JPS59176501A - Boiler tube - Google Patents

Boiler tube

Info

Publication number
JPS59176501A
JPS59176501A JP58050495A JP5049583A JPS59176501A JP S59176501 A JPS59176501 A JP S59176501A JP 58050495 A JP58050495 A JP 58050495A JP 5049583 A JP5049583 A JP 5049583A JP S59176501 A JPS59176501 A JP S59176501A
Authority
JP
Japan
Prior art keywords
tube
less
equivalent
temperature
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58050495A
Other languages
Japanese (ja)
Other versions
JPH0565762B2 (en
Inventor
宇佐美 賢一
桐原 誠信
裕之 土井
浅野 長一
祐川 正之
坂口 安英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP58050495A priority Critical patent/JPS59176501A/en
Priority to DE8484302072T priority patent/DE3478634D1/en
Priority to EP84302072A priority patent/EP0120704B1/en
Priority to US06/593,931 priority patent/US4505232A/en
Publication of JPS59176501A publication Critical patent/JPS59176501A/en
Publication of JPH0565762B2 publication Critical patent/JPH0565762B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/04Component parts or details of steam boilers applicable to more than one kind or type of steam boiler and characterised by material, e.g. use of special steel alloy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S122/00Liquid heaters and vaporizers
    • Y10S122/13Tubes - composition and protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/905Materials of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component
    • Y10T428/12965Both containing 0.01-1.7% carbon [i.e., steel]

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はボイラチューブに係シ、特に二重管構造を有す
るボイラチューブに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a boiler tube, and particularly to a boiler tube having a double pipe structure.

〔従来技術〕[Prior art]

従来、ボイラチューブとして、チューブ内蒸気温度が約
570C以下、燃焼ガス側のチューブ外壁面の温度が6
00〜650Cの比較的低温側で源側では5US304
,5US321並びに8US347等のオーステナイト
系ステンレス鋼が使用されている。しかし、近年、発電
効率面上等の理由から蒸気温度を600C,さらに65
0C程度まで上昇させる高温高圧化が図られるすう勢に
ある。そのため、ボイラチューブ内蒸気温度及びチュー
ブ外壁面の温度を従来よシ約30〜100tZ”上昇し
なければならない。しかし、一般に1蒸気温度が570
C付近の比較的高温側で使用されているオーステナイト
系ステンレス鋼は、蒸気温度が約600C以上になると
著るしく水蒸気酸化が増大し、燃焼ガスによる外壁面の
腐食が加速される。
Conventionally, as a boiler tube, the steam temperature inside the tube is approximately 570C or less, and the temperature of the outer wall surface of the tube on the combustion gas side is 6C.
5US304 on the source side on the relatively low temperature side of 00 to 650C
, 5US321 and 8US347 are used. However, in recent years, the steam temperature has been increased to 600C and further to 65C for reasons such as power generation efficiency.
There is a trend towards increasing the temperature and pressure to around 0C. Therefore, the temperature of the steam inside the boiler tube and the temperature of the outer wall of the tube must be increased by about 30 to 100 tZ" compared to the conventional method. However, in general, the temperature of one steam is 570 tZ".
In austenitic stainless steels used at relatively high temperatures near C, steam oxidation significantly increases when the steam temperature exceeds about 600 C, and corrosion of the outer wall surface by combustion gas is accelerated.

このような高温用チューブとして、耐水蒸気酸化性に優
れた内管と、耐高温腐食性に優れた外管とを有する二重
管構造のボイラチューブがある。
As such high-temperature tubes, there is a boiler tube with a double-tube structure having an inner tube with excellent steam oxidation resistance and an outer tube with excellent high-temperature corrosion resistance.

しかして、近年、石炭焚ボイラにおいても、蒸気温度の
高温化が図られつつある。この石炭焚ボイラにおける石
炭燃焼ガスによる高温腐食は、従来の重油燃焼ガスによ
って生じるものとは異なシ、重油燃焼ガスによる高温腐
食に対して優れた材料でも必らずしも石炭燃焼ガスによ
る高温腐食に優れているとは限らず、優れた耐水蒸気酸
化性、高温強度及び耐高温腐食性を有するボイラチュー
ブの開発が期待されている。
In recent years, however, efforts have been made to increase the steam temperature in coal-fired boilers as well. The high-temperature corrosion caused by coal combustion gas in this coal-fired boiler is different from that caused by conventional heavy oil combustion gas, and even materials that are excellent against high-temperature corrosion caused by heavy oil combustion gas do not necessarily suffer from high-temperature corrosion caused by coal combustion gas. The development of boiler tubes with excellent steam oxidation resistance, high-temperature strength, and high-temperature corrosion resistance is expected.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、耐水蒸気酸化性、高温強度に優れると
共に、石炭燃焼ガスに対しても高い耐腐食性を有するボ
イラチューブを提供するととKある。
An object of the present invention is to provide a boiler tube that is excellent in steam oxidation resistance and high-temperature strength, and also has high corrosion resistance against coal combustion gas.

〔発明の構成〕[Structure of the invention]

この目的を達成するために1本発明は、内管と外管とか
らなる二重管構造のボイラチューブにおいて、内管は重
量%で、C0,02〜0.15%。
In order to achieve this object, the present invention provides a boiler tube with a double tube structure consisting of an inner tube and an outer tube, in which the inner tube has a carbon content of 0.02 to 0.15% by weight.

191Q、5〜3.5%、Mn2%以下、Ni2O〜3
5%、 Cr 20.5〜27%、Mo0.5〜3%。
191Q, 5-3.5%, Mn 2% or less, Ni2O-3
5%, Cr 20.5-27%, Mo 0.5-3%.

Nb1%以下、及びそれぞれ0.5%以下のTi。Nb 1% or less and Ti 0.5% or less, respectively.

W、Bの少なくとも1株を含み、残部peなる組成を有
し、実質的に全オーステナイト組織であシ、外管は該内
管よシも耐食性が高いことを特徴とするボイラチューブ
を要旨とするものである。即ち、本発明のボイラチュー
ブは、耐水蒸気酸化性と高温強度に優れた内管と、この
内管よシも耐食性の高い外管とからなる二重管構造を採
用するようKしたものである。
The boiler tube contains at least one strain of W and B, has a composition with the remainder being PE, has a substantially entirely austenitic structure, and has a high corrosion resistance in the outer tube as well as the inner tube. It is something to do. That is, the boiler tube of the present invention adopts a double-tube structure consisting of an inner tube that has excellent steam oxidation resistance and high-temperature strength, and an outer tube that also has high corrosion resistance. .

次にまず内管における成分限定理由について説明する。Next, the reason for limiting the components in the inner tube will be explained first.

なお%は重量%を示す。Note that % indicates weight %.

C:Cは0.02%以上含まれるとMo5Nl)等の炭
化物形成元素と結合して粒内炭化物を形成し、高温クリ
ープ強度を大きくするが、0.15%を超える含有量に
すると粒界炭化物の析出による耐食性の低下及び加工性
、溶接性に悪影響を及はすので、0.02〜0.15%
とした。49K O,03〜0.08%が好ましい。
C: When contained at 0.02% or more, C combines with carbide-forming elements such as Mo5Nl) to form intragranular carbides and increases high-temperature creep strength, but when the content exceeds 0.15%, it forms grain boundaries. 0.02 to 0.15%, since precipitation of carbides reduces corrosion resistance and adversely affects workability and weldability.
And so. 49K O, 03-0.08% is preferred.

8i:Sjは0.5%以上添加すると顕著に耐食性を向
上させるが、その量が3.5%を超えると製造性及び加
工性を著しくそこない、パイプの製造がきわめて困難に
なると共に、フェライト相を析出するため0.5〜3.
5%とした。
8i: When Sj is added in an amount of 0.5% or more, corrosion resistance is significantly improved, but if the amount exceeds 3.5%, manufacturability and processability are significantly impaired, making it extremely difficult to manufacture pipes, and ferrite 0.5 to 3 to precipitate the phase.
It was set at 5%.

Cr:Crは20.5%以上で耐水蒸気酸化性を高める
が、27%を超えると高温強度を損うので20.5〜2
7%とした。特に22〜26%が好ましい。
Cr: If Cr is 20.5% or more, it increases the steam oxidation resistance, but if it exceeds 27%, high temperature strength is lost, so 20.5 to 2
It was set at 7%. Particularly preferred is 22 to 26%.

MO:0.5〜3%のMOは水蒸気酸化に悪影曽を与え
ることなく、オーステナイトマトリックスを強化し、一
部に炭化物として析出し高温強度を上げるとともに結晶
粒界を強化させる。
MO: 0.5 to 3% MO strengthens the austenite matrix without adversely affecting steam oxidation, precipitates as carbides in some parts, increases high-temperature strength, and strengthens grain boundaries.

逆に3%を超えるとフェライトを生成し、シグマ相の析
出を容易にするとともに加工性を著しく低下させるとこ
ろから0.5〜3%とした。特に1〜2.5%が好まし
い。
On the other hand, if it exceeds 3%, ferrite is generated, which facilitates precipitation of the sigma phase and significantly reduces workability, so it is set at 0.5 to 3%. Particularly preferred is 1 to 2.5%.

Nb :Nb・は1%以下の場合に、炭化物として析出
し高温強度を上げると共に延性を向上させる。特に0.
1〜0.5%が好ましい。
Nb: When Nb. is 1% or less, it precipitates as a carbide and increases high temperature strength and ductility. Especially 0.
1 to 0.5% is preferred.

Ni:NiはCrと共存して塑性加工性を高め、オース
テナイト組織を安定圧するために20%以上を必要とす
る。しかしながら上記Cr含有量に対し35%を超える
と柱状晶が粗大化し塑性加工時に割れの原因となるので
20〜35%とした。特に29〜33%が好ましい。
Ni: Ni coexists with Cr to enhance plastic workability and requires a content of 20% or more to stabilize the austenitic structure. However, if the Cr content exceeds 35%, the columnar crystals will become coarse and cause cracking during plastic working, so it is set at 20 to 35%. In particular, 29 to 33% is preferable.

Ti、W:Ti、Wはマトリックスに炭化物を析出し高
温延性を向上させると共に、結晶粒を微細化し耐食性を
向上させる。しかし0.5%を超えると溶接性が低下す
ると共に溶接欠陥が生じるおそれがあるので0,5%以
下とした。
Ti, W: Ti and W precipitate carbides in the matrix to improve high-temperature ductility, and refine grains to improve corrosion resistance. However, if it exceeds 0.5%, weldability deteriorates and welding defects may occur, so it is set at 0.5% or less.

特に0.1〜0.4%が好ましい。Particularly preferred is 0.1 to 0.4%.

B:0.5%以下のBは結晶粒界を強化し高温延性を得
るのに効果的である。なおり/Cの比が0.2以上にな
ると溶接性や加工性に影響を及ぼすところからC量との
関係から0.002〜0.03%が好ましい。
B: 0.5% or less of B is effective in strengthening grain boundaries and obtaining high-temperature ductility. If the Naori/C ratio is 0.2 or more, it will affect weldability and workability, so it is preferably 0.002 to 0.03% in relation to the C content.

この内管に用いられるpe基耐熱合金は水蒸気腐食並び
に高温強度、延性、溶接性を考慮し、20.5〜27%
Cr−20〜35%Ni鋼にMO。
The PE-based heat-resistant alloy used for this inner tube has a 20.5 to 27%
MO on Cr-20-35%Ni steel.

Nb、stを加えたものである。特に、Fe基耐熱合金
の1ncoloy800と比較すると水蒸気酸化性、溶
接性、高温強度及び延性並びに粒界腐食性を考慮しTi
、Atを除去し、Mo、Nb、S iを複合添加するよ
うにしたものである。また、内管の水蒸気に対する耐食
性は、従来の5US304゜5U8321 ボイラチュ
ーブ材CCr量18〜20%)よシ向上させることが必
要であり、そのためにはCr量を20.5%以上とする
ことが必要となる。しかし、Cr単独では600〜65
0Cの蒸気に対する耐食性が十分得られず、これにSi
を0.5%以上加えなければならない。Cr及びStは
ともにフェライト形成元素なので、Si添加に伴うCr
当量の増加はCr量の減少又はNi当量の増加によって
塑性加工性を高めるようにするのが好ましい。
This is the addition of Nb and st. In particular, when compared with 1ncoloy800, a Fe-based heat-resistant alloy, Ti
, At is removed, and Mo, Nb, and Si are added in combination. In addition, it is necessary to improve the corrosion resistance of the inner tube against water vapor compared to the conventional 5US304゜5U8321 boiler tube material (CCR content: 18 to 20%), and for this purpose, it is necessary to increase the Cr content to 20.5% or more. It becomes necessary. However, 600 to 65
It is difficult to obtain sufficient corrosion resistance against 0C steam, and Si
Must be added at least 0.5%. Since both Cr and St are ferrite-forming elements, Cr accompanying Si addition
It is preferable to increase the equivalent weight by decreasing the amount of Cr or increasing the amount of Ni equivalent to improve plastic workability.

また、当然温度上昇によシ高温強度も重要となる。Ni
−Cr系鋼ではNi、Cr当量はオーステナイト組織の
安定化及び塑性加工性に重要な影響を与える。第1図に
示すように、Ni当量はオーステナイト領域を示す直線
上よシ2〜15高くすることによって安定な組織が得ら
れるとともに、良好な延性が得られ、塑性加工によって
割れのないシームレスパイプを装造することができる。
Naturally, as the temperature rises, high-temperature strength also becomes important. Ni
- In Cr-based steels, Ni and Cr equivalents have important effects on stabilization of the austenite structure and plastic workability. As shown in Figure 1, by increasing the Ni equivalent by 2 to 15% above the straight line indicating the austenite region, a stable structure can be obtained, good ductility can be obtained, and a seamless pipe without cracks can be produced by plastic working. It can be outfitted.

Ni及びCr当量は以下の式によって表わされる。()
内%は重量%である。
Ni and Cr equivalents are expressed by the following formula. ()
The percentages are by weight.

N1fi量=Nie/a+c30Xc%)+CO,sx
1Mne9:)Cr当量= C’+MO?J+(1,5
X81%)+(:o、sxN向:1内管においてIr1
Cr尚量は24〜33%、Ni当量は32〜35%が好
ましい。
N1fi amount=Nie/a+c30Xc%)+CO,sx
1Mne9:) Cr equivalent = C'+MO? J+(1,5
X81%) + (:o, sxN direction: Ir1 in the 1 inner tube
The Cr content is preferably 24 to 33%, and the Ni equivalent is preferably 32 to 35%.

一方、本発明は、前述の様に二重管構造とし、外管を内
管よυも耐食性の高いものとしているのであるが、外管
も溶接等によシ固定されるところから、高温強度と溶接
性の高い材質のものが好ましい。この外管について好適
な組成は次の通りである。即ち、C0,02〜0.2%
、Si3.5%以下、M n 2%以下、N133〜4
3%以下、Cr35〜40%、残部peである。またこ
れにさらにM O0,5〜3%、Nb1%以下含むよう
Kしても良い。またこのyIO及びNbのかわシに、又
はMow Nbと共に、それぞれ0.5%以下のW。
On the other hand, the present invention has a double-tube structure as described above, and the outer tube has higher corrosion resistance than the inner tube, but since the outer tube is also fixed by welding etc., it has a high temperature strength. A material with high weldability is preferable. A preferred composition for this outer tube is as follows. That is, C0.02~0.2%
, Si 3.5% or less, M n 2% or less, N133-4
3% or less, 35 to 40% Cr, and the remainder pe. Further, K may be further added to include 0.5 to 3% of MO and 1% or less of Nb. In addition to this yIO and Nb residue, or together with Mow Nb, 0.5% or less of W, respectively.

T1.Bを含むようにしても良い。T1. B may also be included.

次にこの外管における成分限定理由について述(9) べる。Next, we will discuss the reason for limiting the ingredients in this outer tube (9) Bell.

C:0.02%以上のCは、Mo、Nb、W。C: 0.02% or more of C is Mo, Nb, W.

TMの炭化物形成元素と結合して粒内炭化物を形成し、
高温クリープ強度を大きくするが、0.2%を超える含
有量にすると粒界炭化物の析出の低下、加工性、溶接性
に悪影響を及1’tすので低めのほうが有効である。特
KO,03〜0.08%が好ましい。
Combines with carbide-forming elements of TM to form intragranular carbides,
It increases the high temperature creep strength, but if the content exceeds 0.2%, it will reduce the precipitation of grain boundary carbides and have an adverse effect on workability and weldability, so a lower content is more effective. Especially KO, 03 to 0.08% is preferable.

Cr:Crは石炭燃焼ガスによる高温腐食に対しきわめ
て有効であるが40%を超えるとその効果が向上しない
ので35〜40%が好ましい。
Cr: Cr is extremely effective against high-temperature corrosion caused by coal combustion gas, but if it exceeds 40%, the effect will not improve, so 35 to 40% is preferable.

M o : 0.5〜3%のMOは、石炭燃焼ガスによ
る高温腐食に影響を与えることなく、オーステナイトマ
トリックスを強化し、35〜40Cr−Ni3〜37%
鋼中に炭化物として析出し高温強度を上げるとともに結
晶粒界を強化させる。3%を越えると加工性に悪影響を
及t!すため特に、1〜2%が好ましい。
Mo: 0.5-3% MO strengthens the austenite matrix without affecting high-temperature corrosion by coal combustion gas, 35-40Cr-Ni3-37%
It precipitates in steel as a carbide, increasing high-temperature strength and strengthening grain boundaries. If it exceeds 3%, it will adversely affect workability! Therefore, 1 to 2% is particularly preferable.

Nb:1%以下のNbは、炭化物として析出し、(10
) 高温強度を上げるとともに延性を向上させる。
Nb: 1% or less Nb precipitates as a carbide and (10
) Increases high temperature strength and improves ductility.

1%以上になると、加工性、溶接性を著しく低下させる
ので、特に0.1〜065%が好ましい。
If it exceeds 1%, workability and weldability will be significantly reduced, so 0.1 to 065% is particularly preferable.

W、Ti :W、 T iは耐食性を低下させずにマト
リックスに炭化物を析出し、高温延性を向上させる。し
かし溶接性を考慮すると0.5%以下とするのが好まし
い。特に0.1〜0.4%が好ましい。
W, Ti: W, Ti precipitates carbides in the matrix without reducing corrosion resistance and improves high-temperature ductility. However, in consideration of weldability, the content is preferably 0.5% or less. Particularly preferred is 0.1 to 0.4%.

B :Bは結晶粒界を強化し高温延性を付与するが、耐
食性には影響しない。なお、溶接性及びC量との関連か
ら、0.03%以下とシわけ0.02〜0.03%程度
にするのが好ましい。
B: B strengthens grain boundaries and imparts high-temperature ductility, but does not affect corrosion resistance. In addition, in relation to weldability and the amount of C, it is preferable that the content be 0.03% or less, with a wrinkle of about 0.02 to 0.03%.

Ni:NtはCrと共存して、塑性加工性を高め、オー
ステナイト組織を安定に保つには30%以上でなければ
ならない。この外管に用いられる鋼は35〜40%のC
r量とMo、Nb。
Ni:Nt must be 30% or more in order to coexist with Cr, improve plastic workability, and maintain a stable austenite structure. The steel used for this outer tube has a carbon content of 35-40%.
r amount and Mo, Nb.

W等のフェライト生成元素とを含むので、安定なオース
テナイト相を保つために次のよりなNi当量によってコ
ントロールすることが(11) 必要である。しかし、Niは石炭燃焼ガス中のSと化合
し硫化物を生成し、耐食性に影響を及ぼすため上限を3
7%にするのが好ましい。
Since it contains ferrite-forming elements such as W, it is necessary to control the Ni equivalent amount as follows (11) in order to maintain a stable austenite phase. However, Ni combines with S in coal combustion gas to form sulfides, which affects corrosion resistance, so the upper limit has been set to 3.
It is preferable to set it to 7%.

上記組成より、外管の鋼材においては、Cr当量を38
〜43%、Ni当量を35〜40%とするのが好ましい
From the above composition, the steel material for the outer tube has a Cr equivalent of 38
-43%, and the Ni equivalent is preferably 35-40%.

この外管の鋼材においては% M O+ N b + 
W *Tt、B、siを含むことにより、耐食性及び高
温強度が向上されるが、オーステナイト組織にフェライ
トが混在すると高温でシグマ相の析出による脆化が起こ
るようになる。これをさけるためには、第1図に示した
フェライト生成曲線より2〜15高いNi当量とするの
が好ましい。
In the steel material of this outer tube, % M O + N b +
Corrosion resistance and high-temperature strength are improved by including W*Tt, B, and si, but when ferrite is mixed in the austenite structure, embrittlement occurs due to precipitation of sigma phase at high temperatures. In order to avoid this, it is preferable to set the Ni equivalent to 2 to 15 higher than the ferrite formation curve shown in FIG.

また上述の如き組成範囲の外管は高温強度に優れている
が、これによシ、内管の肉11を小さくできるという効
果も奏される。
Further, the outer tube having the above-mentioned composition range has excellent high-temperature strength, but this also has the effect that the wall 11 of the inner tube can be made smaller.

なお本発明において、内管及び外管の厚みは特に限定さ
れるものではないが、内管はチューブの強度を維持する
という点から、また外管は耐食性(12) を維持するという点から、適宜選定されるのが好ましい
In the present invention, the thickness of the inner tube and the outer tube is not particularly limited, but from the viewpoint of maintaining the strength of the tube for the inner tube and the corrosion resistance (12) for the outer tube, It is preferable to select it appropriately.

本発明に係るボイラチューブは、例えば次のようにして
製造される。
The boiler tube according to the present invention is manufactured, for example, as follows.

即ち、外管用ビレットと内管用ビレットとを用いて二重
管ビレットとし、これを加熱して熱間押し出しを行ない
、内管及び外管を冶金的に接合する。その後、冷却、冷
間抽伸、熱処理及び管切などの工程を経て製品とされる
That is, a billet for the outer tube and a billet for the inner tube are used to form a double tube billet, which is heated and hot extruded to metallurgically join the inner tube and the outer tube. After that, it is made into a product through processes such as cooling, cold drawing, heat treatment, and tube cutting.

〔発明の実施例〕[Embodiments of the invention]

第1表は本実施例に用いた内管の化学成分(重量%)を
示す。内管試料は熱処理後研削加工し、最終表面を 8
00工メリー紙で仕上げた後、試験に供した。熱処理と
しては比較鋼11と2.の8U8304と5US321
が1(150t?x30分加熱後水冷、比較鋼3の工n
coloy800及び本発明鋼1)7は1150CX3
0分加熱後水倹の溶体化処理を施した。
Table 1 shows the chemical components (% by weight) of the inner tube used in this example. The inner tube sample was heat-treated and then ground to obtain a final surface of 8
After finishing with 00 type merry paper, it was subjected to a test. As for heat treatment, comparative steels 11 and 2. 8U8304 and 5US321
is 1 (150t? x 30 minutes of water cooling, compared to steel 3)
coloy800 and invention steel 1) 7 is 1150CX3
After heating for 0 minutes, aqueous solution treatment was performed.

第2図に500〜700Cの水蒸気中で1000時間腐
食試験した場合の温度とスケール生成厚さと、の関係を
示す。図から明らかなように、本発明鋼(13) iist量が多いほど耐水蒸気酸化性を向上させる傾向
を示し、比較鋼1の5US304、比較鋼2の5US3
21鋼に比較し、約3倍以上の耐水蒸気酸化性を示す。
FIG. 2 shows the relationship between temperature and scale formation thickness when a corrosion test was conducted for 1000 hours in steam at 500 to 700C. As is clear from the figure, the steel of the present invention (13) shows a tendency to improve steam oxidation resistance as the amount of iist increases;
Compared to No. 21 steel, it exhibits steam oxidation resistance that is approximately three times higher.

特に高温になるほど本発明鋼と従来鋼(比較鋼1.2)
との耐食性の差が大きくなる傾向がある。また・同じF
、・、基合金である比較鋼のIncoloy800  
より耐食性が優れていることがわかる。
Inventive steel and conventional steel (comparative steel 1.2), especially as the temperature increases
There is a tendency for the difference in corrosion resistance to increase. Again, same F
, ·, Incoloy 800, a comparative steel that is a base alloy
It can be seen that the corrosion resistance is better.

本発明鋼の650C,,51,+2.0 、0時間のク
リープ破断強度及び延性を比較した結果を示す。
The results of comparing the creep rupture strength and ductility of the steels of the present invention at 650C, 51, +2.0 and 0 hours are shown.

InGo1oy800はクリープ破断強度が約14に9
/w”で延性が20%であるのに対し、本発明鋼はクリ
ープ破断強度が16〜20Kti/mF、延性は22〜
26%であF、Incoloy800に比べ同等以上の
高温強度、延性を有している。
InGo1oy800 has a creep rupture strength of approximately 14 to 9.
/w” and the ductility is 20%, whereas the steel of the present invention has a creep rupture strength of 16 to 20 Kti/mF and a ductility of 22 to 20%.
At 26% F, it has high temperature strength and ductility equivalent to or higher than Incoloy 800.

第3表は、1外、賃の化学成分(重量%)を示す。、外
管試料は熱処理後研削加工し、最終表面をす800工メ
リー紙で仕上げた後試験に供し5た。
Table 3 shows the chemical composition (% by weight) of 1. The outer tube sample was heat treated and then ground, and the final surface was finished with 800mm merry paper before being subjected to testing.

比較鋼として5US304.25Cr−2ONi鋼の(
14) 5US310.50Cr−5ONi鋼のJncone1
671を用いた。なお、溶体化処理は比較鋼1の5US
304は1050t:’で30分保持後水冷、比較鋼4
の5US310は1150Cで30分保持後水冷、比較
鋼5の工ncone1671  と本発明鋼は1200
Cで30分保持後水冷によシ実施した。
As a comparative steel, 5US304.25Cr-2ONi steel (
14) 5US310.50Cr-5ONi steel Jncone1
671 was used. In addition, the solution treatment was performed on Comparative Steel 1, 5US.
304 is 1050t: ' water cooled after holding for 30 minutes, comparison steel 4
5US310 was held at 1150C for 30 minutes and then cooled with water, comparison steel 5 was cone 1671, and the invention steel was 1200.
After holding at C for 30 minutes, the mixture was cooled with water.

(15) (16) 第    2    表 (17) (18) 第3図は、試験片に41%Kz S 04−34%Na
zSO4−25%Fezesを塗布し、750t:’の
石炭燃焼排ガス組成に相当する1%S 02−5 匍t
−15%Cot−残Nz(Pt触媒)ガス中で100時
間腐食した場合の腐食減量とCr量との関係を示す。
(15) (16) Table 2 (17) (18) Figure 3 shows the test piece containing 41% Kz S 04-34% Na.
zSO4-25%Fezes was applied and 1%S02-5 t was applied, corresponding to the coal combustion exhaust gas composition of 750t:'
- The relationship between corrosion weight loss and Cr amount when corroded in 15% Cot-residual Nz (Pt catalyst) gas for 100 hours is shown.

比較鋼1,4に比べCr量が高い本発明鋼は耐食性の優
れていることが知られる。また、本発明鋼、!:]Cr
1iが高い比較鋼5のjnconel 671 K比べ
、同程度であシ、非常に耐食性の優れていることが知ら
れる。
It is known that the steel of the present invention, which has a higher Cr content than Comparative Steels 1 and 4, has excellent corrosion resistance. Also, the invention steel! :]Cr
Compared to comparative steel 5, jnconel 671 K, which has a high 1i, it is at the same level and is known to have very excellent corrosion resistance.

第4表は750C,1000時間のクリープ破断強度を
比較鋼5の1ficOne l 671  と比較した
結果である。
Table 4 shows the results of comparing the creep rupture strength at 750C for 1000 hours with Comparative Steel 5, 1ficOne l 671.

表から知られるように、本発明鋼は工ncOne167
1に比べてクリープ破断強度が優れていることが知られ
る。
As can be seen from the table, the steel of the present invention is ncOne167
It is known that the creep rupture strength is superior to that of No. 1.

(19) 第    4    表 第1図に本発明の二重管としてのチューブ内外鋼のNI
当量及びCr当量領域を示す。本発明鋼は押出し又はマ
ンネスマン法によるシームレス鋼管の製造において割れ
が生じないことが明らかである。
(19) Table 4 shows the NI of the inner and outer steel of the tube as a double pipe of the present invention.
The equivalent weight and Cr equivalent area are shown. It is clear that the steel of the invention does not crack during the manufacture of seamless steel pipes by extrusion or the Mannesmann process.

〔発明の効果〕〔Effect of the invention〕

以上、本発明二重管は石炭燃焼ボイラで問題となるチュ
ーブ外壁面の腐食、チューブ内面の蒸気温度を上昇した
場合に問題となる水蒸気酸化は従来鋼と比較して顕著に
その耐高温腐食性が優れて(20) おり、特に発電プラント用ボイラチューブとして発電効
率を高めるという顕著な効果を有する。
As described above, the double tube of the present invention has remarkable high-temperature corrosion resistance compared to conventional steel, and is highly resistant to corrosion on the outer wall of the tube, which is a problem in coal-fired boilers, and steam oxidation, which is a problem when the steam temperature on the inner surface of the tube is increased. (20) It has a remarkable effect of increasing power generation efficiency especially as a boiler tube for power generation plants.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はCr当量とNi当量との関係を示す線図、第2
図はスケール生成厚さと加熱温度との関係を示す線図、
第3図は高温腐食による腐食減量(21) 東京都千代田区大手町2丁目6 番2号
Figure 1 is a diagram showing the relationship between Cr equivalent and Ni equivalent, Figure 2 is a diagram showing the relationship between Cr equivalent and Ni equivalent.
The figure is a diagram showing the relationship between scale generation thickness and heating temperature.
Figure 3 shows corrosion loss due to high temperature corrosion (21) 2-6-2 Otemachi, Chiyoda-ku, Tokyo

Claims (1)

【特許請求の範囲】 1、円管と外管とからなる二重管構造のボイラチューブ
において、内管ば重量%で、CO,−02〜0.15%
、8i0.s 〜3.5%、Mn2%以下、Ni2O〜
35%、Cr2O,5〜27%、λ400.5〜3%、
Nb1%以下及びそれぞれ0.5%以下のTt、B、w
の少なくとも1種を含み、残部peなる組成を有し、実
質的に全オーステナイト組織であり、外管は該内管よシ
も耐食性が高いことを特徴とするボイラチューブ。 2、外管は重量%で、C0,02〜0.2%、Si3.
5%以下、Mn2%以下、Ni33〜43%。 Cr35〜40%を含み、残部peなる組成を有し、実
質的に全オーステナイト組緘を有することを特徴とする
特許請求の範囲第1項に記載のボイラチューブ。 3、外管はさらに重量%でM o 0.5〜3%、Nb
1%以下を含むことを特徴とする特許請求の範囲第2項
に記載のボイラチューブ。 4、外管はさらに重量%で、0.5%以下のWlo、5
%以下の’l’i、0.03%以下のBの少なくとも1
種を含むことを特徴とする特許請求の範囲第2項又は第
3項に記載のボイラチューブ。 5、内管のNi当量は第1図の全オーステナイト領域の
下限を示す直線より2〜15高いことを特徴とする特許
請求の範囲第1項ないし第4項のいずれか1項に記載の
ボイラチューブ。 6、内管のCr当量が24〜33及びNt当量が22〜
38、外管(DCr当量が36〜44及びNi当量が3
9〜50であることを特徴とする特許請求の範囲第1項
ないし第5項のいずれか1項に記載のボイラチューブ。
[Claims] 1. In a boiler tube with a double pipe structure consisting of a circular pipe and an outer pipe, the inner pipe contains CO, -02 to 0.15% by weight.
, 8i0. s ~3.5%, Mn 2% or less, Ni2O ~
35%, Cr2O, 5-27%, λ400.5-3%,
Nb 1% or less and Tt, B, w each 0.5% or less
What is claimed is: 1. A boiler tube comprising at least one of the above, with the remainder being pe, having a substantially entirely austenitic structure, and having a high corrosion resistance in the outer tube as well as in the inner tube. 2. The outer tube has a weight percentage of C0.02~0.2%, Si3.
5% or less, Mn 2% or less, Ni 33-43%. The boiler tube according to claim 1, characterized in that it contains 35 to 40% of Cr, the balance is pe, and has substantially all austenite structure. 3. The outer tube further contains Mo 0.5-3% by weight, Nb
The boiler tube according to claim 2, characterized in that it contains 1% or less. 4. The outer tube further has a Wlo of 0.5% or less in weight%, 5
% or less of 'l'i, at least 1 of 0.03% or less of B
The boiler tube according to claim 2 or 3, characterized in that it contains seeds. 5. The boiler according to any one of claims 1 to 4, wherein the Ni equivalent of the inner tube is 2 to 15 higher than the straight line indicating the lower limit of the total austenite region in FIG. tube. 6. The Cr equivalent of the inner tube is 24 to 33 and the Nt equivalent is 22 to 33.
38, outer tube (DCr equivalent is 36 to 44 and Ni equivalent is 3
9 to 50, the boiler tube according to any one of claims 1 to 5.
JP58050495A 1983-03-28 1983-03-28 Boiler tube Granted JPS59176501A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58050495A JPS59176501A (en) 1983-03-28 1983-03-28 Boiler tube
DE8484302072T DE3478634D1 (en) 1983-03-28 1984-03-27 Boiler tube
EP84302072A EP0120704B1 (en) 1983-03-28 1984-03-27 Boiler tube
US06/593,931 US4505232A (en) 1983-03-28 1984-03-27 Boiler tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58050495A JPS59176501A (en) 1983-03-28 1983-03-28 Boiler tube

Publications (2)

Publication Number Publication Date
JPS59176501A true JPS59176501A (en) 1984-10-05
JPH0565762B2 JPH0565762B2 (en) 1993-09-20

Family

ID=12860506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58050495A Granted JPS59176501A (en) 1983-03-28 1983-03-28 Boiler tube

Country Status (4)

Country Link
US (1) US4505232A (en)
EP (1) EP0120704B1 (en)
JP (1) JPS59176501A (en)
DE (1) DE3478634D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118585A1 (en) * 2012-02-08 2013-08-15 新日鐵住金株式会社 Double pipe and welded structure utilizing same

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6331535A (en) * 1986-07-23 1988-02-10 Jgc Corp Apparatus for treating carbon-containing compound having carbon precipitation suppressing property
US4685427A (en) * 1986-12-08 1987-08-11 Inco Alloys International, Inc. Alloy for composite tubing in fluidized-bed coal combustor
JPH028336A (en) * 1988-06-28 1990-01-11 Jgc Corp Carbon deposition-resistant two-layer pipe
US4840768A (en) * 1988-11-14 1989-06-20 The Babcock & Wilcox Company Austenitic Fe-Cr-Ni alloy designed for oil country tubular products
US5050108A (en) * 1989-11-30 1991-09-17 Aptech Engineering, Inc. Method for extending the useful life of boiler tubes
US5447179A (en) * 1990-05-18 1995-09-05 Itt Corporation Non-corrosive double-walled steel tube characterized in that the steel has a face-centered cubic grain structure
SE9102410L (en) * 1991-08-21 1992-11-23 Sandvik Ab APPLICATION OF AN AUSTENITIC CHROME-NICKEL-MOLYBDEN-YEAR ALloy FOR MANUFACTURING COMPODO DRAWERS FOR APPLICATION AS BOTH TUBES IN SODA HOUSES
BE1005554A3 (en) * 1991-12-10 1993-10-26 Bundy Internat Ltd Method of manufacturing a tube wall multiple.
EP0619179A1 (en) * 1993-04-06 1994-10-12 Nippon Steel Corporation Wear resisting steel for welded pipes, and manufacturing process
JP3222307B2 (en) * 1994-03-08 2001-10-29 新日本製鐵株式会社 Alloy and multi-layer steel pipe having corrosion resistance in an environment in which a fuel containing V, Na, S, Cl is burned
JPH08184391A (en) * 1994-12-29 1996-07-16 Usui Internatl Ind Co Ltd Bellows pipe
US5845837A (en) * 1995-12-28 1998-12-08 Itt Automotive, Inc. Polymer-based material for carbon deposition during brazing operations
JP3104622B2 (en) * 1996-07-15 2000-10-30 住友金属工業株式会社 Nickel-based alloy with excellent corrosion resistance and workability
JP3512304B2 (en) * 1996-08-15 2004-03-29 日本冶金工業株式会社 Austenitic stainless steel
KR20010034712A (en) * 1998-03-27 2001-04-25 칼 하인쯔 호르닝어 Heat exchanger tube, method for the production of a heat exchanger tube and capacitor
US6641625B1 (en) 1999-05-03 2003-11-04 Nuvera Fuel Cells, Inc. Integrated hydrocarbon reforming system and controls
CA2349137C (en) * 2000-06-12 2008-01-08 Daido Tokushuko Kabushiki Kaisha Multi-layered anti-coking heat resistant metal tube and method for manufacture thereof
US20040156737A1 (en) * 2003-02-06 2004-08-12 Rakowski James M. Austenitic stainless steels including molybdenum
US6352670B1 (en) 2000-08-18 2002-03-05 Ati Properties, Inc. Oxidation and corrosion resistant austenitic stainless steel including molybdenum
MY136087A (en) * 2001-10-22 2008-08-29 Shell Int Research Process to reduce the temperature of a hydrogen and carbon monoxide containing gas and heat exchanger for use in said process
AU2003243601A1 (en) * 2002-06-13 2003-12-31 Nuvera Fuel Cells Inc. Preferential oxidation reactor temperature regulation
US20050058851A1 (en) * 2003-09-15 2005-03-17 Smith Gaylord D. Composite tube for ethylene pyrolysis furnace and methods of manufacture and joining same
WO2005114020A1 (en) * 2004-05-20 2005-12-01 Pulp And Paper Research Institute Of Canada Corrosion-resistant exterior alloy for composite tubes
US7985304B2 (en) * 2007-04-19 2011-07-26 Ati Properties, Inc. Nickel-base alloys and articles made therefrom

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120002A (en) * 1981-01-19 1982-07-26 Sumitomo Metal Ind Double tube for boiler

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3366473A (en) * 1965-11-17 1968-01-30 Simonds Saw & Steel Co High temperature alloy
US3859082A (en) * 1969-07-22 1975-01-07 Armco Steel Corp Wrought austenitic alloy products
US3856516A (en) * 1970-02-12 1974-12-24 Blair Knox Co Low creep high strength ferrous alloy
BE790297Q (en) * 1970-07-22 1973-02-15 Pompey Acieries
JPS5347062B2 (en) * 1974-01-18 1978-12-18
US4054174A (en) * 1974-03-18 1977-10-18 The Babcock & Wilcox Company Method of inhibiting deposition of internal corrosion products in tubes
US4026699A (en) * 1976-02-02 1977-05-31 Huntington Alloys, Inc. Matrix-stiffened heat and corrosion resistant alloy
JPS5662614A (en) * 1979-10-24 1981-05-28 Usui Internatl Ind Co Ltd Thick-walled small-diameter superposed metal pipe material
JPS5929104B2 (en) * 1980-05-20 1984-07-18 愛知製鋼株式会社 Austenitic heat-resistant steel with excellent hot workability and oxidation resistance
JPH0245696B2 (en) * 1981-12-25 1990-10-11 Hitachi Ltd SEKITANNENSHOOFUKUMUPURANTOYOBOIRACHUUBU
US4489040A (en) * 1982-04-02 1984-12-18 Cabot Corporation Corrosion resistant nickel-iron alloy
JPS58217662A (en) * 1982-06-11 1983-12-17 Nippon Steel Corp High strength and high corrosion resistant boiler tube having resistance against brittlement during use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120002A (en) * 1981-01-19 1982-07-26 Sumitomo Metal Ind Double tube for boiler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118585A1 (en) * 2012-02-08 2013-08-15 新日鐵住金株式会社 Double pipe and welded structure utilizing same
JP2013159840A (en) * 2012-02-08 2013-08-19 Nippon Steel & Sumitomo Metal Corp Double pipe and welded structure using the same
CN104114730A (en) * 2012-02-08 2014-10-22 新日铁住金株式会社 Double pipe and welded structure utilizing same

Also Published As

Publication number Publication date
US4505232A (en) 1985-03-19
EP0120704B1 (en) 1989-06-07
EP0120704A2 (en) 1984-10-03
JPH0565762B2 (en) 1993-09-20
DE3478634D1 (en) 1989-07-13
EP0120704A3 (en) 1986-07-02

Similar Documents

Publication Publication Date Title
JPS59176501A (en) Boiler tube
JPH01275739A (en) Low si high strength and heat-resistant steel tube having excellent ductility and toughness
JP3982069B2 (en) High Cr ferritic heat resistant steel
US4844755A (en) High-strength heat-resisting ferritic steel pipe and tube
JP2002235154A (en) HIGH Cr FERRITIC HEAT RESISTANT STEEL
JP2000234140A (en) Steel for boiler excellent in electric resistance weldability and electric resistance welded boiler steel tube using it
JPH0152465B2 (en)
WO1994026947A1 (en) High-strength austenitic heat-resisting steel with excellent weldability and good high-temperature corrosion resistance
JPS5914097B2 (en) Ferritic heat-resistant steel with improved toughness
JPS58110660A (en) Boiler tube for plant including coal combustion
JP3552517B2 (en) Method for welding high Cr ferritic heat resistant steel and method for manufacturing welded steel pipe
JP2908228B2 (en) Ferritic steel welding material with excellent resistance to hot cracking
JPS61113749A (en) High corrosion resistance alloy for oil well
JP3848463B2 (en) High strength austenitic heat resistant steel with excellent weldability and method for producing the same
JPS6376854A (en) Heat resistant ferritic steel having superior strength at high temperature
JPH0570694B2 (en)
JPS59136464A (en) Boiler tube
JPH04365838A (en) Ferritic heat resisting steel excellent in hot workability and strength at high temperature
JP3375868B2 (en) Low hydrogen coated arc welding rod for high Cr ferritic heat resistant steel
JPS63183155A (en) High-strength austenitic heat-resisting alloy
JPH0382739A (en) Duplex stainless steel excellent in hot workability and corrosion resistance
JPH02156049A (en) Heat resisting steel for ethylene decomposition furnace tube
JPS63230855A (en) High chrome heat resisting alloy
JPH07155988A (en) Coated arc electrode for high-cr ferritic heat resisting steel
JPS628502B2 (en)