JPS5929104B2 - Austenitic heat-resistant steel with excellent hot workability and oxidation resistance - Google Patents

Austenitic heat-resistant steel with excellent hot workability and oxidation resistance

Info

Publication number
JPS5929104B2
JPS5929104B2 JP6671780A JP6671780A JPS5929104B2 JP S5929104 B2 JPS5929104 B2 JP S5929104B2 JP 6671780 A JP6671780 A JP 6671780A JP 6671780 A JP6671780 A JP 6671780A JP S5929104 B2 JPS5929104 B2 JP S5929104B2
Authority
JP
Japan
Prior art keywords
steel
hot workability
oxidation resistance
austenitic heat
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6671780A
Other languages
Japanese (ja)
Other versions
JPS56163244A (en
Inventor
敏 加藤
和彦 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP6671780A priority Critical patent/JPS5929104B2/en
Publication of JPS56163244A publication Critical patent/JPS56163244A/en
Publication of JPS5929104B2 publication Critical patent/JPS5929104B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 本発明は、高温環境において使用される装置器具類の
素材として好適な熱間加工性および耐酸化性にすぐれた
オーステナイト系耐熱鋼に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an austenitic heat-resistant steel that has excellent hot workability and oxidation resistance and is suitable as a material for equipment used in high-temperature environments.

高温環境において使用される装置器具類、例えば各種
の燃焼装置機器、加熱炉用治具、熱交換器、暖房用機器
の燃焼部品などでは、熱間加工性および耐酸化性が要求
されており、従来、この要求に応する耐酸化性オーステ
ナイト系耐熱鋼として、AISI302B(18Cr、
9Ni、2.5Si)、XM15Jl(18Cr、14
Ni、3Si)、SUS309S(23Cr、14Ni
)+2Si、SUS310S(25Cr、20Ni、I
si)、DIN4828(20Cr、12Ni、2Si
)またはAISI314(25Cr、20Ni、2Si
)が使用されていたが、XM15J1、SUS309S
+2Si、AISI314などは高Siのため、熱間圧
延時に先端割れや多数のコーナークラックなどが発生す
るなど熱間加工性が悪く、XM15J1は、低Cr、S
US310Sは低Siのため耐熱化性に劣るなどの欠点
を有していた。
Equipment and equipment used in high-temperature environments, such as various combustion equipment, heating furnace jigs, heat exchangers, and combustion parts for heating equipment, require hot workability and oxidation resistance. Conventionally, AISI302B (18Cr,
9Ni, 2.5Si), XM15Jl (18Cr, 14
Ni, 3Si), SUS309S (23Cr, 14Ni
)+2Si, SUS310S (25Cr, 20Ni, I
si), DIN4828 (20Cr, 12Ni, 2Si
) or AISI314 (25Cr, 20Ni, 2Si
) was used, but XM15J1, SUS309S
+2Si, AISI314, etc. have high Si and have poor hot workability such as tip cracks and many corner cracks during hot rolling, while XM15J1 has low Cr, S
US310S had drawbacks such as poor heat resistance due to its low Si content.

その上近年では、一段と要求が苛酷となって来ている。
すなわち高温での連続加熱中の酸化が少ないというだけ
でなく、高温加熱と常温までの冷却の繰り返しを受けて
も、スケールのはく離が少ないことまでを含めた耐酸化
性など多くの性質を兼備していることが要求されている
。 本発明は、熱間加工性および耐熱化性にすぐれたオ
ーステナイト系耐熱鋼を開発する実験を行なった結果、
高Siオステナイト系耐熱鋼にB1希土類元素、Ca、
必要に応じてMgをそれぞれ微量複合添加すると、熱間
加工性および耐酸化性等が改善されることを知見した。
Moreover, in recent years, demands have become even more demanding.
In other words, it not only has low oxidation during continuous heating at high temperatures, but also has many properties such as oxidation resistance, including less scale flaking even after repeated heating at high temperatures and cooling to room temperature. It is required that the The present invention was developed as a result of experiments to develop an austenitic heat-resistant steel with excellent hot workability and heat resistance.
High-Si austenitic heat-resistant steel with B1 rare earth elements, Ca,
It has been found that hot workability, oxidation resistance, etc. can be improved by adding a small amount of Mg in combination as needed.

本発明は、この知見にもとづいて構成されたもので、S
US309S十2Si、またはAISI314以上の熱
間加工性および耐酸化性を有する鋼で、近時の前記諸要
求に適合するものである。 すなわち、本発明は、重量
パーセントでCo82%以下、5i1.5〜3.5%、
Mn2、O%以下、Ni8.0〜35.0%、Cr15
.0〜30.0%、AI20O以下、B0.0005〜
0.0050%、希土類元素0.005〜0.100%
およびCa0.0005〜0.020%を含み、必要に
応じてMgO、OO05〜0.030%を含み、残部鉄
,.0 び避けられない不純物からなる熱間加工性およ
び耐酸化性のすぐれたオーステナイト系耐熱鋼を要旨と
するものである。
The present invention was constructed based on this knowledge, and S
It is a steel that has hot workability and oxidation resistance of US309S12Si or AISI314 or higher, and meets the above-mentioned recent requirements. That is, in the present invention, Co82% or less, 5i1.5 to 3.5%,
Mn2, O% or less, Ni8.0-35.0%, Cr15
.. 0~30.0%, AI20O or less, B0.0005~
0.0050%, rare earth elements 0.005-0.100%
and 0.0005 to 0.020% of Ca, and if necessary, 05 to 0.030% of MgO and OO, the balance being iron, . The gist of this invention is an austenitic heat-resistant steel with excellent hot workability and oxidation resistance, which is made up of impurities and unavoidable impurities.

以下、本発明鋼の構成成分を上記のように限定した理由
について説明する。
The reason why the constituent components of the steel of the present invention are limited as described above will be explained below.

Cは、オーステナイト形成元素であるが、0.2%を超
えて含有すると熱間加工性および耐酸化性を悪くするの
で、含有量を0.2%以下とした。
C is an austenite-forming element, but if it is contained in an amount exceeding 0.2%, hot workability and oxidation resistance will be deteriorated, so the content is set to 0.2% or less.

Siは、耐酸化性向上元素である。後述する希土類元素
、CaおよびMgの複合添加でさらに効果が得られる。
Siの含有量が1.5%未満では、効果は小さく、3.
5%を超えるとδフエライト相やσ相を先成し、熱間加
工性や高温の機械的性質を阻害する。さらに耐酸化性の
向上も期待できない。したがって、含有量を1.5%か
ら3.5%と限定した。Mnは、オーステナイト形成元
素であるが、耐酸化性を悪くするので、含有量を2.0
%以下とした。
Si is an oxidation resistance improving element. Further effects can be obtained by combined addition of rare earth elements, Ca and Mg, which will be described later.
If the Si content is less than 1.5%, the effect will be small; 3.
If it exceeds 5%, a δ ferrite phase or a σ phase is formed, which impairs hot workability and high-temperature mechanical properties. Furthermore, no improvement in oxidation resistance can be expected. Therefore, the content was limited to 1.5% to 3.5%. Mn is an austenite-forming element, but since it worsens oxidation resistance, the content should be reduced to 2.0
% or less.

Niは、オーステナイト形成元素であるが、Siによる
δフエライト相の生成を防ぎ、熱間加工性をよくするた
め(こ、Ni含有量の下限を8.0%とし、上限は経済
性を考慮し35%とした。
Ni is an austenite-forming element, but in order to prevent the formation of the δ-ferrite phase caused by Si and improve hot workability (the lower limit of the Ni content is set at 8.0%, and the upper limit is set in consideration of economic efficiency). It was set at 35%.

Crは、耐酸化性向上元素であるが、15.0%未満で
は効果が小さく、30.0%以上では、熱間加工性や高
温の機械的性質に有害なδフエライト相やσ相を生成し
、これを防止するためNj含有量多く必要とし高価とな
る。
Cr is an element that improves oxidation resistance, but if it is less than 15.0%, the effect is small, and if it is more than 30.0%, it produces δ ferrite phase and σ phase that are harmful to hot workability and high-temperature mechanical properties. However, in order to prevent this, a large amount of Nj is required and the cost becomes high.

したがって、含有量は15.0%から30.0%とした
。AIは、脱酸剤として有効であると同時に耐酸化性を
改善するための合金としても有効である。
Therefore, the content was set from 15.0% to 30.0%. AI is effective as a deoxidizer as well as an alloy for improving oxidation resistance.

しかしAIは強力なδフエライト生成元素でもあり2%
を越えて添加するとδフエライトを生成し易くなり、熱
間加工性を害するため、含有量を2.0%以下とした。
Bは、熱間加工性向上元素として有効である。
However, AI is also a strong δ ferrite-forming element, with 2%
If it is added in excess of 5%, δ ferrite is likely to be produced, which impairs hot workability, so the content was set to 2.0% or less.
B is effective as an element for improving hot workability.

Bは粒界拡散を遅滞して、0,Sまたは不純物の粒界濃
化および粒界析出を抑制して粒界部の延性を高めて熱間
加工性を向上する。含有量は最低0.0005%を必要
とし、0.0050%を越えて含有すると1200℃以
上での熱間加工性が期待できないので、最高を0.00
50%と限定した。この添加量による耐酸化性への悪影
響は認められていない。Ce,Laなどの希土類元素は
、熱間加工性および耐酸化性を向上する元素として有効
である。
B retards grain boundary diffusion, suppresses grain boundary concentration and grain boundary precipitation of O, S or impurities, increases the ductility of the grain boundary region, and improves hot workability. The content must be at least 0.0005%, and if it exceeds 0.0050%, hot workability at temperatures above 1200°C cannot be expected, so the maximum content is 0.005%.
It was limited to 50%. No adverse effect on oxidation resistance was observed due to this addition amount. Rare earth elements such as Ce and La are effective as elements that improve hot workability and oxidation resistance.

希土類元素は、0,S等との親和性が強く、脱酸脱硫作
用をし7て粒界などを浄化する。しかし、単体では希土
類元素特有の非金属介在物を生じ、清浄度を悪くし、耐
酸化性も期待できない。希土類元素も後述するCaとの
複合添加で脱酸生成物を浮上しやすくさせ、鋼を浄化し
て熱間加工性および耐酸化性を改善する。含有量は、上
記効果を奏するために最低0.005%を必要とし、上
限は熱間加工性を害するのと高価なため、0.100%
とした。Caは、熱間加工性および耐酸化性を向上させ
る元素として有効である。
Rare earth elements have a strong affinity with O, S, etc., and have a deoxidizing and desulfurizing effect7 to purify grain boundaries and the like. However, when used alone, nonmetallic inclusions peculiar to rare earth elements are generated, resulting in poor cleanliness and oxidation resistance cannot be expected. Rare earth elements are also added in combination with Ca, which will be described later, to make deoxidation products easier to float, purify the steel, and improve hot workability and oxidation resistance. The content is required to be at least 0.005% in order to achieve the above effects, and the upper limit is 0.100% because it impairs hot workability and is expensive.
And so. Ca is effective as an element that improves hot workability and oxidation resistance.

Ca単体では、歩留りも悪く効果も小さいが、希土類元
素と必要に応じて後述するMgとの複合添加で脱酸脱硫
効果を示し、清浄度をよくして、上記両性質を著しく改
善する。含有量は、上記効果を奏するために最低0.0
005%を必要とし、最高は低融点相を形成して熱間加
工性を害するのを考慮して0.020%とした。Mgは
、熱間加工性および耐酸化性を向上する元素として有効
である。
Ca alone has a poor yield and small effect, but combined addition of rare earth elements and Mg, which will be described later, exhibits a deoxidizing and desulfurizing effect, improves cleanliness, and significantly improves both of the above properties. The content should be at least 0.0 to achieve the above effects.
0.005%, and the maximum was set at 0.020% in consideration of forming a low melting point phase and impairing hot workability. Mg is effective as an element that improves hot workability and oxidation resistance.

MgもCaと同様脱酸脱硫作用をしてSおよび不純物を
無害化する。MgはSと化合物をつくりSを固定し粒界
への偏析を抑制する。また、希土類元素、Caとの複合
添加で浄化し融点を高めて高温領域での加工性を改善す
る。さらに、MgはCaより添加歩留りが安定している
ので、Caを補うものである。含有量は上記効果を奏す
るために最低0.0005%を必要とし、最高は低融点
相を形成し、熱間加工性を悪くするのを考慮して0.0
30%とした。以上述べた本発明鋼は、つぎの通りすぐ
れた諸性質を有するものである。
Like Ca, Mg also has a deoxidizing and desulfurizing effect to detoxify S and impurities. Mg forms a compound with S, fixes S, and suppresses segregation to grain boundaries. In addition, complex addition with rare earth elements and Ca purifies and increases the melting point to improve workability in high temperature ranges. Furthermore, since the addition yield of Mg is more stable than that of Ca, Mg is used to supplement Ca. The content needs to be at least 0.0005% in order to achieve the above effects, and the maximum content is 0.005% in consideration of forming a low melting point phase and worsening hot workability.
It was set at 30%. The steel of the present invention described above has the following excellent properties.

すなわち、高Siオーステナイト系耐熱鋼に、B1希土
類元素、Ca必要に応じてMgを微量複合添加した本発
明鋼は、これらの相乗作用により、1,000℃から1
,250℃までの広い温度範囲で熱間加工性が良好で、
既存の高Siオーステナイト系耐熱鋼よりもすぐれた熱
間加工性と耐酸化性を有する。既存の高Siオーステナ
イト系耐熱鋼の熱間加工性が悪い原因としては、高Si
のために変形能が低いこと、0,Sや不純物が粒界に濃
化しやすいことがあげられる。
In other words, the steel of the present invention, which is a high-Si austenitic heat-resistant steel with the combined addition of a B1 rare earth element, Ca, and trace amounts of Mg as required, has a temperature range from 1,000°C to 1
, has good hot workability in a wide temperature range up to 250℃,
It has better hot workability and oxidation resistance than existing high-Si austenitic heat-resistant steels. The reason for the poor hot workability of existing high-Si austenitic heat-resistant steels is the high Si
Therefore, the deformability is low, and O, S and impurities tend to concentrate in the grain boundaries.

成分限定の理由のところでも述べたように本発明鋼では
Bによる粒界の強化と希土類元素、Ca,Mgによる清
浄化と遊離Sの固定などが相乗的に働き前記欠点を改善
し、高温の延性を高めていると考えられる。
As mentioned in the reason for limiting the components, in the steel of the present invention, the strengthening of grain boundaries by B, the cleaning by rare earth elements, Ca, and Mg, and the fixation of free S work synergistically to improve the above-mentioned drawbacks and to improve the high temperature resistance. It is thought that this increases ductility.

また既存の高Siオーステナイト系耐熱鋼のように耐酸
化性が悪いとされる鋼の表面酸化皮膜は、Cr2O3,
Fe2O3,SiO2,MnOlその他の酸化物が不均
一に分布し、き裂やはく離を生じやすい傾向を示してい
る。
In addition, the surface oxide film of existing high-Si austenitic heat-resistant steel, which is said to have poor oxidation resistance, is Cr2O3,
Oxides such as Fe2O3, SiO2, MnOl and others are distributed non-uniformly and tend to easily cause cracks and peeling.

また鋼中に遊離したSが多量に含まれる場合もMnS等
がスケールとの界面に生成しはく離しやすくなる傾向が
認められる。耐酸化性の場合も、B、希土類元素、Ca
およびMgは、Cr,Siの拡散を助長し、清浄化と遊
離Sを固定することによりCr2O3を中心とした表面
酸化皮膜を密着性のあるものにし、耐酸化性を向上して
いると考える。以上に述べたような本発明のオーステナ
イト系耐熱鋼は、通常の製鋼炉で精製された溶鋼を、鋼
片に製造し、ついで熱間圧延して製造される。
Furthermore, when a large amount of free S is contained in the steel, MnS and the like tend to form at the interface with the scale and easily peel off. In the case of oxidation resistance, B, rare earth elements, Ca
It is believed that Mg promotes the diffusion of Cr and Si, cleans and fixes free S, makes the surface oxidation film mainly composed of Cr2O3 adhesive, and improves oxidation resistance. The austenitic heat-resistant steel of the present invention as described above is produced by producing a steel billet from refined molten steel in a normal steelmaking furnace, and then hot rolling the steel.

また本発明鋼は、熱間加工性および耐酸化性にすぐれて
いるために、各種の耐熱部品に使用される素材として最
適である。つぎ(こ、本発明の実施例について述べる。
Furthermore, the steel of the present invention has excellent hot workability and oxidation resistance, so it is optimal as a material for use in various heat-resistant parts. Next, embodiments of the present invention will be described.

第1表は、電気炉で溶製した本発明鋼(A−J)と比較
鋼(1〜9)の鋼成分組成を示し、第2表はこれら鋼の
鋼塊のねじり試験結果を示す。第2表は、第1表に示し
た鋼について熱間加工性を調べるために、ねじり試験を
行なった結果を示したものである。試験条件としては、
加熱温度を1,000℃から1,250’Cにかけて4
条件をとり、平行部10f×30間の鋼塊試片について
回転数25r.p.mで行なった結朱を破断ねん回数で
表わしたものである。
Table 1 shows the steel compositions of the invention steel (A-J) and comparative steels (1 to 9) melted in an electric furnace, and Table 2 shows the torsion test results of the steel ingots of these steels. Table 2 shows the results of a torsion test conducted to examine the hot workability of the steels shown in Table 1. The test conditions are:
4. Increase the heating temperature from 1,000°C to 1,250'C.
Under the conditions, the steel ingot specimen between the parallel parts 10f x 30 was rotated at a rotation speed of 25r. p. The vermilion setting performed at m is expressed in terms of the number of ruptures.

第2表よりB1希土類元素、Ca必要に応じてMgを添
加した発明鋼(A)., (B) , (Q,(D)
, (廓(わ,((3,(I{) , (I)を、これ
らを添加しない比較鋼1(AISI3O2Bに相当鋼)
、比較鋼2 ( SUS3O9S+2Si鋼)、比較鋼
8 (AISI3l4相当鋼)、比較鋼9(高Ni,C
r+2Si鋼)と比べると、発明鋼は破断ねん回数が著
しく高い値を示し、変形能のよいことを実証している。
From Table 2, B1 rare earth element, Ca, and Mg added as needed, invention steel (A). , (B) , (Q, (D)
, (廓(wa, ((3, (I{) , (I)) Comparative steel 1 (steel equivalent to AISI3O2B) without these additions
, Comparative steel 2 (SUS3O9S+2Si steel), Comparative steel 8 (AISI3l4 equivalent steel), Comparative steel 9 (High Ni, C
r+2Si steel), the invention steel exhibits a significantly higher number of ruptures, demonstrating its good deformability.

Bは、希土類元素またはB,Caのような複合で添加す
る組み合わせ(比較鋼(3) , (4) )では、効
果は小さく、発明鋼のような希土類元素、Caを主体と
した中に、BまたはBおよびMgを加えた複合添加によ
って効果を奏することがわかる。
When B is added as a rare earth element or a combination of B and Ca (comparative steels (3) and (4)), the effect is small; It can be seen that the effect is achieved by adding B or a combination of B and Mg.

希土類元素およびCa,必要に応じてMgを複合添加し
た比較鋼<5) , (6)では、1,100℃から1
,250℃までの熱間加工性がよいが、B1希土類元素
、Ca、必要に応じてMgを複合添加した発明鋼鬼(A
,(G) , (L) , (E) , (1’1,(
Gl,(}I,(υ,(J)では、1,000℃の破断
ねん回数から高くなり、B添加による効果が出ているこ
とがわかる。しかし比較鋼(力のように、Bが多量に入
ったものは、1,200℃以上での値がやや低下の傾向
を示している。過剰のBは、粒界または粒内に低融点生
成物(Bの共品なと)をつくって延性を低下することが
考えられるが、微量添加ではこの影響は認められない。
AI含有量を高めた発明鋼(0やNi,Cr含有量を高
めた発明鋼(J)についても、発明鋼(ト)〜CF)
,(}1,(D、とほぼ同様のわん回直を示し好結果を
得ている。一方、B1希土類元素、Ca、必要に応じて
Mgを微量添加した本発明鋼は実際の圧延においても先
端さけや、コーナークラツクなどを発生することがなく
、庇取工数の減少や歩留の向,上に著しい改善効果を示
した。第3表は、第1表に示した鋼について耐酸化注、
とくにスケールの耐はく離性を調べるため、繰り返し酸
化試験装置により、大気中で1,100℃に725分間
加熱し、5分間空冷を繰り返しその重量変化を測定した
結果を示したものである。
Comparative steel <5), (6) with combined addition of rare earth elements, Ca, and Mg as necessary,
, has good hot workability up to 250℃, but has a composite addition of B1 rare earth elements, Ca, and Mg as necessary.
, (G) , (L) , (E) , (1'1, (
Gl, (}I, (υ, (J)) increases from the number of ruptures at 1,000°C, indicating that the effect of B addition is evident. The values of those that have entered the grains show a slight tendency to decrease at temperatures above 1,200°C. It is thought that ductility may be reduced, but this effect is not observed when added in small amounts.
Invention steel with increased AI content (Invention steel (J) with increased 0, Ni, and Cr content, invention steel (G) to CF)
, (}1, (D) showed almost the same one-turn rolling and obtained good results.On the other hand, the steel of the present invention to which the B1 rare earth element, Ca, and a small amount of Mg were added, also showed good results in actual rolling. No tip cracking or corner cracks occurred, and significant improvements were made in reducing eaves removal man-hours and increasing yield.Table 3 shows the oxidation resistance of the steels shown in Table 1. note,
In particular, in order to examine the flaking resistance of the scale, the scale was heated to 1,100° C. for 725 minutes in the atmosphere using a repeated oxidation tester, and air-cooled for 5 minutes, and the weight change was measured.

第3表よりB1希土類元素、Ca必要に応じてMgを添
加した本発明鋼は既存の高Siオーステナイト系耐熱鋼
と各Cr,Ni含有量の等価なグループ内で比較すると
著しく耐酸化性がすぐれていることがわかる。
Table 3 shows that the steel of the present invention to which B1 rare earth elements, Ca, and optionally Mg are added has significantly superior oxidation resistance when compared with existing high-Si austenitic heat-resistant steels within groups with equivalent Cr and Ni contents. You can see that

すなわち、発明鋼(5),(B)は比較鋼(1),より
、発明鋼(0,(ハ), (El,(11’) , (
Qは比較鋼(2) , (3) , (4) , (5
) ,(6L(力より発明鋼0,(4)は比較鋼(8)
より、発明鋼(J)は比較鋼(9)より、それぞれ酸化
減量が少ない。
That is, the invented steels (5) and (B) are more similar to the comparative steel (1) than the invented steels (0, (c), (El, (11'), (
Q is comparative steel (2), (3), (4), (5
) , (6L (invention steel 0 from force, (4) is comparative steel (8)
Therefore, the oxidation loss of the invention steel (J) is smaller than that of the comparison steel (9).

このように本発明鋼は既存の高Siオーステナイト系耐
熱鋼よりもスケールの耐はく離性においてとくにすぐれ
ており、繰り返し加熱、冷却をうける使用環境下での酸
化抵抗が大きいことを示している。要するに、本発明鋼
は、高Siオーステナイト系耐熱鋼にB1希土類元素お
よびCa、必要に応じてMgを適当量複合添加すること
により、すぐれた熱間加工性と、すぐれた耐酸化性を示
すものである。
As described above, the steel of the present invention is particularly superior in scale peeling resistance than existing high-Si austenitic heat-resistant steels, and shows high oxidation resistance under use environments where it is repeatedly heated and cooled. In short, the steel of the present invention exhibits excellent hot workability and excellent oxidation resistance by adding a B1 rare earth element, Ca, and appropriate amounts of Mg as necessary to a high-Si austenitic heat-resistant steel. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はオーステナイト系耐熱鋼の鋼塊のねじり試験に
ついて加熱温度と破断ねん回数との関係を示すグラフ、
第2図は同鋼の繰り返し酸化試験について繰り返し回数
と重量変化との関係を示すグラフである。
Figure 1 is a graph showing the relationship between the heating temperature and the number of ruptures in a torsion test of an austenitic heat-resistant steel ingot.
FIG. 2 is a graph showing the relationship between the number of repetitions and weight change in the repeated oxidation test of the same steel.

Claims (1)

【特許請求の範囲】 1 重量パーセントでC0.2%以下、Si1.5〜3
.5%Mn2.0%以下、Ni8.0〜35.0%、C
r15.0〜30.0%Al2.0%以下、B0.00
05〜0.0050%、希土類元素0.005〜0.1
00%およびCa0.0005〜0.020%を含み残
部鉄および避けられない不純物からなる熱間加工性およ
び耐酸化性のすぐれたオーステナイト系耐熱鋼。 2 重量パーセントでC0.2%以下、Si1.5〜3
.5%Mn2.0%以下、Ni8.0〜35.0%、C
r15.0〜30.0%Al2.0%以下、B0.00
05〜0.0050%、希土類元素0.005〜0.1
00%、Ca0.0005〜0.020%およびMg0
.0005〜0.030%を含み、残部鉄および避けら
れない不純物からなる熱間加工性および耐酸化性のすぐ
れたオーステナイト系耐熱鋼。
[Claims] 1. C 0.2% or less, Si 1.5 to 3 in weight percent
.. 5% Mn 2.0% or less, Ni 8.0-35.0%, C
r15.0-30.0% Al2.0% or less, B0.00
05-0.0050%, rare earth elements 0.005-0.1
Austenitic heat-resistant steel with excellent hot workability and oxidation resistance, containing 0.00% and 0.0005 to 0.020% Ca, with the balance being iron and unavoidable impurities. 2 C0.2% or less, Si1.5-3 in weight percent
.. 5% Mn 2.0% or less, Ni 8.0-35.0%, C
r15.0-30.0% Al2.0% or less, B0.00
05-0.0050%, rare earth elements 0.005-0.1
00%, Ca0.0005-0.020% and Mg0
.. Austenitic heat-resistant steel with excellent hot workability and oxidation resistance, containing 0.0005% to 0.030%, the balance being iron and unavoidable impurities.
JP6671780A 1980-05-20 1980-05-20 Austenitic heat-resistant steel with excellent hot workability and oxidation resistance Expired JPS5929104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6671780A JPS5929104B2 (en) 1980-05-20 1980-05-20 Austenitic heat-resistant steel with excellent hot workability and oxidation resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6671780A JPS5929104B2 (en) 1980-05-20 1980-05-20 Austenitic heat-resistant steel with excellent hot workability and oxidation resistance

Publications (2)

Publication Number Publication Date
JPS56163244A JPS56163244A (en) 1981-12-15
JPS5929104B2 true JPS5929104B2 (en) 1984-07-18

Family

ID=13323929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6671780A Expired JPS5929104B2 (en) 1980-05-20 1980-05-20 Austenitic heat-resistant steel with excellent hot workability and oxidation resistance

Country Status (1)

Country Link
JP (1) JPS5929104B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5785958A (en) * 1980-11-14 1982-05-28 Daido Steel Co Ltd Heat resistant alloy
JPS59176501A (en) * 1983-03-28 1984-10-05 株式会社日立製作所 Boiler tube
JP2760004B2 (en) * 1989-01-30 1998-05-28 住友金属工業株式会社 High-strength heat-resistant steel with excellent workability
DE4130139C1 (en) * 1991-09-11 1992-08-06 Krupp-Vdm Ag, 5980 Werdohl, De
DE102007005605B4 (en) * 2007-01-31 2010-02-04 Thyssenkrupp Vdm Gmbh Iron-nickel-chromium-silicon alloy
JP5780598B2 (en) * 2012-02-15 2015-09-16 新日鐵住金ステンレス株式会社 Austenitic stainless steel for high temperature equipment of welded pipe structure
DE102022110384A1 (en) 2022-04-28 2023-11-02 Vdm Metals International Gmbh Using a nickel-iron-chromium alloy with high resistance in highly corrosive environments while maintaining good workability and strength
DE102022110383A1 (en) 2022-04-28 2023-11-02 Vdm Metals International Gmbh Using a nickel-iron-chromium alloy with high resistance in carburizing and sulfiding and chlorinating environments while maintaining good workability and strength

Also Published As

Publication number Publication date
JPS56163244A (en) 1981-12-15

Similar Documents

Publication Publication Date Title
JPH07292446A (en) Ferritic stainless steel for heat exchanger
JPH083697A (en) Heat resistant steel
JPH0214419B2 (en)
JPS5929104B2 (en) Austenitic heat-resistant steel with excellent hot workability and oxidation resistance
JP5241734B2 (en) Environmentally friendly lead-free free-cutting steel with excellent machinability and hot-rollability
JP5011622B2 (en) Stainless cast steel with excellent heat resistance and machinability
JPS6214628B2 (en)
JPH0694569B2 (en) Manufacturing method of steel with excellent low temperature toughness in the heat affected zone
JPS61177352A (en) Heat resistant cast steel having superior elongation characteristic at room temperature
JPS6214626B2 (en)
JPS6017043A (en) Heat-resistant co alloy
JPS596910B2 (en) heat resistant cast steel
JPH0598397A (en) Ferrous heat resistant alloy excellent in high temperature corrosion resistance
JPS5935425B2 (en) heat resistant cast steel
JPS592736B2 (en) Cr↓-Mo steel for pressure vessels
JP2015010248A (en) Two-phase stainless steel for urea plant
JPH07188866A (en) Highly pure ferritic stainless steel excellent in resistance to corrosion with nitric acid
SU1712456A1 (en) High-temperature steel
JPH04350150A (en) Austenitic heat resistant cast steel
JPH0196349A (en) Heat-resistant cast steel
JPS599620B2 (en) Low carbon corrosion resistant chromium alloy steel
JPS6115146B2 (en)
JPS62151548A (en) Heat resistance ferritic high-cr cast steel
JPH09209090A (en) Heat resistant steel
JPS5833305B2 (en) Co-Cr-Ni heat-resistant alloy for hearth rails