JPS59136464A - Boiler tube - Google Patents

Boiler tube

Info

Publication number
JPS59136464A
JPS59136464A JP984383A JP984383A JPS59136464A JP S59136464 A JPS59136464 A JP S59136464A JP 984383 A JP984383 A JP 984383A JP 984383 A JP984383 A JP 984383A JP S59136464 A JPS59136464 A JP S59136464A
Authority
JP
Japan
Prior art keywords
less
boiler tube
strength
temperature
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP984383A
Other languages
Japanese (ja)
Other versions
JPH0121864B2 (en
Inventor
Masayuki Sukegawa
祐川 正之
Seishin Kirihara
桐原 誠信
Kenichi Usami
宇佐美 賢一
Yoshimitsu Hida
飛田 芳光
Choichi Asano
浅野 長一
Hiroyuki Doi
裕之 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP984383A priority Critical patent/JPS59136464A/en
Publication of JPS59136464A publication Critical patent/JPS59136464A/en
Publication of JPH0121864B2 publication Critical patent/JPH0121864B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

PURPOSE:To provide a boiler tube for high temp. steam, formed of steel having a specific composition consisting of C, Si, Mn, Ni, Cr, Mo, Nb, Ta, B, Ti, Cu, N and Co and an all austenite structure. CONSTITUTION:A boiler tube comprises steel which contains, on a wt. basis, 0.02-0.15% C, 0.5-3.5 Si, 2% or less Mn, 20-40% Ni, 20.5-27% Cr, 0.5-3% Mo, 1% or less Nb+Ta, 0.0005-0.005% B and further one or more of 0.5% or less Ti, 0.5% or less Zr, 4% or less Cu, 0.05-0.1% N and 2% or less Co and has substantially an all austenite structure and excellent in high temp. strength and corrosion resistance. This boiler tube can be suitably used as a power plant including coal combustion and generating steam with a temp. of about 600- 650 deg.C.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はボイラチューブに係り、特に石炭燃焼を含む6
00C以上の蒸気温度を得るための発電プラント用に好
適なボイラチューブに関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to boiler tubes, and particularly to boiler tubes involving coal combustion.
The present invention relates to a boiler tube suitable for power generation plants for obtaining steam temperatures of 00C or higher.

〔従来技術〕[Prior art]

従来の発電プラント用ボイラチューブ材として、チュー
ブ内蒸気温度が約570C以下、燃焼ガス側のチューブ
外壁面の温度が600〜650Cの比較的低温側では2
−!−Cr−IMoや9Cr−1Mo鋼の低合金鋼が使
用され、高温側では5US304,5U8321並びに
SUS 347等のオーステナイト系ステンレス鋼が使
用されている。
As a conventional boiler tube material for power generation plants, 2
-! Low alloy steels such as -Cr-IMo and 9Cr-1Mo steels are used, and on the high temperature side, austenitic stainless steels such as 5US304, 5U8321 and SUS 347 are used.

しかし、近年、資源、エネルギーの有効利用の点から、
ボイラ燃料としては重油から石炭へ移行し、発電効率面
上等の理由から蒸気温度を600 C。
However, in recent years, from the point of view of effective use of resources and energy,
The boiler fuel was changed from heavy oil to coal, and the steam temperature was set at 600 C for reasons such as power generation efficiency.

さらに650C程度まで上昇させる高温尚圧化が図られ
るすう勢にある。そのため、ボイラチューブ内蒸気温度
及びチューブ外壁面の温度を従来よジ約30〜100′
c上昇させ、圧力を250〜350 KSI f /c
m2まで上昇させなければならない〇しかし一般に蒸気
温度600C付近の温度域で使用されている従来のオー
ステナイト系ステンレス鋼は650C以上となるとクリ
ープ破断強度が極端に低下し、更に水蒸気酸化やガス腐
食も増大する。従って650tZ’以上の蒸気温度に対
するボイラチューブ用材料としては、8US304,5
US321 、8US347:A−−ステナイト系ステ
ンレス鋼よりも強度が高く、かつ耐食性に優れたものが
要求される。このような材料として2i%Cr−32%
Ni系のオーステナイト鋼が考えられる。
Furthermore, there is a trend toward increasing the temperature and pressure to around 650C. Therefore, the temperature of the steam inside the boiler tube and the temperature of the outer wall of the tube has been lowered by about 30 to 100' compared to conventional methods.
c and increase the pressure to 250-350 KSI f/c
〇 However, conventional austenitic stainless steels, which are generally used in the steam temperature range of around 600C, have extremely low creep rupture strength when the temperature exceeds 650C, and steam oxidation and gas corrosion also increase. do. Therefore, as a material for boiler tubes for steam temperatures of 650tZ' or higher, 8US304,5
US321, 8US347: A--Higher strength than stenitic stainless steel and superior corrosion resistance are required. Such materials include 2i%Cr-32%
Ni-based austenitic steel is considered.

しかし、このオーステナイト鋼の場合、ボイラチューブ
外壁温度720cにおける1000時間クリープ破断強
度は5.3 Kff /鯛2程度であり、圧力350 
atg  の6507rタービン用ボイラチユーブの許
容圧力5.5 Kp / rIrln”以上での使用に
は問題がある。
However, in the case of this austenitic steel, the 1000-hour creep rupture strength at a boiler tube outer wall temperature of 720C is about 5.3 Kff / sea bream 2, and at a pressure of 350
There is a problem with using the boiler tube for ATG's 6507R turbine at a pressure higher than the allowable pressure of 5.5 Kp/rIrln.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高温強度と耐食性に優れ、主蒸気温度
600〜650C発屯用プラントとして使用できるボイ
ラチューブを提供することにある。
An object of the present invention is to provide a boiler tube that has excellent high-temperature strength and corrosion resistance and can be used in a depot plant with a main steam temperature of 600 to 650C.

〔発明の概要〕[Summary of the invention]

本発明の第1は、N量比でC:0.02〜0.15%、
 s t : o、s〜a、s%、Mn:2%以下、N
i:20〜42%、Cr : 20.5〜27%、MO
:0.5〜3%、Nb+’l”a:1%以下、B : 
0.0005〜0.005%と、史にTi:0.5%以
下、Zr:0.5%以下、Cu:4%以下、N:0.0
5〜0.1%及びCo二2%以下の少なくとも1種以上
とを含有し、実質的に全オーステナイト組織を有するボ
イラチューブである。
The first aspect of the present invention is that the N amount ratio is C: 0.02 to 0.15%,
s t: o, s~a, s%, Mn: 2% or less, N
i: 20-42%, Cr: 20.5-27%, MO
: 0.5 to 3%, Nb+'l''a: 1% or less, B:
0.0005 to 0.005%, Ti: 0.5% or less, Zr: 0.5% or less, Cu: 4% or less, N: 0.0
It is a boiler tube containing at least one or more of 5 to 0.1% and 2% or less of Co, and has a substantially entirely austenite structure.

本発明の第2は、重量比−?l’C: 0.02〜0.
15%、 Si : 0.5〜3.5%、Mfl:2%
以下、Ni:20〜42%、Cr : 20.5〜27
%、MO:0、5〜3%、Nb+Ta:1%以下、B 
: 0.0005〜0.005%、  A、!: 0.
02〜0.5%と、史にTi:0.5%以下、Zr:0
.5%以下、Cu:4%以下、N:0.05〜0.1%
とを含有し、実質的に全オルステナイト組織を有するボ
イラチューブである。
The second aspect of the present invention is the weight ratio -? l'C: 0.02~0.
15%, Si: 0.5-3.5%, Mfl: 2%
Below, Ni: 20-42%, Cr: 20.5-27
%, MO: 0, 5-3%, Nb+Ta: 1% or less, B
: 0.0005~0.005%, A,! : 0.
02-0.5%, Ti: 0.5% or less, Zr: 0
.. 5% or less, Cu: 4% or less, N: 0.05 to 0.1%
A boiler tube containing substantially all orstenite structure.

以下、本発明を更に詳細に説明する。The present invention will be explained in more detail below.

CはMO,Nb、’[:’i、等の炭化物形成元素と結
合して炭化物を形成し、高温強度を高めるが、0.15
%以上含有すると、加工性、延性及び浴接性が著しく低
下するため、0.15%以下にしなければならない。特
に0.02〜0.1%が好ましい。
C combines with carbide-forming elements such as MO, Nb, '[:'i, etc. to form carbides and increases high-temperature strength, but 0.15
If the content exceeds 0.15%, workability, ductility, and bath weldability will be significantly reduced, so the content must be kept at 0.15% or less. Particularly preferred is 0.02 to 0.1%.

8iは0.5%以上で耐食性を向上させるが、3.5%
以上になると製造性、加工性をそこなうとともに、フェ
ライト相を析出するため3,5%以下でなければならな
い。
8i improves corrosion resistance at 0.5% or more, but 3.5%
If it exceeds this, manufacturability and workability will be impaired and a ferrite phase will precipitate, so the content must be 3.5% or less.

MnはSi同様に重要な脱酸成分であるが、多すぎると
耐酸化性が低下するため2.0%以下がよい。
Like Si, Mn is an important deoxidizing component, but if it is too large, oxidation resistance decreases, so it is preferably 2.0% or less.

NiはCrと共存して加工性k M+めるとともにオー
ステナイト組織を安定に保ち、高温強度を高める。本発
明鋼Fi20.5〜27%のCrと、M o 。
Ni coexists with Cr to improve workability (kM+), keep the austenite structure stable, and increase high-temperature strength. Inventive steel Fi20.5-27% Cr and Mo.

Nb、 Ti、3i等のフェライト生成元素とを含むの
で安定なオーステナイト相を得るためにはNiは20〜
42%が必要である。Niは多い程、高温において安定
な組織が得られるが、逆に多すぎると柱状晶が粗大化し
て加工性が悪くなる。特に好ましいNi量は30〜35
%である。
Since it contains ferrite-forming elements such as Nb, Ti, and 3i, in order to obtain a stable austenite phase, Ni must be between 20 and 20%.
42% is required. The more Ni there is, the more stable the structure can be obtained at high temperatures; however, if it is too much, the columnar crystals become coarse and workability deteriorates. Particularly preferable Ni amount is 30 to 35
%.

Orは石炭燃焼ガスによる高温腐食に対し有効であり、
また水蒸気酸化に対しても有効であり、20.5%以上
とする必要がある。しかし27%を超えても高温腐食や
水蒸気酸化の効果は変らず、却って熱間加工性を著しく
損う。特に望ましいCr量は21〜25%である。
Or is effective against high temperature corrosion caused by coal combustion gas,
It is also effective against steam oxidation, and needs to be 20.5% or more. However, even if it exceeds 27%, the effects of high-temperature corrosion and steam oxidation remain unchanged, and on the contrary, hot workability is significantly impaired. A particularly desirable Cr content is 21 to 25%.

MOは石炭燃焼による高温腐食に悪影響を与えることす
く、オーステナイトマトリックスを強化し、一部は炭化
物として析出し高温強度を上げるとともに結晶粒界を強
化させるために0.5%以上必要である。しかし3%金
超えると加工性を低下させるとともにシグマ相の析出を
容易にする。特に好ましいMO量は1.0〜2.0%で
ある。
MO does not adversely affect high-temperature corrosion caused by coal combustion, and is required to be present in an amount of 0.5% or more in order to strengthen the austenite matrix, partially precipitate as carbides, increase high-temperature strength, and strengthen grain boundaries. However, if it exceeds 3% gold, the workability decreases and the precipitation of sigma phase becomes easy. A particularly preferred amount of MO is 1.0 to 2.0%.

NbおよびTaは炭化物として析出し、尚温強度を上げ
るとともに延性を向上させる。この延性と強度の両方を
得るためには1%以下でなければならない。
Nb and Ta precipitate as carbides and increase the still-temperature strength and ductility. In order to obtain both this ductility and strength, it must be less than 1%.

Bはクリープ破断強度、特に長時間クリープ破断強度を
向上させる元素であるが、更にボイラチューブとしての
加工性、耐食性及び溶接性の向上にも有効である。ここ
で特にボイラチューブの製造工程および使用状態との関
係においてB添加の効果を説明する。ボイラチューブは
通常、溶解、造塊、分塊圧延、熱間押出、冷間抽伸、溶
体化処理を経て製造される。熱間押出では結晶粒度調整
、冷間抽伸では組織調整が施され、溶体化処理は110
0〜1200Cの条件で行なわれる。ボイラチューブの
寸法は外径30〜80笹、肉厚7〜16gnであり、溶
接により発電プラントに設置される。
B is an element that improves creep rupture strength, particularly long-term creep rupture strength, and is also effective in improving workability, corrosion resistance, and weldability as a boiler tube. Here, the effects of B addition will be explained in particular in relation to the boiler tube manufacturing process and usage conditions. Boiler tubes are usually manufactured through melting, agglomeration, blooming, hot extrusion, cold drawing, and solution treatment. Hot extrusion adjusts the grain size, cold drawing adjusts the structure, and solution treatment
The test is carried out under conditions of 0 to 1200C. The boiler tube has an outer diameter of 30 to 80 mm and a wall thickness of 7 to 16 gn, and is installed in the power plant by welding.

すなわち、ボイラチューブは熱間及び冷間加工によジ製
作されるが、Bの添加量によって加工度が変化する。第
1図において、Bの添加量が0、0005%以上となる
と加工度が向上するが、Bの添加量が0.005%を超
えるとホウ化物が生成され、更に0.01%を超えると
ホウ化物量が多くなり、かつ共晶も生成される。ホウ化
物は加工性を低下させる安置となるので加工性の面から
、Bの添加量は0.0005〜0.005  %とする
必要がある。
That is, boiler tubes are manufactured by hot working and cold working, and the degree of working changes depending on the amount of B added. In Fig. 1, when the amount of B added exceeds 0.0005%, the workability improves, but when the amount of B added exceeds 0.005%, borides are generated, and when the amount of B added exceeds 0.01%, The amount of boride increases and eutectic is also produced. Since borides act as deposits that reduce processability, the amount of B added must be 0.0005 to 0.005% from the perspective of processability.

またクリープ破断強度の点からもBは0.0005%以
上必要でおり、0.005%を超えると逆に強度が低下
する。更にBの添加によっても溶接性を低下させること
もない。
Also, from the viewpoint of creep rupture strength, B must be present in an amount of 0.0005% or more, and if it exceeds 0.005%, the strength decreases. Furthermore, the addition of B does not reduce weldability.

A4は浴湯の脱酸剤であるとともに、MOとの相互作用
により母材を強化する。さらに、Nとの親和力が高く、
N bN、 T iN、 Z r No Cr、N。
A4 is a deoxidizing agent for bath water and also strengthens the base material through interaction with MO. Furthermore, it has a high affinity with N,
N bN, T iN, Z r No Cr, N.

BN等の有害な窒化物の析出を抑制するため、クリープ
破断強度の向上に重要な元素である。なお、Atはフェ
ライト生成元素であるため0.5%以下にする必要があ
る。特に0.05〜0.20%が好ましい。
It is an important element for improving creep rupture strength because it suppresses the precipitation of harmful nitrides such as BN. Note that since At is a ferrite-forming element, it must be kept at 0.5% or less. Particularly preferred is 0.05 to 0.20%.

Ti及び7.rは一部脱酸剤として作用し、またマトリ
ックス中に炭化物として析出し高lNA延性を向上させ
るとともに、結晶粒を微細化し、強度を向上させる。し
かし、多すぎると溶接性を害し、溶接欠陥を生成するた
め、それぞれ0.5%以下でなければならない。特に0
.3%以下が好ましい。
Ti and 7. r partially acts as a deoxidizing agent, and is precipitated as a carbide in the matrix to improve high INA ductility, refine grains, and improve strength. However, too much content impairs weldability and causes welding defects, so each content must be 0.5% or less. Especially 0
.. It is preferably 3% or less.

Cuはオーステナイト生成元素であり、Niの代替成分
として有効である。しかし、多量に添加すると、高温で
の粒界脆化を助長させるとともに、高温割れ感受性を高
めるため2%を上限とする必要がある。特に2%以下が
好ましい。
Cu is an austenite-forming element and is effective as a substitute for Ni. However, when added in a large amount, it promotes grain boundary embrittlement at high temperatures and increases hot cracking susceptibility, so the upper limit needs to be 2%. In particular, 2% or less is preferable.

Nはオーステナイト組織を安定にする作用があシ、オー
ステナイト鋼におけるNの含有量はCrの1%程度が適
当であるが、Nの添加量は0.05〜1%とする。
N has the effect of stabilizing the austenite structure, and the appropriate N content in austenitic steel is about 1% of Cr, but the amount of N added is 0.05 to 1%.

COはオーステナイト生成元素であり、耐酸化性を向上
させるとともに、高温強度及び延性を向上させる。多す
き゛ると刀ロエ性及び溶接性を低下させるため2%以下
でなければならない。
CO is an austenite-forming element that improves oxidation resistance as well as high temperature strength and ductility. If the gap is too large, the weldability and weldability will deteriorate, so the gap must be 2% or less.

〔発明の実施例〕[Embodiments of the invention]

第1表に実験に用いた試料の化学成分(重量%)を示す
。比較鋼Al (S US 321 )、A2(SU8
316)及びA3 (A11oy800)は肉厚8〜1
4m、外径40〜60喘のチューブより試験片を採取し
た。比較鋼&1〜Jf6.3及び本発明鋼A1〜A12
を供試材として720Cでクリープ破断試験を実施した
。試験片は全て直径6ran、平行部30間で実施した
Table 1 shows the chemical components (% by weight) of the samples used in the experiment. Comparative steel Al (S US 321), A2 (SU8
316) and A3 (A11oy800) have a wall thickness of 8 to 1
A test piece was taken from a 4 m long tube with an outer diameter of 40 to 60 mm. Comparative steel &1 to Jf6.3 and invention steel A1 to A12
A creep rupture test was conducted at 720C using the sample material. All test pieces were tested with a diameter of 6 runs and between 30 parallel sections.

第2図に720tr、1000時間のクリープ破断強度
を示す。本発明鋼A1〜A12は、比較鋼よυ高強度を
示し、比較鋼の中で最も強いI6.(Alloy800
)と比較しても、本発明鋼は1,1〜1.20倍の高い
強度’kVしている。
Figure 2 shows the creep rupture strength at 720tr for 1000 hours. The steels A1 to A12 of the present invention exhibit higher strength than the comparative steels, and I6 is the strongest among the comparative steels. (Alloy800
), the steel of the present invention has a strength that is 1.1 to 1.20 times higher.

第2衣は、720tl?、10’時間クリープ破断強度
を直線外挿により求めた結果を示す。650tZ’、3
50atgの起々臨界圧ボイラー用チューブの設計応力
は720C,10’時間で5.5KqtZ調2以上であ
り、本発明鋼は十分に使用可能である。
The second garment is 720 tl? , the results obtained by linear extrapolation of the 10' hour creep rupture strength are shown. 650tZ', 3
The design stress of a 50atg critical pressure boiler tube is 5.5KqtZ2 or higher at 720C for 10' hours, and the steel of the present invention can be used satisfactorily.

第   2   表 ■ 1戸 〔発明の効果〕 以上のように本発明によれば、主蒸気温度650C1圧
力350 atgの超々臨界圧発電プラントの設計条件
を満足しうるボイラチューブを提供することができる。
Table 2 ■ 1 House [Effects of the Invention] As described above, according to the present invention, it is possible to provide a boiler tube that can satisfy the design conditions of an ultra-supercritical power generation plant with a main steam temperature of 650 C and a pressure of 350 atg.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】 10重量比で、C: 0.02〜0.1s%t S i
 :0、5〜3.5%、Mn:2%以下、Ni:20〜
42%、Cr:20.5〜27%9Mo:0.5〜3%
、Nb+Ta : 1%以下、B:0.0O05〜0.
005%と、更にTi:o、s%以下、Zr:0.5%
以下、CLI:4%以下、N:0.05〜0.1%及び
co=2%以下の少なくとも1棟以上とを含有し、実質
的に全オーステナイト組織を有することを特徴とするボ
イラチューブ。 2、重量比で、C: 0.02〜0.15%、 S l
 :0、5〜3.5%、Mn:2%以下、Ni:2o−
42%、Cr : 20.5〜27%、 Mo : 0
.5 〜3%sNb+Ta:1%以下、B : 0.0
005〜0、005%、 A4 : 0.02〜0.5
%と、更にTi=0.5%以下、Zr:0.5%以下、
Cu:4%以下、N:0.05〜0.1%とを含有し、
実質的に全オーステナイト組織を有することを特徴とす
るボイラチューブ。
[Claims] At a weight ratio of 10, C: 0.02 to 0.1 s%t Si
:0, 5~3.5%, Mn: 2% or less, Ni: 20~
42%, Cr: 20.5-27% 9Mo: 0.5-3%
, Nb+Ta: 1% or less, B: 0.0O05 to 0.
005%, further Ti: o, s% or less, Zr: 0.5%
A boiler tube characterized by containing at least one of the following: CLI: 4% or less, N: 0.05 to 0.1%, and co=2% or less, and having a substantially entirely austenite structure. 2. Weight ratio: C: 0.02-0.15%, Sl
:0, 5-3.5%, Mn: 2% or less, Ni: 2o-
42%, Cr: 20.5-27%, Mo: 0
.. 5 to 3% sNb+Ta: 1% or less, B: 0.0
005-0, 005%, A4: 0.02-0.5
%, and further Ti = 0.5% or less, Zr: 0.5% or less,
Contains Cu: 4% or less, N: 0.05 to 0.1%,
A boiler tube characterized in that it has a substantially all-austenitic structure.
JP984383A 1983-01-26 1983-01-26 Boiler tube Granted JPS59136464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP984383A JPS59136464A (en) 1983-01-26 1983-01-26 Boiler tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP984383A JPS59136464A (en) 1983-01-26 1983-01-26 Boiler tube

Publications (2)

Publication Number Publication Date
JPS59136464A true JPS59136464A (en) 1984-08-06
JPH0121864B2 JPH0121864B2 (en) 1989-04-24

Family

ID=11731403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP984383A Granted JPS59136464A (en) 1983-01-26 1983-01-26 Boiler tube

Country Status (1)

Country Link
JP (1) JPS59136464A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173249A (en) * 1983-03-19 1984-10-01 Nippon Steel Corp Austenite type heat resistance alloy
JPS60204870A (en) * 1984-02-24 1985-10-16 マンネスマン・アクチエンゲゼルシヤフト Corrosion resistant austenite alloy
JPS63247341A (en) * 1987-04-02 1988-10-14 Nkk Corp Austenitic heat resistant alloy
JP2004315973A (en) * 2003-04-14 2004-11-11 General Electric Co <Ge> Precipitation-strengthened nickel-iron-chromium alloy and processing method therefor
JP2014084493A (en) * 2012-10-23 2014-05-12 Nippon Yakin Kogyo Co Ltd AUSTENITIC Fe-Ni-Cr ALLOY FOR COATED TUBE EXCELLENT IN WELDABILITY
CN104651754A (en) * 2015-02-05 2015-05-27 山东钢铁股份有限公司 Low alloy steel for high-pressure boiler tube and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59173249A (en) * 1983-03-19 1984-10-01 Nippon Steel Corp Austenite type heat resistance alloy
JPH0123544B2 (en) * 1983-03-19 1989-05-02 Nippon Steel Corp
JPS60204870A (en) * 1984-02-24 1985-10-16 マンネスマン・アクチエンゲゼルシヤフト Corrosion resistant austenite alloy
JPS63247341A (en) * 1987-04-02 1988-10-14 Nkk Corp Austenitic heat resistant alloy
JP2004315973A (en) * 2003-04-14 2004-11-11 General Electric Co <Ge> Precipitation-strengthened nickel-iron-chromium alloy and processing method therefor
JP2014084493A (en) * 2012-10-23 2014-05-12 Nippon Yakin Kogyo Co Ltd AUSTENITIC Fe-Ni-Cr ALLOY FOR COATED TUBE EXCELLENT IN WELDABILITY
CN104651754A (en) * 2015-02-05 2015-05-27 山东钢铁股份有限公司 Low alloy steel for high-pressure boiler tube and preparation method thereof

Also Published As

Publication number Publication date
JPH0121864B2 (en) 1989-04-24

Similar Documents

Publication Publication Date Title
JP3518515B2 (en) Low / medium Cr heat resistant steel
JP2967886B2 (en) Low alloy heat resistant steel with excellent creep strength and toughness
JPH02232345A (en) High strength high chromium steel excellent in corrosion resistance and oxidation resistance
CN107138876B (en) High-temperature creep resistant low-nickel copper-containing T/P92 steel welding material
JPS59176501A (en) Boiler tube
JPH02290950A (en) Ferritic heat resisting steel excellent in strength at high temperature
JPH07216511A (en) High chromium austenitic heat resistant alloy excellent in strength at high temperature
JP3982069B2 (en) High Cr ferritic heat resistant steel
JP2010065322A (en) Ferritic heat resistant steel
US4844755A (en) High-strength heat-resisting ferritic steel pipe and tube
JP2002235154A (en) HIGH Cr FERRITIC HEAT RESISTANT STEEL
EP0708184A1 (en) High-strength austenitic heat-resisting steel with excellent weldability and good high-temperature corrosion resistance
JPS59136464A (en) Boiler tube
JPS6123749A (en) Austenitic stainless steel having high strength at high temperature
JPS5914097B2 (en) Ferritic heat-resistant steel with improved toughness
JPS61113749A (en) High corrosion resistance alloy for oil well
JP4502239B2 (en) Ferritic heat resistant steel
KR100708616B1 (en) Low Activation High Chromium Ferritic Heat Resistant Steels for Fission Reactor, Fast Breed Reactor and Fusion Reactor
JPH07138708A (en) Austenitic steel good in high temperature strength and hot workability
JP2863583B2 (en) Cr-Ni heat-resistant steel
US4882124A (en) Alloys having excellent erosion resistance
JPH02217438A (en) Heat-resistant steel having high creep strength at high temperature
JPH05212582A (en) Welding material for high-cr ferrite heat resistant material
JPH0256418B2 (en)
JP2002004008A (en) HIGH Cr FERRITIC HEAT RESISTANT STEEL