JPS5940212B2 - Co-based alloy for engine valves and valve seats of internal combustion engines - Google Patents

Co-based alloy for engine valves and valve seats of internal combustion engines

Info

Publication number
JPS5940212B2
JPS5940212B2 JP1090479A JP1090479A JPS5940212B2 JP S5940212 B2 JPS5940212 B2 JP S5940212B2 JP 1090479 A JP1090479 A JP 1090479A JP 1090479 A JP1090479 A JP 1090479A JP S5940212 B2 JPS5940212 B2 JP S5940212B2
Authority
JP
Japan
Prior art keywords
internal combustion
content
valve seats
thermal shock
lead oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1090479A
Other languages
Japanese (ja)
Other versions
JPS55104451A (en
Inventor
喜久義 今尾
定雄 斉藤
潤也 大江
立衛 矢吹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP1090479A priority Critical patent/JPS5940212B2/en
Priority to AU54320/80A priority patent/AU522704B2/en
Publication of JPS55104451A publication Critical patent/JPS55104451A/en
Publication of JPS5940212B2 publication Critical patent/JPS5940212B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、すぐれた高温硬さ、耐熱衝撃性、および耐
酸化鉛腐食性を有し、特に内燃機関のエンジンバルブお
よびバルブシートなどの肉盛溶接用、およびこれらの鋳
物用として使用するのに適したCo基合金に関するもの
である。
Detailed Description of the Invention The present invention has excellent high-temperature hardness, thermal shock resistance, and lead oxide corrosion resistance, and is particularly suitable for overlay welding of engine valves and valve seats of internal combustion engines, and for these. The present invention relates to a Co-based alloy suitable for use in castings.

従来、内燃機関のエンジンバルブやバルブシートに関し
、その肉盛溶接には、アメリカ溶接協会規格5.13
RCoCr−A(C: 0.9−1.4%、Si:2.
0%以下、Mn:1.0%以下、W:3.0〜6.0%
、Cr:26〜32%、Ni:3.0%以下、Fe:3
.0%以下、Mo:1.0%以下、C。
Conventionally, overlay welding of engine valves and valve seats for internal combustion engines has been performed in accordance with American Welding Society Standard 5.13.
RCoCr-A (C: 0.9-1.4%, Si: 2.
0% or less, Mn: 1.0% or less, W: 3.0 to 6.0%
, Cr: 26-32%, Ni: 3.0% or less, Fe: 3
.. 0% or less, Mo: 1.0% or less, C.

および不可避不純物:残り)や、同5.13 RCoC
r B (C: 1.2〜1.7%、Si:2.0%
以下、Mn:1.0%以下、Wニア、0〜9.5%、C
r:26〜32%、Ni:3.0%以下、Fe:3.0
%以下、Mo:1.0%以下、Coおよび不可避不純物
:残り、以上重量%)などのCo基合金(以下従来Co
基合金という)が多く使用されてきた。
and unavoidable impurities: remainder) and 5.13 RCoC
r B (C: 1.2-1.7%, Si: 2.0%
Below, Mn: 1.0% or less, W near, 0 to 9.5%, C
r: 26-32%, Ni: 3.0% or less, Fe: 3.0
% or less, Mo: 1.0% or less, Co and unavoidable impurities: remainder, or more weight %)
base alloys) have been widely used.

一方、近年、内燃機関のエンジンの高性能化がはかられ
るようになるにしたがって、上記エンジンバルブやバル
ブシートにも、よりすぐれた特性を具備することが要求
されるようになっており、一般に、いずれも肉盛溶接状
態で、温度800℃におけるビッカース硬さが285以
上の高温硬さ、温度700°Cに15分間保持した後水
冷の操作を繰り返し行なった場合、肉盛溶接部に割れが
発生するまでの前記操作回数が7回以上の耐熱衝撃性、
および温度915℃に加熱した溶融酸化鉛中に1時間浸
漬した後の重量減が0.09 g/cyrf、/ h
r以下の耐酸化鉛腐食性を具備することが要求されるよ
うになっている。
On the other hand, in recent years, as the performance of internal combustion engines has improved, the engine valves and valve seats are required to have even better characteristics. , all of which have high temperature hardness with a Vickers hardness of 285 or higher at a temperature of 800°C in the overlay welding state, and if the water cooling operation is repeated after being held at a temperature of 700°C for 15 minutes, cracks will occur in the overlay welded part. Thermal shock resistance where the number of operations is 7 or more before occurrence;
and weight loss after 1 hour immersion in molten lead oxide heated to 915°C is 0.09 g/cyrf,/h
It is now required to have lead oxide corrosion resistance of r or less.

また、これらの特性は、鋳造により製造された内燃機関
のエンジンバルブ鋳物やバルブシート鋳物においても同
様に要求されることは勿論である。
It goes without saying that these characteristics are similarly required for engine valve castings and valve seat castings for internal combustion engines manufactured by casting.

しかしながら、上記従来Co基合金は、高温硬さの点で
、上記要求条件を満足するものの、耐熱衝撃性および耐
酸化鉛腐食性においては、これを満足する性質をもたず
、したがって高性能エンジンのエンジンバルブやバルブ
シートの肉盛溶接用として、またこれの鋳物用として使
用した場合に十分満足する使用寿命を示さないのが現状
である。
However, although the above-mentioned conventional Co-based alloys satisfy the above-mentioned requirements in terms of high-temperature hardness, they do not have properties that satisfy these requirements in terms of thermal shock resistance and lead oxide corrosion resistance. Currently, when used for overlay welding of engine valves and valve seats, or for casting, it does not have a sufficiently satisfactory service life.

この発明は、上述のような観点から、上記従来Co基合
金のもつ問題点を解決したCo基合金を提供するもので
、重量%で、C:1.0〜3.5%、S i : 0.
1〜2.0%、Mn : 0.1〜2.0%、W:5〜
20%、Cr:20〜40%、Ni:25%越〜50%
を含有し、さらに必要に応じてFe:1〜30%および
Mo:2〜9%のうちの1種または2種を含有し、Co
および不可避不純物:残りからなる組成を有すると共に
、内燃機関、特に高性能エンジンのエンジンバルブやバ
ルブシートの肉盛溶接用および鋳物用材料に要求される
上記の条件を満足するすぐれた高温硬さ、耐熱衝撃性、
および耐酸化鉛腐食性を有し、しかもFeを含有した場
合には耐熱衝撃性が、またMoを含有した場合には高温
硬さが一段と向上したものとなる 。
From the above-mentioned viewpoints, the present invention provides a Co-based alloy that solves the problems of the conventional Co-based alloys, and has C: 1.0 to 3.5% in weight %, Si: 0.
1~2.0%, Mn: 0.1~2.0%, W: 5~
20%, Cr: 20-40%, Ni: 25%-50%
and, if necessary, one or two of Fe: 1 to 30% and Mo: 2 to 9%, and Co
and unavoidable impurities: It has an excellent high-temperature hardness that satisfies the above conditions required for overlay welding and casting materials for engine valves and valve seats of internal combustion engines, especially high-performance engines, and unavoidable impurities: thermal shock resistance,
and lead oxide corrosion resistance, and furthermore, if it contains Fe, the thermal shock resistance is further improved, and if it contains Mo, the high temperature hardness is further improved.

Co基合金に特徴を有するものである。This is a characteristic of Co-based alloys.

ついで、この発明のCo基合金において、成分組成範囲
を上記の通り限定した理由を説明する。
Next, the reason why the composition range of the Co-based alloy of the present invention is limited as described above will be explained.

(a) C C成分には、Cr 、 W、およびMOなどと炭 ・化
物を形成して常温および高温硬さを向上させる作用があ
るが、その含有量が1.0%未満では、前記作用に所望
の効果が得られず、一方3.5%を越えて含有させると
、耐熱衝撃性が低下するようになることから、その含有
量を1.0〜3.5%と定めた・ (b) Si 所望の脱酸効果、鋳造性、肉盛溶接性、および湯流れ性
などを確保するためには最低0.1%の含有が必要であ
り、一方2.0%を越えて含有させてもより一層の改善
効果は期待できないことから、その含有量を0.1〜2
.0%と定めた。
(a) C The C component has the effect of forming carbide with Cr, W, MO, etc. and improving the hardness at room temperature and high temperature, but if its content is less than 1.0%, the above effect is However, if the content exceeds 3.5%, the thermal shock resistance will decrease, so the content was set at 1.0 to 3.5%. b) Si In order to ensure the desired deoxidizing effect, castability, overlay weldability, melt flowability, etc., a minimum content of 0.1% is required; on the other hand, it is not allowed to contain more than 2.0%. Since further improvement effects cannot be expected even if the content is reduced to 0.1 to 2
.. It was set as 0%.

(c) Mn Mn成分には、脱酸、脱硫作用のほか、肉盛溶接性を改
善する作用があるが、その含有量が0.1%未満では前
記作用に所望の効果が得られず、一方2.0%を越えて
含有させてもより一層の改善効果は期待できないことか
ら、その含有量を0.1〜2.0%と定めた。
(c) Mn In addition to deoxidizing and desulfurizing effects, the Mn component has an effect of improving overlay weldability, but if its content is less than 0.1%, the desired effect cannot be obtained in the above effects, On the other hand, even if the content exceeds 2.0%, no further improvement effect can be expected, so the content was set at 0.1 to 2.0%.

(d) W W成分には、炭化物を形成すると共に、素地を固溶強化
し、この結果′として合金の高温硬さおよび高温強度を
向上させる作用があるが、その含有量が5%未満では前
記作用に所望の効果が得られず、一方20%を越えて含
有させると、肉盛溶接性や切削性が劣化するようになる
ことから、その含有量を5〜20%と定めた。
(d) W The W component has the effect of forming carbides and solid solution strengthening of the matrix, thereby improving the high temperature hardness and high temperature strength of the alloy, but if its content is less than 5%, The desired effect cannot be obtained in the above action, and on the other hand, if the content exceeds 20%, overlay weldability and machinability will deteriorate, so the content was set at 5 to 20%.

(e) Cr Cr成分には、素地を固溶強化し、高温硬さおよび耐酸
化性を向上させる作用がある。
(e) Cr The Cr component has the effect of solid-solution strengthening the base material and improving high-temperature hardness and oxidation resistance.

しかし20%未満の含有では所望の作用効果が確保でき
ないので20%以上の含有が必要であるが、40%を越
えて含有させると、脆化するようになるので、40%を
越えて含有させてはならない。
However, if the content is less than 20%, the desired effect cannot be ensured, so the content should be 20% or more, but if the content exceeds 40%, it will become brittle, so it is not recommended to contain more than 40%. must not.

(f) Ni Ni成分には、Cr成分との共存において合金の耐熱衝
撃性および耐酸化鉛腐食性を改善する作用があるが、そ
の含有量が25%以下では、特に耐酸化鉛腐食性に関し
ての要求条件である腐食重量減: 0.099 /cr
tt/ h r以下を確保することができず、一方50
%を越えて含有させると、高温硬さに低下傾向が現われ
るようになることから、その含有量を25%越〜50%
と定めた。
(f) Ni The Ni component has the effect of improving the thermal shock resistance and lead oxide corrosion resistance of the alloy when coexisting with the Cr component, but if its content is less than 25%, the lead oxide corrosion resistance is particularly affected. Corrosion weight reduction required for: 0.099/cr
It is not possible to secure less than tt/hr, while 50
If the content exceeds 25% to 50%, the high temperature hardness tends to decrease.
It was determined that

(g) Fe Fe成分には、合金の耐熱衝撃性をさらに一段と向上さ
せる作用があるが、その含有量が15未満では前記作用
に所望の効果が得られず、一方30%を越えて含有させ
ると高温硬さが低下するようになり、800℃における
ビッカース硬さ=285以上を保持することができなく
なることから、その含有量を1〜30%と定めた。
(g) Fe The Fe component has the effect of further improving the thermal shock resistance of the alloy, but if its content is less than 15%, the desired effect cannot be obtained; on the other hand, if it is contained in an amount exceeding 30%. Since the high-temperature hardness decreases and it becomes impossible to maintain a Vickers hardness of 285 or higher at 800°C, the content is set at 1 to 30%.

(h) M。(h)M.

Mo成分には、合金の高温硬さをさらに一段と向上させ
る作用があるが、その含有量が2%未満では前記作用に
所望の効果が得られず、一方9%を越えて含有させると
靭性が低下するようになることから、その含有量を2〜
9%と定めた。
The Mo component has the effect of further improving the high-temperature hardness of the alloy, but if its content is less than 2%, the desired effect will not be obtained, while if it is contained in excess of 9%, the toughness will decrease. Since the content will decrease by 2~
It was set at 9%.

つぎに、この発明のCo基合金を実施例により説明する
Next, the Co-based alloy of the present invention will be explained using examples.

まず、通常の溶解鋳造法により、本発明合金溶接棒1〜
23、成分組成がこの発明の範囲から外れた比較合金溶
接棒1〜7、および上記従来C。
First, by a normal melting and casting method, the alloy welding rods 1 to 1 of the present invention were
23. Comparative alloy welding rods 1 to 7 whose compositions are outside the scope of the present invention, and the above-mentioned conventional C.

基合金に相当する成分組成をもった従来合金溶接棒1〜
2をそれぞれ製造した。
Conventional alloy welding rods 1 to 1 with a composition corresponding to the base alloy
2 were produced respectively.

これら溶接棒の成分組成を第1表に示した。The compositions of these welding rods are shown in Table 1.

ついで、これら溶接棒を用い、TIG自動溶接機にて、
直径120mmφ×厚さ207n7ILの寸法をもった
ステンレス鋼(SUS316)製台金の表面に、外径1
00mmX幅2(JvtmX厚さ5ynyttの円環状
ビードを一層肉盛溶接した。
Next, using these welding rods, with a TIG automatic welding machine,
On the surface of a stainless steel (SUS316) base metal with dimensions of 120mmφ in diameter x 207n7IL in thickness, an outer diameter of 1
A circular bead measuring 00 mm x width 2 (Jvtm x thickness 5 ynyt) was welded in one layer.

つぎに、上記台金上の円環状ビードについて、常温にお
けるロックウェル硬さくCスケール)および温度800
℃におけるビッカース硬さを測定すると共に、前記円環
状ビードを形成した合金に対して、温度700℃に加熱
して15分間保保持水冷の操作を繰り返し行ない、前記
円環状ビードに割れが発生するまでの前記操作回数を測
定する耐熱衝撃性試験を行ない、さらに15 mmφ×
100m71Lの肉盛材より直径12mmφ×高さL2
mrnの寸法をもった試験片を削り出し、温度915℃
に加熱した溶融酸化鉛40g中に前記試験片を1時間浸
漬した後、その重量減を測定する高温腐食試験(耐酸化
鉛腐食性試験)を行なった。
Next, regarding the annular bead on the base metal, the Rockwell hardness C scale at room temperature and the temperature 800
In addition to measuring the Vickers hardness at °C, the alloy that formed the annular bead was heated to 700°C, held for 15 minutes, and water-cooled repeatedly until cracks appeared in the annular bead. A thermal shock resistance test was conducted to measure the number of operations of 15 mmφ×
Diameter 12mmφ x height L2 from 100m71L overlay material
A test piece with dimensions of mrn was cut out and heated to a temperature of 915°C.
After the test piece was immersed for 1 hour in 40 g of molten lead oxide heated to 40 g, a high temperature corrosion test (lead oxide corrosion resistance test) was conducted to measure the weight loss.

これらの測定結果を第1表に合せて示した。These measurement results are also shown in Table 1.

第1表に示されるように、本発明合金1〜23は、従来
合金1〜2に比して一段とすぐれた高温硬さ、耐熱衝撃
性、および耐酸化鉛腐食性をもつものであり、内燃機関
のエンジンバルブやバルブシートに要求される条件を余
裕をもって満足する特性をもつものである。
As shown in Table 1, alloys 1 to 23 of the present invention have superior high-temperature hardness, thermal shock resistance, and lead oxide corrosion resistance compared to conventional alloys 1 to 2. It has characteristics that comfortably satisfy the conditions required for engine valves and valve seats in engines.

また、本発明合金1〜5と比較合金1とを見るに、Ni
成分の含有量が増加するにしたがって耐熱衝撃性および
耐酸化鉛腐食性が向上するようになることがわかる。
In addition, looking at the present invention alloys 1 to 5 and the comparative alloy 1, Ni
It can be seen that as the content of the components increases, the thermal shock resistance and lead oxide corrosion resistance improve.

しかし、この場合Ni含有量が25%以下では、特に耐
酸化鉛腐食性の改善が不十分であることを示している。
However, in this case, if the Ni content is 25% or less, the improvement in lead oxide corrosion resistance is insufficient.

同様に、本発明合金6〜8と比較合金2,3について見
るに、C含有量がこの発明の範囲から低い方に外れた比
較合金2では所望の高温硬さが得られず、一方高い方に
外れた比較合金3は、きわめて低い耐熱衝撃性しか示さ
ないのに対して、本発明合金6〜8は、いずれもすぐれ
た特性を示している。
Similarly, looking at Invention Alloys 6 to 8 and Comparative Alloys 2 and 3, Comparative Alloy 2, whose C content is lower than the range of this invention, cannot obtain the desired high-temperature hardness; Comparative Alloy 3, which is out of the range, exhibits extremely low thermal shock resistance, whereas Invention Alloys 6 to 8 all exhibit excellent properties.

さらに、Crの含有量をこの発明の範囲内で変化させた
本発明合金9〜12と、Crの含有量がこの発明の範囲
から低い方に外れた比較合金4と、同じく高い方に外れ
た比較合金5とについて見るに、比較合金4では高温硬
さおよび耐酸化鉛腐食性が著しく劣ったものになってお
り、一方比較合金5では耐熱衝撃性が劣るものとなって
いるのに対して、本発明合金9〜12は、いずれもすぐ
れた特性を満足して備えていることが明らかである。
Furthermore, Invention Alloys 9 to 12, in which the Cr content was varied within the range of this invention, Comparative Alloy 4, in which the Cr content was lower than the range of this invention, and Comparative Alloy 4, in which the Cr content was also higher than the range of this invention. Looking at Comparative Alloy 5, Comparative Alloy 4 has significantly inferior high temperature hardness and lead oxide corrosion resistance, while Comparative Alloy 5 has inferior thermal shock resistance. It is clear that all of Invention Alloys 9 to 12 have excellent properties.

また、W成分に関して、その含有量を変化させた本発明
合金13〜15と比較合金6,7について見るに、Wの
含有量がこの発明の範囲から低い方に外れた比較合金6
では高温硬さが、高い方に外れた比較合金7では耐熱衝
撃性がそれぞれ著しく劣化したものになっているのに対
して、この発明の範囲内のW含有量の本発明合金13〜
15は、いずれもすぐれた特性を示している。
Regarding the W component, looking at Invention Alloys 13 to 15 and Comparative Alloys 6 and 7, in which the W content was varied, Comparative Alloy 6, in which the W content was lower than the range of the present invention.
In Comparative Alloy 7, whose high-temperature hardness was on the high side, the thermal shock resistance was significantly deteriorated, whereas Invention Alloys 13 to 13 whose W content was within the range of the present invention
No. 15 shows excellent characteristics.

同様に、Feの含有量をこの発明の範囲内で変化させた
本発明合金16〜19に示される結果から明らかなよう
に、Fe含有量を増加させてゆくと、これに比例して耐
熱衝撃性が一段と向上するようになるのである。
Similarly, as is clear from the results shown for invention alloys 16 to 19, in which the Fe content was varied within the range of this invention, as the Fe content increases, the thermal shock resistance increases proportionally. This will further improve your sexuality.

同じく、Moの含有量をこの発明の範囲内で変化させた
本発明合金20〜22に示される結果から、Moを増加
させてゆくと、これに比例して一段と高温硬さが向上す
るようになることが明らかである。
Similarly, the results shown in Invention Alloys 20 to 22, in which the Mo content was varied within the range of the present invention, show that as Mo is increased, the high-temperature hardness is further improved in proportion to this. It is clear that

また、FeおよびMoを含有した本発明合金23は、一
段と改善された高温硬さと耐熱衝撃性とを具備すること
が示されている。
In addition, alloy 23 of the present invention containing Fe and Mo has been shown to have further improved high temperature hardness and thermal shock resistance.

なお、上記実施例では、この発明のCo基合金を肉盛溶
接用として使用した場合について述べたが、これを鋳物
用として使用しても、肉盛溶接の場合と同様なすぐれた
特性を示すことは勿論である。
In addition, in the above example, a case was described in which the Co-based alloy of the present invention was used for overlay welding, but even when used for casting, it exhibits the same excellent characteristics as for overlay welding. Of course.

上述のように、この発明のCo基合金は、すぐれた高温
硬さ、耐熱衝撃性、および耐酸化鉛腐食性を具備してい
るので、内燃機関、特に含鉛ガソリンを使用する内燃機
関のエンジンバルブおよびバルブシートの肉盛溶接用お
よび鋳物用として使用するのに適するものである。
As mentioned above, the Co-based alloy of the present invention has excellent high-temperature hardness, thermal shock resistance, and lead oxide corrosion resistance, so it is suitable for internal combustion engines, especially internal combustion engines that use leaded gasoline. It is suitable for use in overlay welding of valves and valve seats, and for casting.

Claims (1)

【特許請求の範囲】 I C:1.O〜3.5%、 S i : 0.1〜
2.0%、Mn:0、1〜2.0%、W:5〜20%、
Cr:20〜40%、Ni : 25%越〜50%、c
oおよび不可避不純物:残り(以上重量%)からなる組
成を有することを特徴とする高温硬さ、耐熱衝撃性、お
よび耐酸化鉛腐食性にすぐれた内燃機関のエンジンバル
ブおよびバルブシート用Co基合金。 2 C:1.0〜3.5%、S i : 0.1〜2
.0%、Mn:0.1〜2.0%、W:5〜20%、C
r:20〜40%、N i : 25%越〜50%、F
e:1〜30%、Coおよび不可避不純物:残り(以上
重量%)からなる組成を有することを特徴とする高温硬
さ、耐熱衝撃性、および耐酸化鉛腐食性にすぐれた内燃
機関のエンジンバルブおよびバルブシート用Co基合金
。 3 C:1.0〜3.5%、S i : 0.1〜2
.0%、Mn:0、1〜2.0%、W:5〜20%、C
r:20〜40%、N i : 25%越〜50%、M
o:2〜9%、coおよび不可避不純物:残り(以上重
量%)からなる組成を有することを特徴とする高温硬さ
、耐熱衝撃性、および耐酸化鉛腐食性にすぐれた内燃機
関のエンジンバルブおよびバルブシート用Co基合金。 4 C:1.O〜3.5%、S i : 0.1〜2
.0%、Mn:0、1〜2.0%、W:5〜20%、C
r:20〜40%、Ni:25%越〜50%、Fe:1
〜30%、Mo:2〜9%、Coおよび不可避不純物:
残り(以上重量%)からなる組成を有することを特徴と
する高温硬さ、耐熱衝撃性、および耐酸化鉛腐食性にす
ぐれた内燃機関のエンジンバルブおよびバルブシート用
Co基合金。
[Claims] IC:1. O~3.5%, Si: 0.1~
2.0%, Mn: 0, 1-2.0%, W: 5-20%,
Cr: 20-40%, Ni: 25%-50%, c
Co-based alloy for engine valves and valve seats of internal combustion engines that has excellent high-temperature hardness, thermal shock resistance, and lead oxide corrosion resistance, and is characterized by having a composition consisting of o and unavoidable impurities: the remainder (at least % by weight) . 2C: 1.0-3.5%, Si: 0.1-2
.. 0%, Mn: 0.1-2.0%, W: 5-20%, C
r: 20-40%, Ni: 25%-50%, F
An engine valve for an internal combustion engine having excellent high-temperature hardness, thermal shock resistance, and lead oxide corrosion resistance, characterized by having a composition consisting of e: 1 to 30%, Co, and unavoidable impurities: the remainder (more than % by weight) and Co-based alloys for valve seats. 3C: 1.0-3.5%, Si: 0.1-2
.. 0%, Mn: 0, 1-2.0%, W: 5-20%, C
r: 20-40%, Ni: 25%-50%, M
An engine valve for an internal combustion engine having excellent high-temperature hardness, thermal shock resistance, and lead oxide corrosion resistance, characterized by having a composition consisting of O: 2 to 9%, Co, and unavoidable impurities: the remainder (more than % by weight) and Co-based alloys for valve seats. 4C:1. O~3.5%, Si: 0.1~2
.. 0%, Mn: 0, 1-2.0%, W: 5-20%, C
r: 20-40%, Ni: 25%-50%, Fe: 1
~30%, Mo: 2-9%, Co and inevitable impurities:
A Co-based alloy for engine valves and valve seats of internal combustion engines, which has a composition consisting of the remainder (more than % by weight) and has excellent high-temperature hardness, thermal shock resistance, and lead oxide corrosion resistance.
JP1090479A 1979-02-01 1979-02-01 Co-based alloy for engine valves and valve seats of internal combustion engines Expired JPS5940212B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1090479A JPS5940212B2 (en) 1979-02-01 1979-02-01 Co-based alloy for engine valves and valve seats of internal combustion engines
AU54320/80A AU522704B2 (en) 1979-02-01 1980-01-03 (ni + co) base alloy for valves and valve seats of internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1090479A JPS5940212B2 (en) 1979-02-01 1979-02-01 Co-based alloy for engine valves and valve seats of internal combustion engines

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1103280A Division JPS6032701B2 (en) 1980-02-01 1980-02-01 Ni-based alloy for engine valves and valve seats of internal combustion engines

Publications (2)

Publication Number Publication Date
JPS55104451A JPS55104451A (en) 1980-08-09
JPS5940212B2 true JPS5940212B2 (en) 1984-09-28

Family

ID=11763269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1090479A Expired JPS5940212B2 (en) 1979-02-01 1979-02-01 Co-based alloy for engine valves and valve seats of internal combustion engines

Country Status (2)

Country Link
JP (1) JPS5940212B2 (en)
AU (1) AU522704B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59129746A (en) * 1983-01-18 1984-07-26 Mitsubishi Metal Corp Co base alloy for engine valve and engine valve seat
JPS62150014A (en) * 1985-12-25 1987-07-04 Toyota Motor Corp Valve seatless cylinder head made of aluminum alloy
WO1999039015A1 (en) * 1998-01-28 1999-08-05 L. E. Jones Company Nickel based alloys for internal combustion engine valve seat inserts, and the like
WO1999064202A1 (en) 1998-06-12 1999-12-16 L.E. Jones Company Surface treatment of prefinished valve seat inserts
US7338387B2 (en) * 2003-07-28 2008-03-04 Callaway Golf Company Iron golf club
US20100272597A1 (en) * 2009-04-24 2010-10-28 L. E. Jones Company Nickel based alloy useful for valve seat inserts

Also Published As

Publication number Publication date
AU522704B2 (en) 1982-06-24
JPS55104451A (en) 1980-08-09
AU5432080A (en) 1980-08-07

Similar Documents

Publication Publication Date Title
KR890002282B1 (en) Co base alloy for engine valve and engine valve sheet
JPS6327418B2 (en)
JPS5940212B2 (en) Co-based alloy for engine valves and valve seats of internal combustion engines
JPS5927369B2 (en) Co-based alloy for diesel engine valves and valve seats
JPH0249380B2 (en)
JPS599146A (en) Ni alloy for valve and valve seat of engine
JPS6028900B2 (en) Ni-based alloy for diesel engine valves and valve seats
JPS60231591A (en) Wire for submerged arc welding of cr-mo group low alloy steel
JPS6214628B2 (en)
JPS6032701B2 (en) Ni-based alloy for engine valves and valve seats of internal combustion engines
JPS6112843A (en) Co base alloy for engine valve and it valve sheet
JPS626622B2 (en)
US3902899A (en) Austenitic castable high temperature alloy
JPS626621B2 (en)
JPS5937733B2 (en) Co-based alloy for overlay welding of engine valves and valve seats of internal combustion engines
JPS5970744A (en) High-hardness ni alloy for valve and valve seat for engine
JPS62164844A (en) Co-base alloy for engine valve and engine valve seat
JPS626631B2 (en)
JPS60224732A (en) Heat resistant co-base alloy
JPS58120767A (en) Fe-ni-cr alloy for valve and valve sheet of internal combustion engine
JPS6046172B2 (en) Ni-based alloy for engine valves and valve seats of internal combustion engines
JPS6147219B2 (en)
JPS61546A (en) High-strength heat-resistant co alloy for gas turbine
KR820002302B1 (en) Cobalt-nickel alloy for valbe of internal combution engine
JPS5855223B2 (en) Heat-resistant and wear-resistant Cr↓-Fe↓-Ni↓-Co-based alloy