JPS62153194A - Method for molecular beam epitaxial growth - Google Patents

Method for molecular beam epitaxial growth

Info

Publication number
JPS62153194A
JPS62153194A JP29418985A JP29418985A JPS62153194A JP S62153194 A JPS62153194 A JP S62153194A JP 29418985 A JP29418985 A JP 29418985A JP 29418985 A JP29418985 A JP 29418985A JP S62153194 A JPS62153194 A JP S62153194A
Authority
JP
Japan
Prior art keywords
crystal
molecular beam
exposed
oxidized film
surface oxidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29418985A
Other languages
Japanese (ja)
Inventor
Mitsunori Sugimoto
杉本 満則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP29418985A priority Critical patent/JPS62153194A/en
Publication of JPS62153194A publication Critical patent/JPS62153194A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:In crystal growth on a semiconductor substrate containing Al, to make it possible to grow good crystal on an exposed face after removal of surface oxidized film, by removing the surface oxidized film by hitting molecular beam of Mg and/or Be to the film. CONSTITUTION:An Al-containing semiconductor substrate 1, for example, is obtained by laminating an AlGaAs layer 1b to GaAs crystal 1a and a surface oxidized film 1c is formed on the layer since the layer is exposed to atmosphere once. In a degassing process to remove the surface oxidized film 1c, the substrate 1 is heated by sending an electric current to a heater 11, then a Mg shutter 2a is opened and Mg beam is hit to the surface of the substrate 1. The surface oxidized film 1c is reduced and clean AlGaAs crystal face is exposed. Then, good crystal can be grown on the exposed crystal face in the following process.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、AQを含む半導体基板の上に結晶を成長する
分子線エピタクシー成長方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a molecular beam epitaxy growth method for growing crystals on a semiconductor substrate containing AQ.

(従来の技術とその問題点) AQ GaAsに代表される様なAQを含む半導体結晶
は、表面が酸化しやすいから大気に放置した後にその上
に成長するのは比較的困難であった0例えば、ジャパニ
ーズ・ジャーナル・才プ・アプライド・フィジックス(
JJAP)19巻L591〜L594ページに示される
様な埋め込み構造半導体レーザの製造においては、2回
目の液相成長においてAllGaAs上に再成長する必
要がある。しかしながら、2回目の成長はAQGaAs
の酸化膜のために再現性及び歩留まりが悪かった。この
液相成長法の代わりに分子線エピタクシー法を用いると
AQGaAs上の再成長は比較的容易であるが、A1組
成が0.5以上のAQGaAsの上へ行なう再成長では
、鏡面で良好な結晶を成長する事は困難であった。
(Prior art and its problems) AQ Semiconductor crystals containing AQ, such as GaAs, are easily oxidized on the surface, so it is relatively difficult to grow on them after leaving them in the atmosphere0. , Japanese Journal of Applied Physics (
In manufacturing a buried structure semiconductor laser as shown in Vol. 19, pages L591-L594 of JJAP), it is necessary to re-grow the AllGaAs layer in the second liquid phase growth. However, the second growth is AQGaAs
The reproducibility and yield were poor due to the oxide film. If molecular beam epitaxy is used instead of this liquid phase growth method, regrowth on AQGaAs is relatively easy. Growing crystals was difficult.

そこで、本発明の目的は、上述の欠点を除去し、AQを
含む半導体基板の上へ良好な結晶を成長できる分子線エ
ピタクシー成長方法を提供する事にある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a molecular beam epitaxy growth method that eliminates the above-mentioned drawbacks and can grow good crystals on a semiconductor substrate containing AQ.

(問題点を解決するための手段) 前述の問題点を解決するために本発明が提供する手段は
、Allを含有する半導体基板の表面の酸化物を除去す
る脱ガスエなと前記半導体基板上に成長結晶成分の分子
線を照射する工程とを含む分子線エピタクシー成長方法
であって、前記脱ガス工程は前記半導体基板に顕及びB
eのうちの少なくともいずれか一方の分子線を当てる工
程を含むことを特徴とする。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides means for removing oxides on the surface of a semiconductor substrate containing Al and a degassing process on the semiconductor substrate. A molecular beam epitaxy growth method includes a step of irradiating a growing crystal component with a molecular beam.
The method is characterized by including a step of applying a molecular beam of at least one of e.

(実施例) 次に図面を参照して本発明の詳細な説明する。(Example) Next, the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例に用いられる分子線エピタク
シー装置の模式図である。用いる基板1はGaAs結晶
1aの上にAl1GaAs層1bを積層してなり、一度
大気にきらしたために表面酸化膜ICがその上に形成さ
れている。表面酸化膜ICを除去するための脱ガス工程
ではヒータ11に通電することにより基板1を加熱する
。次に、Mgシャッター28を開けてMgビームを基板
1の表面に当てる。顕はAQよりも酸化しやすいから表
面酸化膜ICを還元する。このように本実施例では、M
gが表面酸化膜ICを還元し除去するから、清浄なAQ
GaAs結晶面が露出する。そこで、以後の工程におい
てその露出結晶面に良好な結晶を成長することが出来る
FIG. 1 is a schematic diagram of a molecular beam epitaxy apparatus used in an embodiment of the present invention. The substrate 1 used is formed by laminating an Al1GaAs layer 1b on a GaAs crystal 1a, and a surface oxide film IC is formed thereon because it has been exposed to the atmosphere once. In a degassing step for removing the surface oxide film IC, the substrate 1 is heated by energizing the heater 11. Next, the Mg shutter 28 is opened and the Mg beam is applied to the surface of the substrate 1. Since AQ is more easily oxidized than AQ, the surface oxide film IC is reduced. In this way, in this embodiment, M
g reduces and removes the surface oxide film IC, resulting in a clean AQ
GaAs crystal planes are exposed. Therefore, a good crystal can be grown on the exposed crystal face in subsequent steps.

本実施例ではMgを用いて表面酸化膜を還元したが、本
発明ではMgの代わりにBeを用いても良い。
In this embodiment, Mg was used to reduce the surface oxide film, but in the present invention, Be may be used instead of Mg.

又、本実施例ではAllGaAs結晶上の成長に本発明
を適用したが、これに限らずInGaAQAs 、 I
nGaAQP 。
Further, in this example, the present invention was applied to growth on AllGaAs crystal, but the present invention is not limited to this, and may be applied to growth on InGaAQAs, I
nGaAQP.

GaA(lsb等の他の材料の結晶の上の成長にも本発
明が適用出来ることは明らかである。
It is clear that the present invention is also applicable to growth on crystals of other materials such as GaA (lsb).

(発明の効果) 本発明の有する利点及び効果は、要約すれば、AQを含
む半導体基板上の結晶成長において、表面酸化膜を容易
に除去でき、除去後の露出面上に良好な結晶を成長出来
ることにある。
(Effects of the Invention) To summarize, the advantages and effects of the present invention are that in crystal growth on a semiconductor substrate containing AQ, a surface oxide film can be easily removed, and a good crystal can be grown on the exposed surface after removal. It's about what you can do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に用いた成長装置の模式図で
ある。 図中、1は基板、1aはGaAs結晶、1bはAQGa
As層、1cは表面酸化膜、2はMg分子線源、2aは
Mgシャッター、3はBe分分線線源3aはBeシャッ
ター、4はGa分分線線源4aはGaシャッター、5は
AQ分子線源、5aはAfLシャッター、6はAs分分
線線源6aはAsシ’rツタ−17はSi分子線源、7
aはSiシャッター、10はチャンバー、11はヒータ
である。
FIG. 1 is a schematic diagram of a growth apparatus used in one embodiment of the present invention. In the figure, 1 is a substrate, 1a is a GaAs crystal, and 1b is an AQGa crystal.
As layer, 1c is a surface oxide film, 2 is an Mg molecular beam source, 2a is an Mg shutter, 3 is a Be partial line source 3a is a Be shutter, 4 is a Ga partial line source 4a is a Ga shutter, 5 is an AQ Molecular beam source, 5a is AfL shutter, 6 is As partial beam source 6a is As shutter, 17 is Si molecular beam source, 7
a is a Si shutter, 10 is a chamber, and 11 is a heater.

Claims (1)

【特許請求の範囲】[Claims] Alを含有する半導体基板の表面の酸化物を除去する脱
ガス工程と前記半導体基板上に成長結晶成分の分子線を
照射する工程とを含む分子線エピタクシー成長方法にお
いて、前記脱ガス工程は前記半導体基板にMg及びBe
のうちの少なくともいずれか一方の分子線を当てる工程
を含むことを特徴とする分子線エピタクシー成長方法。
In a molecular beam epitaxy growth method including a degassing step of removing oxides on the surface of a semiconductor substrate containing Al and a step of irradiating the semiconductor substrate with a molecular beam of a growing crystal component, the degassing step includes the step of Mg and Be on the semiconductor substrate
A molecular beam epitaxy growth method comprising the step of applying a molecular beam of at least one of the above.
JP29418985A 1985-12-26 1985-12-26 Method for molecular beam epitaxial growth Pending JPS62153194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29418985A JPS62153194A (en) 1985-12-26 1985-12-26 Method for molecular beam epitaxial growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29418985A JPS62153194A (en) 1985-12-26 1985-12-26 Method for molecular beam epitaxial growth

Publications (1)

Publication Number Publication Date
JPS62153194A true JPS62153194A (en) 1987-07-08

Family

ID=17804465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29418985A Pending JPS62153194A (en) 1985-12-26 1985-12-26 Method for molecular beam epitaxial growth

Country Status (1)

Country Link
JP (1) JPS62153194A (en)

Similar Documents

Publication Publication Date Title
JPS58132975A (en) Semiconductor device and preparation thereof
EP0257917A3 (en) Method of producing soi devices
JPS62153194A (en) Method for molecular beam epitaxial growth
JPS634345B2 (en)
JPS61225817A (en) Apparatus for molecular beam epitaxial growth
EP0488632A2 (en) A method for growing a compound semiconductor and a method for producing a semiconductor laser
JPS5983993A (en) Growth of semiconductor layer of single crystal
Yershov et al. Preparation of gallium arsenide films on insulators by artificial epitaxy
JPS6163018A (en) Manufacture of semiconductor thin film crystal layer
JP2598707B2 (en) Compound semiconductor crystal growth method
JP3394191B2 (en) Method for manufacturing semiconductor device
JPS61145823A (en) Molecular beam epitaxial growth method
JPS63155608A (en) Method for epitaxial growth of compound semiconductor
JPS6287490A (en) Growth of semiconductor crystal
JPS5831515A (en) Manufacture of semiconductor thin film
JPS5895815A (en) Preparation of semiconductor device having laminate structure
JPH0458435B2 (en)
JPH0779087B2 (en) Surface treatment method for GaAs (111) A-plane substrate
JPS5919312A (en) Manufacture of semiconductor device
JP2721683B2 (en) Method for growing compound semiconductor thin film crystal
JPS6291493A (en) Molecular beam epitaxy method for iii-v compound semiconductor
JPH05190476A (en) Manufacture of semiconductor layer
JPH0456798B2 (en)
JPH04202097A (en) Semiconductor substrate and its production
JPS62189719A (en) Method for growing compound semiconductor