JPS6214628B2 - - Google Patents
Info
- Publication number
- JPS6214628B2 JPS6214628B2 JP55116123A JP11612380A JPS6214628B2 JP S6214628 B2 JPS6214628 B2 JP S6214628B2 JP 55116123 A JP55116123 A JP 55116123A JP 11612380 A JP11612380 A JP 11612380A JP S6214628 B2 JPS6214628 B2 JP S6214628B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel
- oxidation resistance
- inclusions
- impurities
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910000831 Steel Inorganic materials 0.000 claims description 120
- 239000010959 steel Substances 0.000 claims description 120
- 230000003647 oxidation Effects 0.000 claims description 58
- 238000007254 oxidation reaction Methods 0.000 claims description 58
- 229910052717 sulfur Inorganic materials 0.000 claims description 41
- 229910052760 oxygen Inorganic materials 0.000 claims description 34
- 229910052804 chromium Inorganic materials 0.000 claims description 20
- 239000012535 impurity Substances 0.000 claims description 19
- 229910052749 magnesium Inorganic materials 0.000 claims description 14
- 229910052710 silicon Inorganic materials 0.000 claims description 13
- 229910052758 niobium Inorganic materials 0.000 claims description 12
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 12
- 229910052719 titanium Inorganic materials 0.000 claims description 12
- 229910052726 zirconium Inorganic materials 0.000 claims description 11
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- 229910052750 molybdenum Inorganic materials 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 9
- 229910052748 manganese Inorganic materials 0.000 claims description 9
- 229910052715 tantalum Inorganic materials 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims 1
- 230000000694 effects Effects 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 9
- 229910052759 nickel Inorganic materials 0.000 description 8
- 239000002436 steel type Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000004580 weight loss Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 230000002411 adverse Effects 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000002893 slag Substances 0.000 description 3
- 150000004763 sulfides Chemical class 0.000 description 3
- 229910052727 yttrium Inorganic materials 0.000 description 3
- 229910001566 austenite Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 229910001293 incoloy Inorganic materials 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000011819 refractory material Substances 0.000 description 2
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229910018134 Al-Mg Inorganic materials 0.000 description 1
- 229910018467 Al—Mg Inorganic materials 0.000 description 1
- 229910018663 Mn O Inorganic materials 0.000 description 1
- 229910003176 Mn-O Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
Description
この発明は、高温ですぐれた耐酸化性を有する
オーステナイト系高温用鋼に関する。
高温下で使用される部品の材料、例えば加熱
炉、熱交換器等の部品、暖房用機器の燃焼部品、
自動車排ガス処理装置の構造部材などは、単に高
温下での使用による酸化が少ないということだけ
でなく、高温加熱と常温への冷却を繰返し受けて
もスケールの剥離がないということまで含めた耐
酸化性、複雑な形状の部品に加工成形されるため
に要求される冷間加工性、溶接性、更に常温、高
温における十分な機械的強度など、多くの特性が
要求される。また上記のような機器は、いわゆる
量産品であるため、その材料としては、できるだ
け安価なものが望まれる。
従来かかる用途に供されている材料に、オース
テナイト系耐熱鋼がある。周知の如くこの鋼は
NiとCrを主要な合金成分とし、常温で安定なオ
ーステナイト組織を有するもので、一般にNi含
有量7〜45%、Cr含有量15〜30%の範囲での組
合せにより多くの鋼種が知られている。例えば、
SUS304に代表される18Cr−10Ni系、SUS310を
代表とする25Cr−20Ni系、インコロイ800として
知られる20Cr−32Ni系、更にMo、Si、Ti、Nb等
を含むこれらの改良型等が市販されており、それ
ぞれ使用目的に応じて選別され、用いられてい
る。
さて、ここでもし上記のようなオーステナイト
鋼において、その基本的な特徴を損うことなく耐
高温酸化性を更に改良することができれば、実際
使用上経済性の面できわめて大きな利益が期待で
きる。
本発明は、オーステナイト鋼本来の基本的特
性、利点をそのまま備え、しかも高温での耐酸化
性が著しく優れたオーステナイト鋼を提供するこ
とを目的とする。
本発明者らは、オーステナイト鋼中に不可避的
に混入する不純物が鋼の性質に及ぼす影響につい
て、詳細に実験、検討を重ねた結果、鋼中Sおよ
びOが耐酸化性に著しい弊害を与えていることを
知見した。
本発明は上記知見に基いてなされたものであつ
て、Ni7〜45%とCr15〜30%を含有するオーステ
ナイト鋼中のS+Oが0.005%以下で、かつOが
0.004%以下であることを特徴とする耐高温酸化
性のすぐれたオーステナイト鋼を要旨とする。
この種の鋼中S量は、従来においても規制され
てはいたが、しかしそれは熱間加工性の点から耐
熱鋼、耐食鋼の何れにおいても0.03%以下にすべ
きである、といつた程度のきわめて緩い規制に過
ぎなつた。またO量に関しては、特別には規制自
体とられていないのが現状である。市販のもので
は、S量は概ね0.010%前後、O量は約0.008%程
度である。つまり従来は、この程度のS、Oで
は、鋼の性質にそれほど重大な影響はないものと
考えられていた。
しかるに本発明者の多くの実験結果によれば、
これらS、Oは上記通常の場合より含有量が低い
ところで鋼の耐酸化性を著しく損うものであるこ
とが判明した。
第1図は、19Cr−9.5Ni−1.5Si系オーステナイ
ト鋼について、加熱温度を1000℃として30分加熱
−冷却のサイクルを500回繰り返したときの重量
変化量と(O+S)量の関係をプロツトしたもの
である。
同図から明らかなように、(O+S)量が低く
なるとともに酸化による重量変化量が少なくなつ
ており、特に(O+S)量が0.008%未満のとこ
ろでは重量変化量が、(O+S)量約0.015%の市
販品の1/2以下にまでなつていて、極めて良好な
耐酸化性を示している。
上記OおよびS含有量の低下に基く耐酸化性向
上の理由は、以下の如く考えられる。
通常、鋼中に0.01%前後含有されるSは、同じ
く鋼中に存在するMnと結合してMnSを形成して
いる。しかし、このMnSは、鋼が高温で使用さ
れている間に分解しCr−Mn−Oの酸化物に変化
して、遊離したSが鋼表面および結晶粒界に濃化
し、かつ介在物周辺にCrの欠乏層を作り鋼の耐
高温酸化性に悪影響を及ぼす。Cr、或いは更に
Si、Al等を含有する鋼の耐酸化性は、これら元素
の酸化によつて生ずる安定な酸化物の保護皮膜に
よるものであるが、上記のように鋼表面および結
晶粒界に遊離Sが濃化していると、Cr、Si等の
鋼表層部へ拡散移動(特に結晶粒界を介して活発
に行われる)が阻害され、前記保護酸化膜の形
成、補修が迅速に行われ難くなる。また、鋼表面
および結晶粒界に存在する遊離Sはそれ自体、酸
素と結合して酸化の起点となり、粒界の脆化、酸
化スケールの剥離促進の原因にもなる。
一方Oは、通常鋼中に0.005〜0.010%含まれる
が、この大半はCr、Si、Al、Mn等の活性元素と
結合して酸化物乃至酸硫化物として存在する。こ
のため、上記同様Cr、Si、Al等の鋼表層部への
拡散が阻害され、その分鋼表面でのこれら元素の
酸化物の生成が抑えられることとなる。また鋼−
酸化スケール界面では、界面に生成している、例
えばCrの酸化物などの解離平衡に基く酸素分圧
だけ酸素が存在し、これは鋼中へ拡散して内部酸
化や粒界酸化の原因になる。
以上のような、SとOの好ましくない作用は、
鋼中SおよびOを完全に除去することで失くする
ことができると考えられるが、このような不純物
の完全除去は実際上不可能である。
しかるに本発明の規定に従つて、鋼中S、Oを
低く抑えるならば、上記の悪影響を排除すること
ができるのである。すなわち、本発明に基ずく極
く微量のS、Oは、鋼の溶製中に、炉材の耐火
物、或いはスラグから混入してくるCa、Mg等と
結合して、Ca−Al−Mg−O−S系の化合物とな
つて鋼中に存在することになる。このような硫酸
化物は、高温でも安定でS、Oを固着しているた
め、先に述べたO、Sの悪影響が取り除かれる結
果となるものと考えられる。
ここで、高温でも安定とは硫化物を含む介在物
が分解してSを遊離する反応を起こしにくい状態
をいい、その安定さの程度はMnSの分解の容易
さより困難であることが必要である。
このようなメカニズムからしても、鋼中(O+
S)0.005%以下、かつO0.004%以下の含有は、
実用効果上許容される。
上記のような現象を考慮すれば、本発明鋼にお
いて、(S+O)量が0.008%未満、O量が0.005
%未満でも、それらが上限に近い場合には、
Ca、Mg、或いはこれらと同等の作用がある希土
類元素、Yを積極的に利用して、前記の安定な化
合物の生成を促進することは一層有利である。ま
た、溶製のとき、鋼中のOをできるだけ下げるた
めの精錬、または元素の添加を実施するのも、耐
酸化性の向上に有効なことである。
なお本発明鋼は、700〜1200℃程度で使用され
る。あらゆる鋼種のオーステナイト鋼に適用可能
なものであり、通常オーステナイト鋼に含有され
る合金成分を含ませることは勿論可能である。か
かる合金元素の種類および含有量は、Ni量、Cr
量とのバランスを考慮して、鋼の使用条件、すな
わち要求される耐用温度、加工性、溶接性、機械
的性質等に応じて選定すればよい。何れにして
も、S、Oが極めて低位に抑えられる本発明鋼
は、同一スペースでS、Oを通常量含有する鋼と
較べ、耐酸化性が著しく勝り、しかもその他の性
質に関し少なくとも劣るようなことはない。
以下、本発明オーステナイト鋼の基本成分につ
いて、好ましい範囲とその理由を説明する。C
は、鋼の高温での使用時に、或いは溶接後の溶接
部にCr23C6型の炭化物を形成して、Crの耐酸化
性向上の効果を減殺し、スケールの密着性を劣化
させる。また、過大量のCは、鋼の溶接性、加工
性にも悪影響を与え、特に炭化物の多量の析出防
止の点からも、上限は0.15%に止めるべきであ
る。耐酸化性の点からはこの量以下で、可及的に
少ない方がよいが、機械的強度を重視する場合に
は、上限近くまで含有させることもあり得る。上
記のようなCの弊害を除くには、Cと優先的に結
合して上記の害を減少させるTi、Nb、Zrおよび
Taの利用が望ましい。これらの成分は作用効果
上均等なものであるから、その1種でも、また2
種以上の組合せでも使用でき、合計含有量として
C(%)の4倍以上の含有が効果的である。ただ
し、余り多量に添加すると、金属間化合物の析出
量が多くなり、鋼の清浄性、加工性を損うから上
限は1.5%までとするのがよい。
Siは、通常脱酸剤として使用され、その効果を
確かにするには0.1%以上必要である。Siはま
た、鋼の耐酸化性の向上にもすぐれた効果を発揮
する成分である。本発明者の実験結果によれば、
O、Sを本発明範囲内に抑制することによる耐酸
化性向上の効果は、特にSiを1%以上含有する鋼
において顕著であるから、Siの5%までの含有が
推奨される。しかし5%を越えるSiの含有は、鋼
の加工性および溶接性の劣化を招く。
Mnは、脱酸剤に用いられるが、耐酸化性から
すれば好ましい成分ではないから、3%以下とす
るのがよい。また3%を越えると熱間加工性をも
害し、更に製鋼時炉の耐火物を浸食する点が問題
となる。
NiおよびCrは、オーステナイト鋼の基本的性
質を確保する上で必要なものである。Ni7%未
満、Cr15%未満では、オーステナイト組織その
ものの維持が困難となる。一方Niが45%を越え
るものは、すでにNi基合金の範畴となり、経済
的に実用化し難いものになる。Crはその量が多
い程、耐酸化性は向上するが、30%を越えると、
オーステナイト相の維持が困難である。
なお本発明鋼は、先に述べたように、Ni、Cr
の含有量が既知のオーステナイト鋼のそれと同じ
であつても、その耐酸化性は格段にすぐれている
のであるから、同一基の耐熱鋼よりも高温での苛
酷な使用条件に耐えるものである。つまり、同一
使用条件には、Ni、Cr含有量の低い、つまりよ
り安価な鋼が使用できることになる。
以上の成分は、本発明に係るオーステナイト鋼
の基本成分であるが、この他にも鋼の使用目的に
より、また製造上の必要から、各種の副成分の添
加が可能である。その副成分の主なものと、その
好ましい添加含有量は次のとおりである。Al
は、脱酸剤として必要となる場合が多い成分であ
る。特に、後述するCa、Mg等の積極添加を行う
場合、或いはスラグの効果を十分に発揮させる場
合、溶鋼中の酸素を予め十分に低下させておく必
要があり、少量のAlの添加が行われる。しかし
鋼中に残留するAl量5%を越えると溶製後の鋳
造工程で、障害をおこすおそれがある。
Cuは、少量で鋼表面に生成する酸化スケール
の密着性向上に効果がある。しかし、1.5%を越
える含有は、反つて耐酸化性の劣化を招くことに
なる。
Moは、主に鋼の高温強度の向上に有効な成分
である。従つて高温で荷重のかかる用途に使用さ
れる場合には、その添加を行うべきであるが、5
%を越える含有は、耐酸化性に好ましくない影響
を及ぼし、また同時に材料コストの上昇を来た
す。
Ti、Nb、Zr、Taの使用目的は、先にCとの関
係で述べたとおりである。
Ca、Mg、希土類元素、Y、これらの元素はS
と結合して、高温でも分解しないきわめて安定な
硫化物、または酸硫化物を形成し、鋼の耐酸化性
の向上に寄与する。しかしこのような効果も、O
とSを本発明範囲内に抑制しておくことが前提と
なり、これら不純分を通常量含有する鋼に上記元
素を多量に加えると、生成する化合物の量が過多
となり、耐酸化性だけでなく機械的性質にも悪影
響を与える効果となる。
OおよびSさえ本発明範囲にすれば、Ca、
Mg、希土類元素、Yは実質的に存在しなくても
耐食性の向上は達せられる。通常、Ca、Mg等
は、あえて積極的な添加を行わずとも、溶鋼中に
炉材、またはスラグから微量が侵入して来るもの
であり、これが上記の微量O、Sと結合して、そ
の害を除くことが期待できる。何れにしろ、これ
ら元素の添加によつてO、S量を更に低位とした
場合も、本発明の範畴に含まれるものである。
以上の主成分、副成分の他に、鋼には不可避的
に混入する不純物が存在する。そのうち、耐酸化
性と重要な係わりをもつのは、OとSであるが、
その含有量は、(O+S)で0.005%以下、かつO
は0.004%以下に抑えなければ、意図する耐酸化
性の改善が達せられないことは先に述べた。
次に、本発明の実施態様を掲げるとともにその
具体的な実例について説明する。
なお以下の説明において、耐酸化性の試験は次
の条件で行なつた。
試験片サイズ:25mml×20mmW×1.5mmtの板
試験方法:各表示の温度に加熱した炉中に30分間
保持し、次いで大気中に30分間放置する。加熱
−冷却サイクルを500回繰り返した後、付着し
た酸化物を除去した試験片の重量を測定し、試
験前の重量に対する減量分を求め、その大きさ
により耐酸化性を評価する。
第1表は、上記の試験を市販の代表的なオース
テナイト鋼について行つた結果を示すもので、以
下に述べる説明の参考のために掲げる。
〔実施態様 1〕
C0.15%以下、Si0.1〜1.0%、Mn3.0%以下、
Ni7〜15%、Cr15〜20%、その他必要に応じて
Al、Cu、Mo、Ti、Nb、Zr、Ta、Ca、Mg、Y、
希土類元素等を含有し、O+Sが0.005%以下
で、かつOが0.004%以下である高温用オーステ
ナイト鋼。
この鋼は市販のSUS304、316、321、347等のオ
ーステナイト鋼に対応するもので、NiおよびCr
の含有量の低い比較的安価な鋼種に属する。
第2表にこの実施態様に属する鋼および同一鋼
種でSおよびOの含有量の高い比較鋼の組成と加
熱温度を850℃とした耐酸化性の結果を示す。
第2表において、本発明鋼1〜7、10〜13と比
較鋼8〜9、14〜16とを対比すると、酸化
The present invention relates to an austenitic high-temperature steel having excellent oxidation resistance at high temperatures. Materials for parts used at high temperatures, such as parts for heating furnaces and heat exchangers, combustion parts for heating equipment,
Structural components of automobile exhaust gas treatment equipment are not only oxidized by low oxidation due to use at high temperatures, but also oxidation resistant, which includes the fact that scale does not peel off even after repeated high-temperature heating and cooling to room temperature. Many properties are required, such as cold workability, weldability, which is required for processing and forming parts into complex shapes, and sufficient mechanical strength at room temperature and high temperature. Furthermore, since the above-mentioned equipment is a so-called mass-produced product, it is desired that the materials thereof be as inexpensive as possible. Austenitic heat-resistant steel is a material that has been conventionally used for such purposes. As is well known, this steel
The main alloy components are Ni and Cr, and it has an austenitic structure that is stable at room temperature. Generally, many steel types are known due to the combination of Ni content in the range of 7 to 45% and Cr content in the range of 15 to 30%. There is. for example,
The 18Cr-10Ni system represented by SUS304, the 25Cr-20Ni system represented by SUS310, the 20Cr-32Ni system known as Incoloy 800, and improved versions of these containing Mo, Si, Ti, Nb, etc. are commercially available. Each type is selected and used according to its purpose. Now, if the high-temperature oxidation resistance of the austenitic steel described above could be further improved without impairing its basic characteristics, it would be possible to expect extremely large economic benefits in practical use. An object of the present invention is to provide an austenitic steel which has the basic characteristics and advantages inherent in austenitic steel, and which also has extremely excellent oxidation resistance at high temperatures. As a result of detailed experiments and studies on the influence of impurities that are inevitably mixed in austenitic steel on the properties of the steel, the inventors have found that S and O in steel have a significant adverse effect on oxidation resistance. I found out that there is. The present invention was made based on the above findings, and the present invention is based on the knowledge that S+O in austenitic steel containing 7 to 45% Ni and 15 to 30% Cr is 0.005% or less, and O is
The main feature is an austenitic steel with excellent high-temperature oxidation resistance, characterized by a content of 0.004% or less. The amount of S in this type of steel has been regulated in the past, but it has been said that it should be 0.03% or less for both heat-resistant steel and corrosion-resistant steel from the viewpoint of hot workability. The regulations have become nothing more than extremely lax. Furthermore, the current situation is that there are no particular regulations regarding the amount of O. In commercially available products, the S content is approximately 0.010% and the O content is approximately 0.008%. In other words, it was conventionally thought that this level of S and O would not have such a significant effect on the properties of steel. However, according to the inventor's many experimental results,
It has been found that these S and O significantly impair the oxidation resistance of steel when the content is lower than the above-mentioned usual case. Figure 1 plots the relationship between weight change and (O+S) amount when a 30 minute heating-cooling cycle is repeated 500 times at a heating temperature of 1000°C for 19Cr-9.5Ni-1.5Si austenitic steel. It is something. As is clear from the figure, the amount of weight change due to oxidation decreases as the amount of (O+S) decreases, and especially where the amount of (O+S) is less than 0.008%, the amount of weight change decreases to approximately 0.015%. %, which is less than 1/2 that of commercially available products, indicating extremely good oxidation resistance. The reason for the improvement in oxidation resistance based on the reduction in O and S contents is considered as follows. Normally, S, which is contained in steel at around 0.01%, combines with Mn, which is also present in steel, to form MnS. However, this MnS decomposes and changes into Cr-Mn-O oxides while the steel is used at high temperatures, and the free S concentrates on the steel surface and grain boundaries, and around inclusions. It creates a Cr-deficient layer and has a negative effect on the high-temperature oxidation resistance of steel. Cr or even more
The oxidation resistance of steel containing Si, Al, etc. is due to the protective film of stable oxides produced by the oxidation of these elements, but as mentioned above, free S is concentrated on the steel surface and grain boundaries. If this occurs, the diffusion and movement of Cr, Si, etc. to the surface layer of the steel (actively occurring in particular through grain boundaries) is inhibited, making it difficult to form and repair the protective oxide film quickly. In addition, free S present on the steel surface and grain boundaries itself combines with oxygen and becomes a starting point for oxidation, causing embrittlement of grain boundaries and promotion of peeling of oxide scale. On the other hand, O is normally contained in steel in an amount of 0.005 to 0.010%, but most of this exists in the form of oxides or oxysulfides in combination with active elements such as Cr, Si, Al, and Mn. Therefore, as described above, diffusion of Cr, Si, Al, etc. into the surface layer of the steel is inhibited, and the formation of oxides of these elements on the steel surface is accordingly suppressed. Also steel
At the oxide scale interface, oxygen exists as much as the oxygen partial pressure based on the dissociation equilibrium of, for example, Cr oxide, which is generated at the interface, and this diffuses into the steel and causes internal oxidation and grain boundary oxidation. . The undesirable effects of S and O as described above are
Although it is thought that S and O in steel can be completely removed, it is practically impossible to completely remove such impurities. However, if the S and O contents in the steel are kept low according to the provisions of the present invention, the above-mentioned adverse effects can be eliminated. That is, extremely small amounts of S and O based on the present invention combine with Ca, Mg, etc. mixed in from the refractories of the furnace material or slag during steel melting, and form Ca-Al-Mg. It exists in steel as an -O-S type compound. Since such sulfides are stable even at high temperatures and fix S and O, it is thought that the above-mentioned adverse effects of O and S are removed. Here, stable even at high temperatures refers to a state in which sulfide-containing inclusions decompose and are difficult to cause a reaction to liberate S, and the degree of stability needs to be more difficult than the ease with which MnS decomposes. . Even from this mechanism, it is clear that (O+
S) Content of 0.005% or less and O0.004% or less is
Acceptable in terms of practical effect. Considering the above phenomenon, in the steel of the present invention, the (S+O) amount is less than 0.008% and the O amount is 0.005%.
Even if it is less than %, if they are close to the upper limit,
It is more advantageous to actively utilize Ca, Mg, or a rare earth element having an effect equivalent to these, Y, to promote the production of the above-mentioned stable compound. Furthermore, during melting, refining or adding elements to reduce the O content in the steel as much as possible is also effective in improving oxidation resistance. Note that the steel of the present invention is used at about 700 to 1200°C. It is applicable to all types of austenitic steel, and it is of course possible to include alloy components normally contained in austenitic steel. The type and content of such alloying elements are determined by the amount of Ni, Cr, etc.
It may be selected according to the usage conditions of the steel, that is, the required service temperature, workability, weldability, mechanical properties, etc., taking into consideration the balance with the quantity. In any case, the steel of the present invention, in which S and O are suppressed to extremely low levels, has significantly better oxidation resistance than steel that contains normal amounts of S and O in the same space, and is at least inferior in other properties. Never. The preferred ranges and reasons for the basic components of the austenitic steel of the present invention will be explained below. C
When steel is used at high temperatures, or after welding, Cr 23 C 6 type carbides are formed in the welded part, which reduces the oxidation resistance improvement effect of Cr and deteriorates scale adhesion. Moreover, an excessive amount of C has a negative effect on the weldability and workability of steel, and the upper limit should be kept at 0.15%, especially from the viewpoint of preventing the precipitation of large amounts of carbides. From the viewpoint of oxidation resistance, it is better to keep the amount as low as possible, but if mechanical strength is important, it may be contained close to the upper limit. To eliminate the above-mentioned harmful effects of C, Ti, Nb, Zr and
It is preferable to use Ta. These ingredients are equivalent in terms of action and effect, so even one type or two of them are equivalent.
Combinations of more than one species can also be used, and a total content of 4 times or more of C (%) is effective. However, if added in too large an amount, the amount of intermetallic compounds precipitated will increase, impairing the cleanliness and workability of the steel, so the upper limit should be 1.5%. Si is usually used as a deoxidizing agent, and 0.1% or more is required to ensure its effectiveness. Si is also a component that exhibits an excellent effect on improving the oxidation resistance of steel. According to the inventor's experimental results,
The effect of improving oxidation resistance by suppressing O and S within the range of the present invention is particularly remarkable in steel containing 1% or more of Si, so it is recommended to contain up to 5% of Si. However, the content of Si exceeding 5% causes deterioration of the workability and weldability of the steel. Mn is used as a deoxidizing agent, but it is not a desirable component from the viewpoint of oxidation resistance, so it is preferably kept at 3% or less. Moreover, if it exceeds 3%, it impairs hot workability and also causes problems in that it corrodes the refractories of the furnace during steel manufacturing. Ni and Cr are necessary to ensure the basic properties of austenitic steel. If Ni is less than 7% and Cr is less than 15%, it becomes difficult to maintain the austenite structure itself. On the other hand, those containing more than 45% Ni are already in the category of Ni-based alloys and are difficult to put into practical use economically. The higher the amount of Cr, the better the oxidation resistance, but if it exceeds 30%,
It is difficult to maintain the austenite phase. As mentioned above, the steel of the present invention contains Ni, Cr,
Even though its content is the same as that of known austenitic steels, its oxidation resistance is much better, so it can withstand harsh conditions of use at higher temperatures than heat-resistant steels of the same group. In other words, under the same conditions of use, steel with lower Ni and Cr contents, that is, cheaper steel, can be used. The above components are the basic components of the austenitic steel according to the present invention, but various subcomponents can be added depending on the purpose of use of the steel and manufacturing needs. The main subcomponents and their preferred added contents are as follows. Al
is a component that is often required as a deoxidizing agent. In particular, when actively adding Ca, Mg, etc., which will be described later, or when making full use of the effects of slag, it is necessary to sufficiently lower the oxygen in the molten steel in advance, and a small amount of Al is added. . However, if the amount of Al remaining in the steel exceeds 5%, it may cause problems in the casting process after melting. A small amount of Cu is effective in improving the adhesion of oxide scale that forms on the steel surface. However, if the content exceeds 1.5%, the oxidation resistance will deteriorate. Mo is a component mainly effective in improving the high-temperature strength of steel. Therefore, when used in applications that require high temperatures and loads, it should be added, but 5.
If the content exceeds %, it has an unfavorable effect on oxidation resistance and at the same time causes an increase in material cost. The purpose of use of Ti, Nb, Zr, and Ta is as described above in relation to C. Ca, Mg, rare earth elements, Y, these elements are S
Combines with oxidation sulfides to form extremely stable sulfides or oxysulfides that do not decompose even at high temperatures, contributing to improving the oxidation resistance of steel. However, this effect also
It is a premise that S and S are suppressed within the range of the present invention, and if a large amount of the above elements is added to steel that contains normal amounts of these impurities, an excessive amount of compounds will be generated, which will deteriorate not only the oxidation resistance but also the oxidation resistance. This has the effect of adversely affecting mechanical properties. As long as O and S are within the range of the present invention, Ca,
Corrosion resistance can be improved even if Mg, rare earth elements, and Y are not substantially present. Normally, trace amounts of Ca, Mg, etc. enter into molten steel from furnace materials or slag without any active addition, and this combines with the trace amounts of O and S mentioned above. It is expected that harm will be removed. In any case, the scope of the present invention also includes a case where the O and S contents are further lowered by adding these elements. In addition to the above main components and subcomponents, there are impurities that are inevitably mixed into steel. Among these, O and S have an important relationship with oxidation resistance.
Its content is (O+S) 0.005% or less, and O
As mentioned earlier, the intended improvement in oxidation resistance cannot be achieved unless the content is suppressed to 0.004% or less. Next, embodiments of the present invention will be listed and specific examples thereof will be explained. In the following description, the oxidation resistance test was conducted under the following conditions. Test piece size: 25mm L x 20mm W x 1.5mm T plate Test method: Hold in a furnace heated to the indicated temperature for 30 minutes, then leave in the atmosphere for 30 minutes. After repeating the heating-cooling cycle 500 times, the weight of the test piece from which attached oxides have been removed is measured, and the weight loss relative to the weight before the test is determined, and the oxidation resistance is evaluated based on the weight loss. Table 1 shows the results of the above tests conducted on typical commercially available austenitic steels, and is listed for reference in the following explanation. [Embodiment 1] C0.15% or less, Si0.1-1.0%, Mn3.0% or less,
Ni7~15%, Cr15~20%, other as required
Al, Cu, Mo, Ti, Nb, Zr, Ta, Ca, Mg, Y,
High-temperature austenitic steel that contains rare earth elements, etc., and has O+S of 0.005% or less and O of 0.004% or less. This steel is compatible with commercially available austenitic steels such as SUS304, 316, 321, and 347, and is made of Ni and Cr.
It belongs to a relatively inexpensive steel type with a low content of Table 2 shows the composition and oxidation resistance results of the steel belonging to this embodiment and a comparative steel of the same type with high S and O contents and at a heating temperature of 850°C. In Table 2, when inventive steels 1 to 7 and 10 to 13 are compared with comparative steels 8 to 9 and 14 to 16, oxidation
C0.15%以下、Si3.0〜5.0%、Mn3.0%以下、
Ni10〜15%、Cr15〜20%で、必要に応じてAl、
Cu、Mo、Ti、Nb、Zr、Ta、Ca、Mg、希土類元
素、Yの1種以上を含有し、S+Oが0.005%以
下、かつOが0.004%以下の高温用オーステナイ
ト鋼。
この鋼は、実施態様、2の鋼のSi含有量を3.0
〜5.0%まで高め、耐酸化性のより一層の向上を
図つたものである。
この実施態様に含まれる鋼およびそれらの鋼と
同一の鋼種でSおよびOの含有量が本発明範囲外
の比較鋼の組成および1100℃での耐酸化試験の結
果は第4表に示した。
本発明鋼は、酸化重量減が比較鋼の約1/3〜1/8
と低く、高い耐酸化性を示している。
〔実施態様 4〕
C0.15%以下、Si0.1〜3.0%、Mn3.0%以下、
Ni10〜15%、Cr20〜25%で、必要に応じてAl、
Cu、Mo、Ti、Nb、Zr、Ta、Ca、Mg、希土類元
素、Yの1種以上を含有し、S+Oが0.005%以
下で、かつOが0.004%以下である高温用オース
テナイト鋼。
この鋼は、Cr含有量を20〜25%と高くしたも
ので、市販品ではSUS309Sに対応する鋼種であ
る。
第5表として、この実施態様に属する鋼および
それらと同一の鋼種でSおよびOの含有量が高い
比較鋼の組成ならびに1050℃における耐酸化試験
結果を示す。
ここでもまた、本発明鋼の酸化重量減が比較鋼
の約1/2に低下している。
〔実施態様 5〕
C0.15%以下、Si0.1〜1.0%、Mn3%以下、
Ni30〜35%、Cr20〜25%、その他必要に応じて
Al、Cu、Mo、Ti、Nb、Zr、Ta、Ca、Mg、希土
類元素、Yの1種以上を含有し、S+Oが0.005
%以下で、かつOが0.004%以下である高温用オ
ーステナイト鋼。
市販鋼のインコロイ800(商品名)がこれに対
応する。
第6表に、この実施態様に属する鋼およびそれ
らと同一鋼種でSおよびOの含有量の高い比軟鋼
の組成ならびに加熱温度1000℃での耐酸化試験結
果をあわせて示す。
本発明鋼は、酸化重量減が比較鋼の約1/2〜1/3
となつており、この鋼種でもすぐれた性能を示す
ことが明らかである。
〔実施態様 6〕
C0.15%以下、Si0.1〜3.0%、Mn3%以下、
Ni12〜25%、Cr20〜30%で、その他必要に応じ
Al、Cu、Mo、Ti、Nb、Zr、Ta、Ca、Mg、希土
類元素、Yの1種以上を含有し、S+Oが0.005
%以下で、かつOが0.004%以下の高温用鋼。
この鋼は、市販鋼のSUS310Sの鋼種に相当す
る。
同様に第7表として、上記実施態様に属する鋼
およびそれらと同一鋼種でSとOの含有量が高い
比較鋼について、その組成ならびに1100℃での耐
酸化試験結果を示す。
ここでもS、Oの低減に基く耐酸化性の向上は
明らかである。本発明鋼の酸化重量減は、比較鋼
の約1/3〜1/4になつている。
C0.15% or less, Si3.0~5.0%, Mn3.0% or less,
Ni10~15%, Cr15~20%, Al if necessary,
High-temperature austenitic steel containing one or more of Cu, Mo, Ti, Nb, Zr, Ta, Ca, Mg, rare earth elements, and Y, with S+O being 0.005% or less and O being 0.004% or less. This steel has a Si content of 3.0 of the steel of embodiment 2.
~5.0% to further improve oxidation resistance. Table 4 shows the compositions and results of the oxidation resistance test at 1100° C. of the steels included in this embodiment and comparative steels of the same type as these steels but with S and O contents outside the range of the present invention. The steel of the present invention has an oxidation weight loss of about 1/3 to 1/8 that of comparative steel.
, indicating high oxidation resistance. [Embodiment 4] C0.15% or less, Si0.1-3.0%, Mn3.0% or less,
Ni10~15%, Cr20~25%, Al if necessary,
High-temperature austenitic steel containing one or more of Cu, Mo, Ti, Nb, Zr, Ta, Ca, Mg, rare earth elements, and Y, with S+O being 0.005% or less and O being 0.004% or less. This steel has a high Cr content of 20 to 25%, and is a commercially available steel type that corresponds to SUS309S. Table 5 shows the compositions and oxidation resistance test results at 1050° C. of the steel belonging to this embodiment and a comparative steel of the same steel type with high S and O contents. Again, the oxidation weight loss of the inventive steel is about half that of the comparative steel. [Embodiment 5] C0.15% or less, Si0.1-1.0%, Mn3% or less,
Ni30~35%, Cr20~25%, other as required
Contains one or more of Al, Cu, Mo, Ti, Nb, Zr, Ta, Ca, Mg, rare earth elements, Y, S + O is 0.005
% or less, and a high temperature austenitic steel with an O content of 0.004% or less. The commercially available steel Incoloy 800 (trade name) corresponds to this. Table 6 also shows the compositions of the steels belonging to this embodiment and specific mild steels of the same steel type with high contents of S and O, as well as the results of oxidation resistance tests at a heating temperature of 1000°C. The steel of the present invention has a weight loss due to oxidation of approximately 1/2 to 1/3 that of comparative steel.
It is clear that this steel type also exhibits excellent performance. [Embodiment 6] C0.15% or less, Si0.1-3.0%, Mn3% or less,
Ni12~25%, Cr20~30%, other as required
Contains one or more of Al, Cu, Mo, Ti, Nb, Zr, Ta, Ca, Mg, rare earth elements, Y, S + O is 0.005
% or less, and high temperature steel with O of 0.004% or less. This steel corresponds to the commercially available steel SUS310S. Similarly, Table 7 shows the compositions and oxidation resistance test results at 1100° C. of the steels belonging to the above-mentioned embodiments and comparative steels of the same steel type with high S and O contents. Here again, it is clear that the oxidation resistance is improved due to the reduction of S and O. The oxidation weight loss of the steel of the present invention is about 1/3 to 1/4 that of the comparative steel.
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】【table】
【表】
以上の説明から明らかなように本発明は、オー
ステナイト鋼において、その基本的な特徴を損な
うことなく、耐高温酸化性を大巾に改良すること
ができ、従つて耐熱鋼としてのオーステナイト鋼
の経済性向上を図る上で著しい効果を発揮する。[Table] As is clear from the above description, the present invention can greatly improve the high-temperature oxidation resistance of austenitic steel without impairing its basic characteristics. It has a remarkable effect on improving the economic efficiency of steel.
第1図は、加熱−冷却のサイクルを繰り返した
ときの鋼の重量変化量と(O+S)量の関係を示
すグラフである。
FIG. 1 is a graph showing the relationship between the amount of weight change of steel and the amount of (O+S) when the heating-cooling cycle is repeated.
Claims (1)
以下、Ni:7〜45%、Cr:15〜30%で、不純物
としてのS、OがO:0.004%以下、S+O:
0.005%以下を満足し、残部Feおよびその他不可
避的不純物からなり、鋼中介在物が高温でMnS
よりも安定な介在物であることを特徴とする耐高
温酸化性のすぐれたオーステナイト鋼。 2 C:0.15%以下、Si:0.1〜5%、Mn:3%
以下、Ni:7〜45%、Cr:15〜30%、さらに
Ti、Nb、Zr、Taの1種又は2種以上を合計でC
量の4倍以上1.5%以下を含有し、不純物として
のS、OがO:0.004%以下、S+O:0.005%以
下を満足し、残部Feおよびその他不可避的不純
物からなり、鋼中介在物が高温でMnSよりも安
定な介在物であることを特徴とする耐高温酸化性
のすぐれたオーステナイト鋼。 3 C:0.15%以下、Si:0.1〜5%、Mn:3%
以下、Ni:7〜45%、Cr:15〜30%に、Ti、
Nb、Zr、Taの1種又は2種以上を合計でC量の
4倍以上1.5%以下を含み、さらにAl:0.5%以
下、Cu:1.5%以下、Mo:5%以下のうちの1種
又は2種以上を含有し、不純物としてのS、Oが
O:0.004%以下、S+O:0.005%以下を満足
し、残部Feおよびその他不可避的不純物からな
り、鋼中介在物が高温でMnSよりも安定な介在
物であることを特徴とする耐高温酸化性のすぐれ
たオーステナイト鋼。 4 C:0.15%以下、Si:0.1〜5%、Mn:3%
以下、Ni:7〜45%、Cr:15〜30%、さらに
Al:0.5%以下、Cu:1.5%以下、Mo:5%以下
のうちの1種又は2種以上を含有し、不純物とし
てのS、OがO:0.004%以下、S+O:0.005%
以下を満足し、残部Feおよびその他不可避的不
純物からなり、鋼中介在物が高温でMnSよりも
安定な介在物であることを特徴とする耐高温酸化
性のすぐれたオーステナイト鋼。 5 C:0.15%以下、Si:0.1〜5%、Mn:3%
以下、Ni:7〜45%、Cr:15〜30%に、Ti、
Nb、Zr、Taの1種又は2種以上を合計でC量の
4倍以上1.5%以下と、Al:0.5%以下、Cu:1.5
%以下、Mo:5%以下のうちの1種又は2種以
上とを含み、さらにCa、Mg、希土類元素、Yの
1種又は2種以上を各々0.1%以下含有し、不純
物としてのS、OがO:0.004%以下、S+O:
0.005%以下を満足し、残部Feおよびその他不可
避的不純物からなり、鋼中介在物が高温でMnS
よりも安定な介在物であることを特徴とする耐高
温酸化性のすぐれたオーステナイト鋼。 6 C:0.15%以下、Si:0.1〜5%、Mn:3%
以下、Ni:7〜45%、Cr:15〜30%にTi、Nb、
Zr、Taの1種又は2種以上を合計でC量の4倍
以上1.5%以下を含み、さらにCa、Mg、希土類元
素、Yの1種又は2種以上を各々0.1%以下含有
し、不純物としてのS、OをO:0.004%以下、
S+O:0.005%以下を満足し、残部Feおよびそ
の他不可避的不純物からなり、鋼中介在物が高温
でMnSよりも安定な介在物であることを特徴と
する耐高温酸化性のすぐれたオーステナイト鋼。 7 C:0.15%以下、Si:0.1〜5%、Mn:3%
以下、Ni:7〜45%、Cr:15〜30%に、Al:0.5
%以下、Cu:1.5%以下、Mo:5%以下のうちの
1種又は2種以上を含み、さらにCa、Mg、希土
類元素、Yの1種又は2種以上を各々0.1%以下
含有し、不純物としてのS、OをO:0.004%以
下、S+O:0.005%以下を満足し、残部Feおよ
びその他不可避的不純物からなり、鋼中介在物が
高温でMnSよりも安定な介在物であることを特
徴とする耐高温酸化性のすぐれたオーステナイト
鋼。 8 C:0.15%以下、Si:0.1〜5%、Mn:3%
以下、Ni:7〜45%、Cr:15〜30%、さらに
Ca、Mg、希土類元素、Yの1種又は2種以上を
各々0.1%以下含有し、不純物としてのS、Oを
O:0.004%以下、S+O:0.005%以下を満足
し、残部Feおよびその他不可避的不純物からな
り、鋼中介在物が高温でMnSよりも安定な介在
物であることを特徴とする耐高温酸化性のすぐれ
たオーステナイト鋼。[Claims] 1 C: 0.15% or less, Si: 0.1 to 5%, Mn: 3%
Below, Ni: 7-45%, Cr: 15-30%, S and O as impurities are O: 0.004% or less, S+O:
0.005% or less, the remainder consists of Fe and other unavoidable impurities, and inclusions in the steel become MnS at high temperatures.
Austenitic steel with excellent high-temperature oxidation resistance, characterized by more stable inclusions. 2 C: 0.15% or less, Si: 0.1-5%, Mn: 3%
Below, Ni: 7-45%, Cr: 15-30%, and
One or more of Ti, Nb, Zr, Ta in total
The content of S and O as impurities satisfies O: 0.004% or less, S + O: 0.005% or less, and the remainder consists of Fe and other unavoidable impurities, and the inclusions in the steel are high temperature. An austenitic steel with excellent high-temperature oxidation resistance, characterized by inclusions that are more stable than MnS. 3 C: 0.15% or less, Si: 0.1-5%, Mn: 3%
Below, Ni: 7-45%, Cr: 15-30%, Ti,
Contains one or more of Nb, Zr, and Ta in total of 4 times or more and 1.5% or less of the amount of C, and one of the following: Al: 0.5% or less, Cu: 1.5% or less, Mo: 5% or less. Or it contains two or more kinds, and S and O as impurities satisfy O: 0.004% or less, S+O: 0.005% or less, and the remainder consists of Fe and other unavoidable impurities, and the inclusions in the steel are more intense than MnS at high temperatures. Austenitic steel with excellent high temperature oxidation resistance characterized by stable inclusions. 4 C: 0.15% or less, Si: 0.1-5%, Mn: 3%
Below, Ni: 7-45%, Cr: 15-30%, and
Contains one or more of the following: Al: 0.5% or less, Cu: 1.5% or less, Mo: 5% or less, and S and O as impurities are O: 0.004% or less, S+O: 0.005%.
An austenitic steel with excellent high-temperature oxidation resistance, which satisfies the following, is composed of the remainder Fe and other unavoidable impurities, and is characterized in that the inclusions in the steel are inclusions that are more stable than MnS at high temperatures. 5 C: 0.15% or less, Si: 0.1-5%, Mn: 3%
Below, Ni: 7-45%, Cr: 15-30%, Ti,
The total amount of one or more of Nb, Zr, and Ta is 4 times or more and 1.5% or less of the amount of C, Al: 0.5% or less, Cu: 1.5
% or less, Mo: 5% or less, and further contains Ca, Mg, rare earth elements, Y, one or more of 0.1% or less each, S as an impurity, O: 0.004% or less, S+O:
0.005% or less, the remainder consists of Fe and other unavoidable impurities, and inclusions in the steel become MnS at high temperatures.
Austenitic steel with excellent high-temperature oxidation resistance, characterized by more stable inclusions. 6 C: 0.15% or less, Si: 0.1-5%, Mn: 3%
Below, Ni: 7-45%, Cr: 15-30%, Ti, Nb,
Contains one or more of Zr and Ta in total at least 4 times the amount of C and 1.5% or less, and further contains one or more of Ca, Mg, rare earth elements, and Y at 0.1% or less each, and contains impurities. S, O as: 0.004% or less,
An austenitic steel with excellent high-temperature oxidation resistance, which satisfies S + O: 0.005% or less, consists of the remainder Fe and other unavoidable impurities, and is characterized by inclusions in the steel that are more stable than MnS at high temperatures. 7 C: 0.15% or less, Si: 0.1-5%, Mn: 3%
Below, Ni: 7-45%, Cr: 15-30%, Al: 0.5
% or less, Cu: 1.5% or less, Mo: 5% or less, and further contains one or more of Ca, Mg, rare earth elements, and Y at 0.1% or less each, S and O as impurities satisfy O: 0.004% or less, S + O: 0.005% or less, and the remainder consists of Fe and other unavoidable impurities, and the inclusions in steel are more stable inclusions than MnS at high temperatures. Austenitic steel with excellent high temperature oxidation resistance. 8 C: 0.15% or less, Si: 0.1-5%, Mn: 3%
Below, Ni: 7-45%, Cr: 15-30%, and
Contains 0.1% or less of one or more of Ca, Mg, rare earth elements, and Y, satisfies S and O impurities as O: 0.004% or less, S+O: 0.005% or less, and the remainder is Fe and other unavoidable substances. An austenitic steel with excellent high-temperature oxidation resistance, characterized by inclusions in the steel that are more stable than MnS at high temperatures.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11612380A JPS5741356A (en) | 1980-08-23 | 1980-08-23 | Austenite steel with superior oxidation resistance at high temperature |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11612380A JPS5741356A (en) | 1980-08-23 | 1980-08-23 | Austenite steel with superior oxidation resistance at high temperature |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5741356A JPS5741356A (en) | 1982-03-08 |
JPS6214628B2 true JPS6214628B2 (en) | 1987-04-03 |
Family
ID=14679259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11612380A Granted JPS5741356A (en) | 1980-08-23 | 1980-08-23 | Austenite steel with superior oxidation resistance at high temperature |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5741356A (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60121258A (en) * | 1983-12-05 | 1985-06-28 | Nippon Steel Corp | Steel material for heat exchanger |
JPS60215747A (en) * | 1984-04-11 | 1985-10-29 | Hitachi Ltd | Corrosion- and heat-resistant alloy for coal gasifiction |
CA1263041A (en) * | 1984-11-13 | 1989-11-21 | William Lawrence Mankins | Nickel-chromium-molybdenum alloy |
JPS61185495A (en) * | 1985-02-13 | 1986-08-19 | 福田 学 | Continuous form and manufacture thereof |
GB8614744D0 (en) * | 1986-06-17 | 1986-07-23 | Moore Business Forms Inc | Continuous stationery |
JPH0627306B2 (en) * | 1988-12-08 | 1994-04-13 | 住友金属工業株式会社 | Heat resistant steel for ethylene cracking furnace tubes |
KR100532877B1 (en) | 2002-04-17 | 2005-12-01 | 스미토모 긴조쿠 고교 가부시키가이샤 | Austenitic stainless steel excellent in high temperature strength and corrosion resistance, heat resistant pressurized parts, and the manufacturing method thereof |
KR20170066526A (en) * | 2014-10-01 | 2017-06-14 | 신닛테츠스미킨 카부시키카이샤 | Stainless steel material |
JP6875593B1 (en) * | 2020-12-23 | 2021-05-26 | 日本冶金工業株式会社 | Fe-Ni-Cr alloy with excellent corrosion resistance, weldability, and oxidation resistance and its manufacturing method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5027712A (en) * | 1973-07-13 | 1975-03-22 | ||
JPS527318A (en) * | 1975-07-08 | 1977-01-20 | Nippon Steel Corp | Stainless steel having excellent malleability |
JPS5456018A (en) * | 1977-10-12 | 1979-05-04 | Sumitomo Metal Ind Ltd | Austenitic steel with superior oxidation resistance for high temperature use |
-
1980
- 1980-08-23 JP JP11612380A patent/JPS5741356A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5027712A (en) * | 1973-07-13 | 1975-03-22 | ||
JPS527318A (en) * | 1975-07-08 | 1977-01-20 | Nippon Steel Corp | Stainless steel having excellent malleability |
JPS5456018A (en) * | 1977-10-12 | 1979-05-04 | Sumitomo Metal Ind Ltd | Austenitic steel with superior oxidation resistance for high temperature use |
Also Published As
Publication number | Publication date |
---|---|
JPS5741356A (en) | 1982-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0016225B1 (en) | Use of an austenitic steel in oxidizing conditions at high temperature | |
JPH07292446A (en) | Ferritic stainless steel for heat exchanger | |
JPS58217662A (en) | High strength and high corrosion resistant boiler tube having resistance against brittlement during use | |
JPH02217439A (en) | High strength low alloy steel having excellent corrosion resistance and oxidation resistance | |
JPH0214419B2 (en) | ||
JPS6214628B2 (en) | ||
JP3247162B2 (en) | Fe-Cr-Al-based alloy excellent in oxidation resistance and foil thereof | |
JPH06322488A (en) | High-strength austenitic heat resistant steel excellent in weldability and satisfactory in high temperature corrosion resistance | |
JPS6214626B2 (en) | ||
KR100568632B1 (en) | Austenitic stainless steel with good oxidation resistance | |
JPS5929104B2 (en) | Austenitic heat-resistant steel with excellent hot workability and oxidation resistance | |
JPS61177352A (en) | Heat resistant cast steel having superior elongation characteristic at room temperature | |
JPS5940212B2 (en) | Co-based alloy for engine valves and valve seats of internal combustion engines | |
JPH0770713A (en) | Heat resistant cast steel | |
JPS63183155A (en) | High-strength austenitic heat-resisting alloy | |
JP2722893B2 (en) | Welding material for high Cr high N austenitic steel | |
JPS6254388B2 (en) | ||
JPH06271993A (en) | Austenitic stainless steel excellent in oxidation resistance | |
JP3840762B2 (en) | Heat resistant steel with excellent cold workability | |
JPH0598397A (en) | Ferrous heat resistant alloy excellent in high temperature corrosion resistance | |
JPS6046343A (en) | Alloy for exhaust valve | |
JP3007696B2 (en) | Fe-Cr-Al alloy that has excellent oxidation resistance and suppresses the formation of oxide whiskers that reduce the adhesion of γAl2O3 | |
JP2757118B2 (en) | Fe-Ni-Mn based alloy excellent in hot workability and method for producing the same | |
GB2051125A (en) | Austenitic Stainless Cast Steel for High-temperature Use | |
JPS628497B2 (en) |