JPH0458435B2 - - Google Patents

Info

Publication number
JPH0458435B2
JPH0458435B2 JP22023186A JP22023186A JPH0458435B2 JP H0458435 B2 JPH0458435 B2 JP H0458435B2 JP 22023186 A JP22023186 A JP 22023186A JP 22023186 A JP22023186 A JP 22023186A JP H0458435 B2 JPH0458435 B2 JP H0458435B2
Authority
JP
Japan
Prior art keywords
crystal growth
gas
melt
evaporation crucible
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22023186A
Other languages
Japanese (ja)
Other versions
JPS6374993A (en
Inventor
Michihiro Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP22023186A priority Critical patent/JPS6374993A/en
Publication of JPS6374993A publication Critical patent/JPS6374993A/en
Publication of JPH0458435B2 publication Critical patent/JPH0458435B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、分子線エピタキシー法による結晶
成長方法に関し、特に半導体デバイスの材料であ
る結晶成長用メルトの処理方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for growing crystals by molecular beam epitaxy, and particularly to a method for treating a melt for crystal growth, which is a material for semiconductor devices.

〔従来の技術〕[Conventional technology]

従来、分子線エピタキシー法による結晶成長方
法において、材料源となるGaは固形のGaを蒸発
用るつぼに入れ、高真空中で加熱処理するか、ま
たは第3図に示すように、別の石英管1中にGa
4を収納したボート3を入れ、加熱炉2により
H2ガス中で加熱処理することにより、Ga4中の
不純物の除去を行つた後、蒸発用るつぼに入れ、
結晶成長用の材料源として用いられていた。
Conventionally, in the crystal growth method using molecular beam epitaxy, the Ga material source is obtained by placing solid Ga in an evaporation crucible and heat-treating it in a high vacuum, or as shown in Figure 3, using a separate quartz tube. Ga during 1
Put the boat 3 containing 4 into the heating furnace 2.
After removing impurities in Ga4 by heat treatment in H2 gas, it is placed in an evaporation crucible,
It was used as a source of material for crystal growth.

このような方法においては、例えば直接固形の
Gaを蒸発用るつぼに入れた場合、Gaは反応性が
高く、蒸発用るつぼに入れるまでに空気にさらさ
れ、表面に酸化物が生成する。
In such a method, for example, the solid
When Ga is placed in an evaporation crucible, Ga is highly reactive and is exposed to air before being placed in the evaporation crucible, producing oxides on the surface.

また、第3図に示したように、加熱炉2中では
H2ガスによりGa4を処理し、不純物を除去した場
合においても、加熱炉からの取り出しや蒸発用る
つぼに移し換えるまでにGa4の表面が酸化されて
しまう。
Moreover, as shown in FIG. 3, in the heating furnace 2,
Even when Ga 4 is treated with H 2 gas to remove impurities, the surface of Ga 4 will be oxidized before it is removed from the heating furnace or transferred to an evaporation crucible.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のように、従来方法では固形のGaを直接
蒸発用るつぼに入れる方法や、H2ガス中におけ
る加熱処理を行い、酸化物を除去しても蒸発用る
つぼに移し換えるまでにGaの表面が酸化され、
これらの酸化物などが原因となり、エピタキシー
中において成長層の表面に粒状の欠陥が生じた
り、結晶の電気的特性を悪くする等の欠点があつ
た。また、Ga中に存在する金属不純物等は除去
することが難しく、したがつて、結晶性のよい成
長層を得ることが難しいという問題点があつた。
As mentioned above, in conventional methods, solid Ga is directly placed in an evaporation crucible, or heat treatment is performed in H2 gas, and even if oxides are removed, the surface of Ga is oxidized,
These oxides and the like caused drawbacks such as granular defects occurring on the surface of the grown layer during epitaxy and deterioration of the electrical characteristics of the crystal. Further, there was a problem in that it was difficult to remove metal impurities etc. present in Ga, and therefore it was difficult to obtain a grown layer with good crystallinity.

この発明は、上記のような問題点を解消するた
めになされたもので、結晶成長用メルト表面に生
成している酸化物を除去するとともに、その他の
不純物をも除去することができる結晶成長用メル
トの処理方法を得ることを目的とするものであ
る。
This invention was made in order to solve the above-mentioned problems, and it is possible to remove oxides generated on the surface of a crystal growth melt as well as other impurities. The purpose of this study is to obtain a method for processing melt.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る結晶成長用メルトの処理方法
は、結晶成長用メルトをH2ガス雰囲気中で加熱
処理するとともに、H2ガス中にAsCl3ガスを導入
して処理を行い、酸化物やその他の不純物を除去
するとともに、結晶成長用メルト表面に薄膜層を
形成し、処理完了後に再び酸化物が付着したとし
ても、蒸発用るつぼに混入することがないように
したものである。
The method for treating a melt for crystal growth according to the present invention heat-treats the melt for crystal growth in an H2 gas atmosphere, and also introduces AsCl3 gas into the H2 gas to remove oxides and other In addition to removing impurities, a thin film layer is formed on the surface of the crystal growth melt to prevent oxides from being mixed into the evaporation crucible even if they re-adhere after the treatment is completed.

〔作用〕[Effect]

この発明においては、H2ガス中で加熱処理す
るとともに、AsCl3ガスによる処理を行い、さら
に、ボートに収納された結晶成長用メルト表面に
薄膜層を形成することから、表面が酸化されたし
ても薄膜層に覆われた内部の結晶成長用メルトを
蒸発用るつぼに移すことにより、酸化物の混入は
防止される。
In this invention, heat treatment is performed in H2 gas and treatment with AsCl3 gas, and a thin film layer is formed on the surface of the crystal growth melt stored in a boat, so that the surface is not oxidized. However, by transferring the internal crystal growth melt covered with a thin film layer to an evaporation crucible, contamination of oxides can be prevented.

〔実施例〕〔Example〕

第1図、第2図はこの発明の結晶成長用メルト
の処理方法の一実施例を説明するための図であ
る。第1図において、石英管1中にボート3に出
納した結晶成長用メルト、例えばGa4を入れ、
H2ガスを導入しながら加熱炉2で800〜900℃で
10〜20時間加熱処理を行う。次いで、H2ガスと
AsCl3ガスを石英管1に導入しながら2〜5時間
程度加熱処理を行う。このような処理によつて
Ga4に含まれる酸化物の除去を行うとともに、
金属類等の不純物も同時に除去される。
FIGS. 1 and 2 are diagrams for explaining an embodiment of the method for treating a crystal growth melt according to the present invention. In FIG. 1, a crystal growth melt, for example Ga4, taken from a boat 3 is placed in a quartz tube 1.
Heat at 800-900℃ in heating furnace 2 while introducing H2 gas.
Heat treatment is performed for 10 to 20 hours. Then with H2 gas
Heat treatment is performed for about 2 to 5 hours while introducing AsCl 3 gas into the quartz tube 1. By such processing
In addition to removing oxides contained in Ga4,
Impurities such as metals are also removed at the same time.

また、これらの処理を完了したGa4は、処理
中においてAsCl3ガス中のAsを吸収し、Ga4の
表面にGaAsの薄膜層5が形成される。したがつ
て、この薄膜層5により、Ga4はボート3中に
密封された状態となる。
Further, Ga4 that has undergone these treatments absorbs As in the AsCl 3 gas during the treatment, and a thin film layer 5 of GaAs is formed on the surface of Ga4. Therefore, Ga 4 is sealed in the boat 3 by this thin film layer 5 .

次いで、第2図に示すように、この処理を完了
したボート3に入つたGa4を真空装置(分子線
エピタキシー装置)中に入れ、ボート3を傾けな
がらGa4がとける程度に熱してやると、Ga4の
表面に形成されたGaAsの薄膜層5の一部が破
れ、その部分よりとけたGa4が流れ出し、蒸発
用るつぼ6中に充てんされる。なお、残りの薄膜
層5は固形のままボート3中に残るのでボート3
とともに取り出し、蒸発用るつぼ6に入つたGa
4のみを結晶成長用材料として用いる。
Next, as shown in Figure 2, the Ga4 in the boat 3 that has undergone this process is placed in a vacuum device (molecular beam epitaxy device), and heated to the extent that the Ga4 melts while tilting the boat 3. A part of the GaAs thin film layer 5 formed on the surface is torn, and melted Ga4 flows out from that part and is filled into the evaporation crucible 6. Note that the remaining thin film layer 5 remains in the boat 3 as a solid, so the boat 3
Ga was taken out and placed in the evaporation crucible 6.
4 is used as the material for crystal growth.

また、従来方法でH2ガスのみで処理したGa4
を、第2図に示した方法で蒸発用るつぼ6中に充
てんした場合には表面に形成された薄い酸化物等
も同時に蒸発用るつぼ6中に混入してしまうが、
この発明によれば、これらの不純物の混入を防止
できるのは明らかである。
In addition, Ga4 treated with only H2 gas by the conventional method
When filled into the evaporation crucible 6 using the method shown in FIG. 2, thin oxides formed on the surface will also be mixed into the evaporation crucible 6.
According to this invention, it is clear that the contamination of these impurities can be prevented.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したように、H2ガスによ
る加熱処理と、H2ガスとAsCl3ガスとにより、結
晶成長用メルト中に含まれる不純物を除去すると
ともに、結晶成長用メルト表面に薄膜層を形成し
て結晶成長用メルト表面を覆うことにより、内部
の結晶成長用メルトは酸化されず、例えばこの薄
膜表面が酸化されたとしても蒸発るつぼ中には不
純物のない結晶成長用メルトのみが充てんされ、
蒸発用るつぼへの酸化物の混入を防止する効果が
ある。
As explained above, this invention removes impurities contained in the melt for crystal growth and forms a thin film layer on the surface of the melt for crystal growth by heat treatment with H 2 gas and H 2 gas and AsCl 3 gas. By forming a thin film to cover the surface of the crystal growth melt, the internal crystal growth melt will not be oxidized, and even if the surface of this thin film is oxidized, only the crystal growth melt free of impurities will be filled into the evaporation crucible. ,
This has the effect of preventing oxides from entering the evaporation crucible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図はこの発明の結晶成長用メルト
の処理方法の一実施例を説明するための図、第3
図は従来の結晶成長用メルトの処理方法を説明す
るための図である。 図において、1は石英管、2は加熱炉、3はボ
ート、4はGa、5は薄膜層、6は蒸発用るつぼ
である。なお、各図中の同一符号は同一または相
当部分を示す。
1 and 2 are diagrams for explaining an embodiment of the method for treating a crystal growth melt according to the present invention, and FIG.
The figure is a diagram for explaining a conventional method of processing a melt for crystal growth. In the figure, 1 is a quartz tube, 2 is a heating furnace, 3 is a boat, 4 is Ga, 5 is a thin film layer, and 6 is an evaporation crucible. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 分子線エピタキシー法による結晶成長用メル
トの処理方法において、前記結晶成長用メルトを
H2ガス中で加熱処理した後、前記H2ガス中に
AsCl3ガスを導入して加熱処理を行い、前記結晶
成長用メルト中の不純物を除去するとともに、前
記結晶成長用メルト表面に薄膜層を形成すること
を特徴とする結晶成長用メルトの処理方法。
1. In a method for treating a crystal growth melt by molecular beam epitaxy, the crystal growth melt is
After heat treatment in H2 gas ,
A method for treating a crystal growth melt, which comprises introducing AsCl 3 gas and performing heat treatment to remove impurities in the crystal growth melt and forming a thin film layer on the surface of the crystal growth melt.
JP22023186A 1986-09-17 1986-09-17 Treatment of melt for crystal growth Granted JPS6374993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22023186A JPS6374993A (en) 1986-09-17 1986-09-17 Treatment of melt for crystal growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22023186A JPS6374993A (en) 1986-09-17 1986-09-17 Treatment of melt for crystal growth

Publications (2)

Publication Number Publication Date
JPS6374993A JPS6374993A (en) 1988-04-05
JPH0458435B2 true JPH0458435B2 (en) 1992-09-17

Family

ID=16747942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22023186A Granted JPS6374993A (en) 1986-09-17 1986-09-17 Treatment of melt for crystal growth

Country Status (1)

Country Link
JP (1) JPS6374993A (en)

Also Published As

Publication number Publication date
JPS6374993A (en) 1988-04-05

Similar Documents

Publication Publication Date Title
MY115099A (en) Process for producing silicon semiconductor wafers with low defect density
KR940016544A (en) Manufacturing Method of Semiconductor Substrate and Manufacturing Method of Solid State Imaging Device
Johnson Liquid encapsulated floating zone melting of GaAs
KR860000228B1 (en) Semiconductor substance and its manufacturing method
JPH0458435B2 (en)
JPH0236060B2 (en) KAGOBUTSU HANDOTAINOSEICHOHOHO
US4447393A (en) Oxide-free CdTe synthesis
US5891244A (en) Apparatus for the manufacture of SOI wafer and process for preparing SOI wafer therewith
JP2835143B2 (en) Method for producing high purity In
JP2602857B2 (en) Method of improving semiconductor crystal substrate
JPH05121319A (en) Manufacture of semiconductor device
US5093284A (en) Process for homogenizing compound semiconductor single crystal in properties
JPH0377330A (en) Processing of silicon single-crystal wafer
JPS63210100A (en) Production of single-domain lithium tantalate single crystal
JPH026221B2 (en)
JPH03193698A (en) Silicon single crystal and its production
JPS6213815B2 (en)
JPS62176986A (en) Device for treating thin film
JPH02196082A (en) Production of silicon single crystal
JPH0527500Y2 (en)
SU1633032A1 (en) Method of producing semiconductor hetero-structures
JPS63254720A (en) Forming method for semiconductor thin film
JP2643975B2 (en) Silicon single crystal
JPH03205400A (en) Heat treatment of gallium arsenide compound semiconductor single crystal
JPH01301598A (en) Uniformizing method of characteristic property of compound semiconductor single crystal