains.
Further, after mirror-lapping with diamond abrasive grains having a grain size of 3 μm, etching was performed with hot concentrated phosphoric acid, and the single crystallization distance (L in FIG. 1B) was measured.

これらの一連の実験の結果、非混合系の共沈フ
エライトを出発原料粉末として焼成して作製した
多結晶フエライトを用いたものが、単結晶化距離
Lがいちじるしく大きく、混合系のもの(全然界
面が移動しないものから移動しても、最大約3
mm)に比べて約3〜5倍の12mm以上であり、また
単結晶体化したものの電磁気特性も優れたものが
得られ、本発明においては、最も好ましいもので
あつた。よつて、本発明で用いる多結晶として、
共沈フエライトを出発原料粉体として焼成された
多結晶を用いることが望ましい。
As a result of these series of experiments, the single crystallization distance L was significantly larger in the polycrystalline ferrite produced by firing non-mixed co-precipitated ferrite as a starting material powder, and the mixed type (with no interface at all). Even if it moves from something that does not move, the maximum is about 3
The diameter was 12 mm or more, which is about 3 to 5 times larger than that in mm), and a single crystal with excellent electromagnetic properties was obtained, which was the most preferable in the present invention. Therefore, as the polycrystal used in the present invention,
It is desirable to use polycrystals fired from coprecipitated ferrite as a starting material powder.

さらに、発明者等は、共沈フエライト粉体につ
いて、どのように粒径のものが、接合型単結晶フ
エライトの多結晶として適しているかを調べた。
共沈フエライト粉体として、粒径が0.005μm程
度のものから、最大数μmのものまで合成できる
が、本発明で用いる高密度、小粒径で粒界析出物
の少ない多結晶の原料粉体としては、製造時の取
り扱いよさ、および単結晶化しやすいか否かにつ
いて検討したところ、単結晶化しやすいというこ
とから、粒径が0.01〜1.0μmのものが好まし
く、さらに0.1〜0.7μmのものがより好ましい。
Furthermore, the inventors investigated what particle size of coprecipitated ferrite powder is suitable as a polycrystal of bonded single crystal ferrite.
Co-precipitated ferrite powder can be synthesized from particle sizes of about 0.005 μm to a maximum of several μm, but the polycrystalline raw material powder used in the present invention has high density, small particle size, and few grain boundary precipitates. After considering the ease of handling during manufacturing and whether or not it is easy to form a single crystal, we found that particles with a particle size of 0.01 to 1.0 μm are preferable, and those with a particle size of 0.1 to 0.7 μm are preferable because they are easy to form a single crystal. More preferred.

そして、本発明の方法は、Mn−Znフエライト
だけでなく、Ni−Zn−Feフエライト等のフエラ
イト一般に適用することができる。
The method of the present invention can be applied not only to Mn-Zn ferrite but also to ferrites in general such as Ni-Zn-Fe ferrite.

以下、本発明の実施例について詳細に説明す
る。
Examples of the present invention will be described in detail below.

実施例 1 最終組成比が52モル%Fe2O3、32モル%MnO、
16モル%ZnOになるように、純度99.5%のα−
Fe2O3182.5gと、含有量91.2%のMnCO388.7g
と、純度99.8%のZnO28.7gを秤量し、ステンレ
スボールミルにて湿式で15時間混合し、混合後
900℃で2時間空気中で仮焼した。仮焼後、再度
ステンレスボールミルで15時間湿式混合し、その
後その泥状物を130℃で10時間乾燥した。純水を
12〜15%加えてらいかい器にて造粒し、粒度をそ
ろえた後、300Kg/cm2の成形圧で造粒粉を成形し
た。この成形体を空気中にて1280℃で3時間、
300Kg/cm2の圧力下でホツトプレスして焼結体を
得た。次に、52モル%Fe2O3、32モル%MnO、16
モル%ZnOの組成を有する平均粒径が0.1μm共
沈フエライト(FeSO4、MnSO4、ZnSO4溶液に
NaOHを加えて共沈させたものを、900℃で2時
間空気中で仮焼し、仮焼後、前述と同様にステン
レスボールミルにて湿式混合・乾燥・造粒成形工
程を経てほぼ同様な条件でホツトプレス焼成を行
い、平均結晶粒径20μm、気孔率0.01%の焼結体
を得た。これら二種類の多結晶フエライトを30×
15×20mmにダイヤモンドカツターで切断し、30
×15mm2の面を接合面とし、この面を順次2000番、
4000番SiC砥粒にてラツプし、3μm径のダイヤ
モンド砥粒で鏡面にまで仕上げた。一方、この多
結晶フエライトと同組成のMn−Znフエライト単
結晶の(100)面を30×15mm2の面にし、二つの側
面を(110)とした厚さ1.5mmの単結晶板に切断
し、多結晶フエライトと同様に30×15mm2の面を、
接合面として鏡面にまで仕上げた。単結晶、多結
晶双方の接合面に1N−HNO3を塗布し、単結晶フ
エライトを種類の異なる多結晶フエライトに張り
合わせ、二種類の接合体を作製した。この二種類
の接合体を、N2ガスを流した雰囲気中にて1320
℃で3時間、30Kg/cm2の圧力でホツトプレスし、
接合体の多結晶フエライトの単結晶化を行なつ
た。このホツトプレス熱処理後、接合体試料を、
接合界面に垂直に中央部で切断し、切断面を鏡面
に仕上げた後、80℃濃リン酸にて表面をエツチン
グし、単結晶化長さLを測定した。共沈フエライ
トを出発原料に用いた多結晶の接合体ではL=8
mmであつたが、α−Fe2O3、MnCO3、ZnOを出発
原料に用いた多結晶の接合体ではL=0.5mmであ
つた。共沈多結晶の単結晶化した部分の磁気特性
を測定すると、1KHzでの透磁率(μ)がμ=
10000で、抗磁力(Hc)はHc=0.05(Oe)であ
つた。この値は、従来のブリツジマン法で作製さ
れた同組成のMn−Znフエライトのそれと同じも
のであつた。
Example 1 Final composition ratio: 52 mol% Fe 2 O 3 , 32 mol% MnO,
99.5% pure α- to give 16 mol% ZnO
182.5 g of Fe 2 O 3 and 88.7 g of MnCO 3 with a content of 91.2%
Weighed 8.7g of ZnO2 with a purity of 99.8% and mixed them wet in a stainless steel ball mill for 15 hours.
It was calcined in air at 900°C for 2 hours. After calcining, wet mixing was carried out again in a stainless steel ball mill for 15 hours, and then the slurry was dried at 130°C for 10 hours. pure water
After adding 12 to 15% of the powder and granulating it in a miller to make the particle size uniform, the granulated powder was molded at a molding pressure of 300 kg/cm 2 . This molded body was heated in air at 1280℃ for 3 hours.
A sintered body was obtained by hot pressing under a pressure of 300 kg/cm 2 . Then 52 mol% Fe2O3 , 32 mol% MnO, 16
Co-precipitated ferrite with an average particle size of 0.1 μm with a composition of mol% ZnO (FeSO 4 , MnSO 4 , ZnSO 4 solution)
The co-precipitated product with NaOH was calcined in air at 900℃ for 2 hours, and after calcining, it was subjected to wet mixing, drying, and granulation molding processes in a stainless steel ball mill as described above under almost the same conditions. Hot press firing was performed to obtain a sintered body with an average grain size of 20 μm and a porosity of 0.01%. These two types of polycrystalline ferrite are 30×
Cut into 15×20mm 3 pieces with a diamond cutter, 30
The surface of ×15mm 2 is used as the joint surface, and this surface is sequentially bonded with No. 2000,
It was lapped with No. 4000 SiC abrasive grains and finished to a mirror finish with 3 μm diameter diamond abrasive grains. On the other hand, a Mn-Zn ferrite single crystal with the same composition as this polycrystalline ferrite was cut into a 1.5 mm thick single crystal plate with the (100) plane as a 30 x 15 mm 2 plane and two sides as (110). , a surface of 30 x 15 mm 2 as well as polycrystalline ferrite,
The joint surface has been finished to a mirror finish. 1N-HNO 3 was applied to the joint surfaces of both the single crystal and polycrystal, and the single crystal ferrite was bonded to different types of polycrystal ferrite to produce two types of joined bodies. These two types of bonded bodies were heated at 1320 °C in an atmosphere flowing N2 gas.
Hot pressed at a pressure of 30Kg/ cm2 for 3 hours at ℃,
The polycrystalline ferrite of the bonded body was single-crystallized. After this hot press heat treatment, the joined body sample was
After cutting at the center perpendicular to the bonding interface and finishing the cut surface with a mirror finish, the surface was etched with concentrated phosphoric acid at 80°C and the single crystallization length L was measured. In a polycrystalline composite using coprecipitated ferrite as a starting material, L = 8.
mm, but in the case of a polycrystalline bonded body using α-Fe 2 O 3 , MnCO 3 , and ZnO as starting materials, L=0.5 mm. When measuring the magnetic properties of the single crystallized part of the coprecipitated polycrystal, the magnetic permeability (μ) at 1KHz is μ=
10,000, and the coercive force (Hc) was Hc = 0.05 (Oe). This value was the same as that of Mn-Zn ferrite of the same composition produced by the conventional Bridgeman method.

実施例 2 前述の六方晶α−Fe2O3を立方晶スピネル構造
のγ−Fe2O3および、Fe3O4に変え、他の原料は
同じである、52モル%Fe2O3、36モル%MnO、16
モル%ZnOの多結晶体を、実施例1と同様にして
秤量し混合して、800℃で2時間、空気中におい
て仮焼した。仮焼後、再度湿式混合し、乾燥、造
粒、成形後(成形圧300Kg/cm2)、1250℃で3時
間、300Kg/cm2でホツトプレス焼結を行ない、平
均結晶粒径15μm気孔率0.02%の焼結体を得た。
実施例1で用いた共沈フエライトを、最初の混合
以外、全て同じ条件で製造してホツトプレス焼結
体を得た。平均結晶粒径は10μm、気孔率は0.01
%であつた。これら三者の多結晶フエライトを用
いて実施例1と同様に接合体を作製し、N2中に
てホツトプレス熱処理を行なつた。単結晶化長さ
Lを測定すると、γ−Fe2O3を用いたものではL
=1.5mm、Fe3O4を用いたものでは、L=2.5mm、
共沈フエライトを用いたものではL=8.5mmであ
つた。
Example 2 The aforementioned hexagonal α-Fe 2 O 3 was changed to γ-Fe 2 O 3 and Fe 3 O 4 with a cubic spinel structure, and the other raw materials were the same, 52 mol% Fe 2 O 3 , 36 mol% MnO, 16
Polycrystals of mol % ZnO were weighed and mixed in the same manner as in Example 1, and calcined in air at 800° C. for 2 hours. After calcination, wet mixing again, drying, granulation, and molding (molding pressure 300Kg/cm 2 ), followed by hot press sintering at 1250℃ for 3 hours at 300Kg/cm 2 to obtain an average crystal grain size of 15 μm and a porosity of 0.02. % sintered body was obtained.
The coprecipitated ferrite used in Example 1 was manufactured under the same conditions except for the initial mixing to obtain a hot-pressed sintered body. Average grain size is 10μm, porosity is 0.01
It was %. A bonded body was prepared using these three polycrystalline ferrites in the same manner as in Example 1, and hot press heat treatment was performed in N 2 . When the single crystallization length L is measured, it is L for the one using γ-Fe 2 O 3 .
= 1.5mm, for the one using Fe 3 O 4 , L = 2.5mm,
In the case of using coprecipitated ferrite, L was 8.5 mm.

多結晶フエライトの結晶粒径と気孔率の影響を
考慮するため、ホツトプレス温度を20〜30℃高
め、ホツトプレス圧力を下げて、共沈フエライト
焼結体を作り、結晶粒径15μm、気孔率0.02%の
ものを得た。この多結晶を用いてN2中ホツトプ
レス熱処理により単結晶化させたところ、単結晶
化長さLは8.0mmであつた。
In order to take into account the influence of the crystal grain size and porosity of polycrystalline ferrite, the hot press temperature was increased by 20 to 30°C and the hot press pressure was lowered to produce a coprecipitated ferrite sintered body, with a crystal grain size of 15 μm and a porosity of 0.02%. I got something. When this polycrystal was single-crystalized by hot press heat treatment in N 2 , the single-crystal length L was 8.0 mm.

実施例 3 最終組成が50モル%Fe2O3、25モル%MnO、25
モル%ZnOになるように、酸化鉄になる原料とし
て含有率95%のα−FeOOH、および同じくγ−
FeOOHをそれぞれ187.1gを使用し、酸化マンガ
ンになる原料として含有率95%のγ−
MnOOH46.3gを使用し、これらと純度99.5%の
ZnO40.88gを秤量、配合して混合した後、800℃
で2時間、空気中において仮焼した。それから再
度湿式混合、乾燥、造粒、成形して、1250℃で3
時間、300Kg/cm2の圧力でホツトプレス焼結を行
なつた。焼結体の平均結晶粒径は15μmであり、
気孔率は0.04%であつた。同じ50モル%Fe2O3
25モル%MnO、25モル%ZnO組成を持つ平均粒
径0.2μmの共沈フエライト粉体と、不純物の含
有率は同じで平均粒径が0.005μmのものと、1.5
μmのもの3種類の共沈原料粉体から、800℃2
時間仮焼した後、同様にして1250℃で3時間、
300Kg/cm2でホツトプレスして焼結体を得た。平
均結晶粒径は10μmで、気孔率は0.02%であつ
た。単結晶−多結晶フエライト接合体を作り、
N2中ホツトプレス熱処理により多結晶フエライ
トの単結晶化を行なつた。前述と同様の方法によ
り、単結晶化長さLを測つたところ、α−
FeOOHを用いた場合にはL=0.8mm、γ−
FeOOHを用いた場合にはL=0.9mm、共沈フエラ
イトを用いた場合には平均粒径02μmのものでL
=8.5mm、平均粒径0.005μmおよび1.5μmのもの
でそれぞれL=0.5mm、L=0.8mmであつた。気孔
率の差を比較するため、平均粒径0.2μmの共沈
フエライトを用いた場合のホツトプレス時の圧力
を300Kg/cm2から200Kg/cm2に下げて、気孔率を
0.04%と同じにしたもの(平均結晶粒径15μm)
を作り、同じ方法で単結晶化を行ない、単結晶化
長さLを測定した。その結果、L=6mmであり、
共沈フエライトを用いたものの方がいちじるしく
優れていることが確認された。
Example 3 Final composition: 50 mol% Fe 2 O 3 , 25 mol% MnO, 25
α-FeOOH with a content of 95% is used as a raw material to become iron oxide, and γ-
Using 187.1g of each FeOOH, γ-
Using 46.3g of MnOOH, with a purity of 99.5%.
After weighing, blending and mixing ZnO40.88g, 800℃
It was calcined in the air for 2 hours. Then wet mix again, dry, granulate, mold and heat at 1250℃ for 3 hours.
Hot press sintering was carried out at a pressure of 300 kg/cm 2 for an hour. The average crystal grain size of the sintered body is 15 μm,
The porosity was 0.04%. Same 50 mol% Fe2O3 ,
Co-precipitated ferrite powder with an average particle size of 0.2 μm having a composition of 25 mol% MnO and 25 mol% ZnO, one with the same impurity content and an average particle size of 0.005 μm, and 1.5
From three types of coprecipitation raw material powders of μm, 800℃2
After calcining for 3 hours, do the same at 1250℃ for 3 hours.
A sintered body was obtained by hot pressing at 300 kg/cm 2 . The average grain size was 10 μm, and the porosity was 0.02%. Making a single crystal-polycrystal ferrite bond,
Single crystallization of polycrystalline ferrite was carried out by hot press heat treatment in N 2 . When the single crystallization length L was measured using the same method as described above, α-
When FeOOH is used, L=0.8mm, γ-
When FeOOH is used, L = 0.9 mm, and when co-precipitated ferrite is used, the average particle size is 02 μm.
= 8.5 mm, and L = 0.5 mm and L = 0.8 mm for those with average particle diameters of 0.005 μm and 1.5 μm, respectively. In order to compare the difference in porosity, when using co-precipitated ferrite with an average particle size of 0.2 μm, the pressure during hot pressing was lowered from 300Kg/cm 2 to 200Kg/cm 2 and the porosity was reduced.
Same as 0.04% (average grain size 15μm)
was prepared, single crystallized using the same method, and the single crystal length L was measured. As a result, L=6mm,
It was confirmed that the method using coprecipitated ferrite was significantly superior.

実施例 4 立方晶スピネル構造のγ−Fe2O3と六方晶α−
Fe2O3とNiO、ZnOを用いて、50モル%Fe2O3
25モル%NiO−25モル%ZnOの多結晶フエライト
を、実施例1と同様に秤量、混合し、800℃で2
時間、空気中において仮焼した。仮焼後再度湿式
混合し、乾燥、造粒成形後(成形圧300Kg/cm2
1200℃で3時間、300Kg/cm2でホツトプレス焼結
を行ない、平均結晶粒径10μm、気孔率0.02%の
焼結体を得た。FeSO4、NiSO4、ZnSO4の水溶液
に、NaOHを加えて共沈させた50モル%Fe2O3
25モル%NiO−25モル%ZnO組成のNi−Zn−Feフ
エライト原料粉体平均粒径0.3μmを、出発原料
として、実施例1〜3と同様な方法で、ホツトプ
レス焼結体(平均結晶粒径8μm、気孔率0.01
%)を作製した。これらの多結晶フエライトを用
いて接合体を作製し、N2中ホツトプレス熱処理
を行なつた。単結晶化長さLを測定すると、γ−
Fe2O3を用いたものではL=2.5mm、α−Fe2O3
用いたものではL=0.5mm、共沈原料を用いたも
のではL=7mmであつた。
Example 4 γ-Fe 2 O 3 with cubic spinel structure and hexagonal α-
Using Fe 2 O 3 , NiO, ZnO, 50 mol% Fe 2 O 3
Polycrystalline ferrite of 25 mol% NiO-25 mol% ZnO was weighed and mixed in the same manner as in Example 1, and heated at 800°C for 2 hours.
It was calcined in air for an hour. After calcination, wet mixing again, drying, and granulation molding (molding pressure 300Kg/cm 2 )
Hot press sintering was performed at 1200° C. for 3 hours at 300 kg/cm 2 to obtain a sintered body with an average grain size of 10 μm and a porosity of 0.02%. 50 mol% Fe 2 O 3 − which was coprecipitated by adding NaOH to an aqueous solution of FeSO 4 , NiSO 4 , and ZnSO 4
A hot-pressed sintered body (average grain Diameter 8μm, porosity 0.01
%) was produced. A bonded body was prepared using these polycrystalline ferrites, and hot press heat treatment was performed in N 2 . When the single crystallization length L is measured, γ-
In the case where Fe 2 O 3 was used, L was 2.5 mm, in the case where α-Fe 2 O 3 was used, L was 0.5 mm, and in the case where a coprecipitation raw material was used, L was 7 mm.

以上、本発明に用いる共沈フエライトの粒径を
図示すると、第2図に示すようになる。横軸は共
沈原料粉の平均粒径d(μm)、縦軸のLはN2
ホツトプレス熱処理による単結晶化長さL(mm)
を、Mn−Zn−Feフエライトについて示し、斜線
を付した領域間すなわち0.01〜1.0μmの平均粒
径のものが単結晶化がしやすい。曲線は、代表的
な平均粒径と単結晶化長との関係を示したもので
ある。
The particle size of the coprecipitated ferrite used in the present invention is illustrated in FIG. 2. The horizontal axis is the average particle diameter d (μm) of the coprecipitated raw material powder, and the vertical axis L is the single crystallization length L (mm) by hot press heat treatment in N2 .
is shown for Mn-Zn-Fe ferrite, and single crystallization is likely to occur between the shaded areas, that is, those with an average grain size of 0.01 to 1.0 μm. The curve shows the relationship between typical average grain size and single crystallization length.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A,Bは本発明の方法による単結晶フエ
ライト化の過程を示す図、第2図は本発明の方法
において共沈原料粉の平均粒径が単結晶化に及ぼ
す影響を示す図である。 A−1……種子となる単結晶フエライト、A−
2……多結晶フエライト、A−3……接合界面、
B−1……種子単結晶フエライト、B−2……多
結晶フエライト、B−4……単結晶体化した部
分。
Figures 1A and B are diagrams showing the process of single crystal ferrite formation by the method of the present invention, and Figure 2 is a diagram showing the influence of the average particle size of the coprecipitated raw material powder on single crystallization in the method of the present invention. be. A-1...Single crystal ferrite that becomes a seed, A-
2... Polycrystalline ferrite, A-3... Bonding interface,
B-1...Seed single-crystal ferrite, B-2...polycrystalline ferrite, B-4...single-crystalline portion.

Claims (1)

【特許請求の範囲】 1 単結晶フエライトと、この単結晶フエライト
と同組成もしくはそれに近い組成で、かつ前記単
結晶フエライトと同じ結晶構造を有する多結晶フ
エライトとを接合し、この接合体を熱処理するこ
とにより、前記多結晶フエライトを前記単結晶フ
エライトと同じ結晶方位で同じ結晶構造を持つ単
結晶フエライトに育成するに際して、前記多結晶
フエライトとして湿式法で合成された共沈フエラ
イト粉体を出発原料とし、これを焼成した多結晶
を使用することを特徴とする単結晶フエライトの
製造法。 2 共沈フエライト粉体の粒子の平均粒径が0.01
〜1.0μmであることを特徴とする特許請求の範
囲第1項記載の単結晶フエライトの製造法。
[Claims] 1. A single crystal ferrite and a polycrystalline ferrite having the same composition or a composition similar to that of the single crystal ferrite and the same crystal structure as the single crystal ferrite are joined together, and the joined body is heat-treated. By this, when growing the polycrystalline ferrite into a single crystal ferrite having the same crystal orientation and the same crystal structure as the single crystal ferrite, a coprecipitated ferrite powder synthesized by a wet method as the polycrystalline ferrite is used as a starting material. , a method for producing single-crystal ferrite characterized by using polycrystals obtained by firing the same. 2 The average particle size of coprecipitated ferrite powder particles is 0.01
1. The method for producing a single crystal ferrite according to claim 1, wherein the crystal grain size is 1.0 μm.
JP13273182A 1982-07-28 1982-07-28 Production of single crystal ferrite Granted JPS5921591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13273182A JPS5921591A (en) 1982-07-28 1982-07-28 Production of single crystal ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13273182A JPS5921591A (en) 1982-07-28 1982-07-28 Production of single crystal ferrite

Publications (2)

Publication Number Publication Date
JPS5921591A JPS5921591A (en) 1984-02-03
JPS6215517B2 true JPS6215517B2 (en) 1987-04-08

Family

ID=15088269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13273182A Granted JPS5921591A (en) 1982-07-28 1982-07-28 Production of single crystal ferrite

Country Status (1)

Country Link
JP (1) JPS5921591A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257918U (en) * 1988-10-18 1990-04-26

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191091A (en) * 1984-10-11 1986-05-09 Ngk Insulators Ltd Production of ferrite single crystal
JPS63230059A (en) * 1987-03-19 1988-09-26 Endouseijiyuu Tomonokai:Kk Production of germ-free raw juice
JPH02231063A (en) * 1989-03-01 1990-09-13 Endouseijiyuu Tomonokai:Kk Improvement in sterilization of production of sterilized juice
US8202364B2 (en) 2002-10-11 2012-06-19 Ceracomp Co., Ltd. Method for solid-state single crystal growth
KR100564092B1 (en) * 2002-10-11 2006-03-27 주식회사 세라콤 Method for the Solid-State Single Crystal Growth

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391053A (en) * 1977-01-21 1978-08-10 Hitachi Maxell Ultra minute particle magnetic powder manufacturing process
JPS55162496A (en) * 1979-05-31 1980-12-17 Ngk Insulators Ltd Manufacture of single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391053A (en) * 1977-01-21 1978-08-10 Hitachi Maxell Ultra minute particle magnetic powder manufacturing process
JPS55162496A (en) * 1979-05-31 1980-12-17 Ngk Insulators Ltd Manufacture of single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257918U (en) * 1988-10-18 1990-04-26

Also Published As

Publication number Publication date
JPS5921591A (en) 1984-02-03

Similar Documents

Publication Publication Date Title
US4372865A (en) Carbonate/hydroxide coprecipitation process
JPH0158132B2 (en)
US4339301A (en) Method for producing a single crystal of ferrite
Patil et al. Preparation of High-Density Ferrites
JPS6215517B2 (en)
JPH0261121B2 (en)
JPS629559B2 (en)
JPS58156588A (en) Preparation of single crystal
JP2862693B2 (en) Manufacturing method of composite ferrite
JPH0440318B2 (en)
JPS59227796A (en) Production of oxide single crystal
JPS63117985A (en) Production of single crystal of oxide
JPS61101484A (en) Production of single crystal ferrite
JPH06333724A (en) Sintered ferrite with crystallite particle and manufacture thereof
JPH06279106A (en) Production of high density polycrystalline yig ferrite
EP0697383A1 (en) Method of preparing a ferrite compact
JPH0597507A (en) Ferrite material
JPH04154625A (en) Ferrite particle powder for bonded magnet and its production
JPS623070A (en) Manufacture of high density ferrite sintered body
JPH0796476B2 (en) Manufacturing method of single crystal ferrite
JPH01253210A (en) Polycrystalline ferrite material and manufacture thereof
JPS63299208A (en) Manufacture of polycrystalline ferrite
JPH0468277B2 (en)
JPH0244098A (en) Polycrystalline mn-zn ferrite and magnetic head using same
JPH04254497A (en) Production of single crystal ferrite