JPH04365838A - Ferritic heat resisting steel excellent in hot workability and strength at high temperature - Google Patents

Ferritic heat resisting steel excellent in hot workability and strength at high temperature

Info

Publication number
JPH04365838A
JPH04365838A JP16896991A JP16896991A JPH04365838A JP H04365838 A JPH04365838 A JP H04365838A JP 16896991 A JP16896991 A JP 16896991A JP 16896991 A JP16896991 A JP 16896991A JP H04365838 A JPH04365838 A JP H04365838A
Authority
JP
Japan
Prior art keywords
steel
strength
hot workability
temperature
ferritic heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16896991A
Other languages
Japanese (ja)
Inventor
Akishi Sasaki
佐々木 晃史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16896991A priority Critical patent/JPH04365838A/en
Publication of JPH04365838A publication Critical patent/JPH04365838A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain the thinning of equipment and also to prolong the service life of equipment by constituting a heat resisting steel of a composition consisting of specific weight percentages of C, Si, Mn, Cr, Mo, W, V, Nb, B, Ta, Ca, and N and the balance Fe. CONSTITUTION:The ferritic heat resisting steel has a composition consisting of, by weight, 0.03-0.20% C, <=1.0% Si, 0.1-1.5% Mn, 7.0-13.0% Cr, 0.4-2.5% Mo, 0.05-2.5% W, 0.02-0.35% V, 0.01-0.15% Nb, 0.0008-0.0100% B, 0.01-0.10% Ta, 0.0005-0.0150% Ca, 0.005-0.08% N, and the balance Fe with inevitable impurities. Further, either or both of 0.01-0.40% Ti and 0.1-1.0% Ni are incorporated into the above composition. By this method, this ferritic heat resisting steel can be used as a substitute for 18Cr-8Ni type austenitic stainless steel.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、■蒸発管や加熱器管、
再熱器管、主蒸気配管、管寄せ管などの火力発電用の超
臨界圧ならびに超々臨界圧用ボイラの材料、■加熱器管
や熱交換器管などの化学工業用プラントの材料、■蒸気
発生器管や加熱器管などの高速増殖炉の材料、■各融合
炉第一炉壁材等に用いて好適な、熱間加工性ならびに高
温強度に優れたフェライト系耐熱鋼に関するものである
[Industrial Application Field] The present invention is applicable to ■ evaporator tubes, heater tubes,
Materials for supercritical pressure and ultra-supercritical pressure boilers for thermal power generation, such as reheater tubes, main steam piping, and header tubes, ■Materials for chemical industry plants, such as heater tubes and heat exchanger tubes, ■Steam generation The present invention relates to a ferritic heat-resistant steel with excellent hot workability and high-temperature strength, which is suitable for use as materials for fast breeder reactors such as vessel tubes and heater tubes, and for first wall materials of various fusion reactors.

【0002】0002

【従来の技術】従来、火力発電用ボイラとして、超臨界
圧ボイラが用いられているが、最近では、熱効率を上げ
て燃料の節減を図るために、超々臨界圧用ボイラへの転
用が図られている。このような超々臨界圧用ボイラは、
電力需要の少ない夜間の操業をダウンさせているため、
高温−低温の熱サイクル操業が不可避となり、使用材料
もそれなりに優れたものが必要とされている。
[Prior Art] Conventionally, supercritical pressure boilers have been used as boilers for thermal power generation, but recently, in order to increase thermal efficiency and save fuel, efforts have been made to convert them to ultra-supercritical pressure boilers. There is. This kind of ultra-supercritical pressure boiler is
Due to shutting down operations at night when electricity demand is low,
High-temperature/low-temperature thermal cycle operation has become inevitable, and materials of superior quality are required.

【0003】ところで、このようなボイラ用材料として
は、従来、オーステナイト系ステンレス鋼が用いられて
いた。しかしながら、この鋼種は、熱膨張率が大きく、
熱疲労やスケール剥離の問題がある。とくに剥離したス
ケールは、鋼管ベンド部に堆積して局部的な高温を招き
、そのために破裂を招いたり、またこのスケールがター
ビンに達することもあって、種々の弊害をもたらす問題
があった。
By the way, austenitic stainless steel has conventionally been used as a material for such boilers. However, this steel type has a large coefficient of thermal expansion,
There are problems with thermal fatigue and scale peeling. Particularly, exfoliated scale accumulates at bent portions of steel pipes, leading to localized high temperatures, which can lead to rupture, and this scale can also reach the turbine, causing various problems.

【0004】また、前記ボイラ用材料としては、フェラ
イト系耐熱鋼も知られている。この耐熱鋼の場合、上記
オーステナイト系ステンレス鋼に比べると、熱膨張率が
小さいばかりでなく、高温での応力腐食割れや粒界腐食
が軽減され、熱伝導率が高く、しかも低廉であるという
長所を備えている。このことから、従来、フェライト系
耐熱鋼が、上述した超臨界圧ならびに超々臨界圧用ボイ
ラの材料や、化学工業用各種機器の材料などとして賞用
されている。
Ferritic heat-resistant steel is also known as the boiler material. Compared to the austenitic stainless steel mentioned above, this heat-resistant steel has the advantages of not only a lower coefficient of thermal expansion, but also reduced stress corrosion cracking and intergranular corrosion at high temperatures, high thermal conductivity, and low cost. It is equipped with For this reason, ferritic heat-resistant steel has conventionally been used as a material for the above-mentioned supercritical pressure and ultra-supercritical pressure boilers, and as a material for various equipment for the chemical industry.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
上記フェライト系耐熱鋼、例えば、9Cr−1Mo〜2
Mo系鋼は、21/4 Cr−1Mo鋼などに比べると
耐酸化性は優れているものの、高温強度が低いので、使
用上の制約があった。
[Problems to be Solved by the Invention] However, the above-mentioned conventional ferritic heat-resistant steels, for example, 9Cr-1Mo to 2
Although Mo-based steel has superior oxidation resistance compared to 21/4 Cr-1Mo steel, it has low high-temperature strength, which limits its use.

【0006】また、上記21/4 Cr−1Mo鋼やS
TBA26鋼 (9Cr−1Mo鋼)、火STBA27
鋼 (9Cr−2Mo鋼)の高温強度を改善した鋼とし
て、スーパー9Cr鋼, すなわちASTM A213
 T91 鋼(9Cr−1Mo−Nb−V鋼)も知られ
ている。しかしながら、このT91 鋼は、従来鋼に比
べるとある程度の高温強度は改善されたが、まだ不十分
であり、蒸気温度の一層の上昇に対応するべき材料の開
発が求められていた。
[0006] Furthermore, the above-mentioned 21/4 Cr-1Mo steel and S
TBA26 steel (9Cr-1Mo steel), STBA27
As a steel with improved high temperature strength of steel (9Cr-2Mo steel), super 9Cr steel, i.e. ASTM A213
T91 steel (9Cr-1Mo-Nb-V steel) is also known. However, although this T91 steel has improved high-temperature strength to some extent compared to conventional steel, it is still insufficient, and there has been a need to develop a material that can cope with further increases in steam temperature.

【0007】このような要請に対し、従来、9〜12C
r鋼にNbやVの添加、あるいはWを添加することによ
り、高温強度の改善を図ることが行われており、さらに
は、Ti, B,Wの如き各種の元素の適切な組合わせ
による複合添加で高温強度の一層の改善を図ったフェラ
イト鋼が、特開昭63−65059 号公報、特開昭6
3−76854 号公報などに開示されている。しかし
、これらのフェライト鋼では、超超臨界圧発電用ボイラ
チューブなどに使用するには、なお一層の高温強度の改
善が必要であった。
[0007] In response to such requests, conventionally, 9 to 12C
The high-temperature strength has been improved by adding Nb, V, or W to r-steel.Furthermore, composite steel is being developed by adding appropriate combinations of various elements such as Ti, B, and W. Ferritic steel whose high-temperature strength is further improved by adding additives is disclosed in JP-A-63-65059 and JP-A-6
It is disclosed in Publication No. 3-76854 and the like. However, these ferritic steels required further improvement in high-temperature strength in order to be used in boiler tubes for super-supercritical pressure power generation.

【0008】しかも、これらの鋼(9〜12Cr系鋼)
 は、高温強度を改善するために、Mo, W,Nb,
 V等の元素を添加しているために、熱間変形能すなわ
ち熱間加工性の低下を招き、ひいては製造性が悪くなる
という問題があった。すなわち、熱間変形能の低下は製
造性に悪い影響を与え、例えば、厚板や鍛鋼製品だけで
なく、加工条件の苛酷な鋼管の場合は、とりわけその影
響が大きい。とくに、継ぎ目無鋼管をマンネスマン方式
で製造する場合、前記9〜12Cr鋼はMo, W, 
Nb, V等の元素を添加しているために熱間加工性が
悪く、そのために、造管時に疵が発生し易く、生産能率
や歩留りが低下し、製造コスト上昇の問題を生じる。
[0008] Furthermore, these steels (9-12Cr steel)
In order to improve high temperature strength, Mo, W, Nb,
Addition of elements such as V causes a decrease in hot deformability, that is, hot workability, and as a result, there is a problem in that manufacturability deteriorates. That is, a decrease in hot deformability has a negative effect on manufacturability, and the effect is particularly large, for example, not only in thick plates and forged steel products, but also in the case of steel pipes that are processed under severe processing conditions. In particular, when seamless steel pipes are manufactured using the Mannesmann method, the 9-12Cr steel is made of Mo, W,
Because of the addition of elements such as Nb and V, hot workability is poor, and as a result, flaws are likely to occur during pipe making, resulting in lower production efficiency and yield, and an increase in manufacturing costs.

【0009】以上説明したように、上記9〜12Cr鋼
は、高温強度とくにクリープ破断強度の改善が達成され
たが、十分に高いものとは言えないことに加え、熱間加
工性が悪いという課題を抱えており、そこで本発明は、
このような課題を克服して高温強度と熱間加工性とがと
もに優れる鋼を提供することを目的とする。
As explained above, the above-mentioned 9-12Cr steel has achieved improvement in high-temperature strength, particularly creep rupture strength, but it cannot be said to be sufficiently high, and in addition, it has the problem of poor hot workability. Therefore, the present invention
The purpose of the present invention is to overcome these problems and provide a steel that has both excellent high-temperature strength and hot workability.

【0010】0010

【課題を解決するための手段】上掲の目的を実現すべく
鋭意研究した結果、本発明者らは、W添加の高Crフェ
ライト鋼について、それの熱間加工性を改善すると同時
に、高温強度についても高いレベルのものが得られるこ
とを前提に検討した結果、種々の元素のうちとくにB,
 Ca, Taを複合添加すると効果的であることを知
見した。 すなわち、本発明鋼の合金設計の基本は、適量のMo,
 W, VならびにNbを添加した9〜12Cr鋼につ
いて、さらにB, Ca, Taを複合添加することに
より熱間加工性改善と高温強度の両方が改善されること
を知見し、本発明を完成させたのである。
[Means for Solving the Problems] As a result of intensive research to achieve the above-mentioned object, the present inventors have found that high-Cr ferritic steel containing W has improved hot workability and high-temperature strength. As a result of our study on the premise that high levels of B and B can be obtained, we found that B,
It has been found that adding Ca and Ta in combination is effective. That is, the basis of the alloy design of the steel of the present invention is that an appropriate amount of Mo,
It was discovered that both hot workability and high-temperature strength were improved by adding B, Ca, and Ta in combination to 9-12Cr steel to which W, V, and Nb were added, and the present invention was completed. It was.

【0011】すなわち、本発明は、C:0.03〜0.
20wt%、  Si:1.0 wt%以下、Mn:0
.1 〜1.5 wt%、  Cr:7.0 〜13.
0wt%、Mo:0.4〜2.5 wt%、W:0.0
5〜2.50wt%、  V:0.02〜0.35wt
%、  Nb:0.01〜0.15wt%、B:0.0
008〜0.0100wt%、  Ta:0.010 
〜0.100 wt%、Ca:0.0005〜0.01
50wt%、N:0.005 〜0.080 wt%を
含有し、残部Feおよび不可避的不純物からなることを
特徴とする熱間加工性ならびに高温強度に優れたフェラ
イト系耐熱鋼、およびさらに、Ti:0.01〜0.4
0wt%もしくはNi:0.1 〜1.0 wt%以下
の1種または2種を含有する熱間加工性ならびに高温強
度に優れたフェライト系耐熱鋼である。
That is, in the present invention, C: 0.03 to 0.
20 wt%, Si: 1.0 wt% or less, Mn: 0
.. 1 to 1.5 wt%, Cr: 7.0 to 13.
0 wt%, Mo: 0.4-2.5 wt%, W: 0.0
5-2.50wt%, V: 0.02-0.35wt
%, Nb: 0.01-0.15wt%, B: 0.0
008-0.0100wt%, Ta: 0.010
~0.100 wt%, Ca: 0.0005~0.01
50 wt%, N: 0.005 to 0.080 wt%, and the balance consists of Fe and unavoidable impurities, and is characterized by excellent hot workability and high-temperature strength, and furthermore, Ti :0.01~0.4
It is a ferritic heat-resistant steel with excellent hot workability and high-temperature strength, containing one or two of 0 wt% or 0.1 to 1.0 wt% Ni.

【0012】0012

【作用】上記のように本発明は、各種の合金元素が熱間
加工性ならびに高温強度の改善に及ぼす影響を詳細に検
討した結果、適量のMo, W, V, Nbを含む高
Cr鋼において、さらに適量のB, CaおよびTaを
複合して添加することにより、熱間加工性改善に併せて
高温強度とくに高温クリープ破断強度も向上することが
判った。
[Function] As mentioned above, the present invention has been developed as a result of a detailed study of the effects of various alloying elements on improving hot workability and high-temperature strength. It has been found that by adding appropriate amounts of B, Ca and Ta in combination, not only hot workability but also high temperature strength, especially high temperature creep rupture strength, is improved.

【0013】図1は、0.10wt%( 以下は「%」
で示す) C−0.18%Si−0.41%Mn−11
.9%Cr−0.47%Mo−0.09%Nb−0.2
1%V−2.1 %W−0.04%N鋼に0.0032
%B−0.0021%Ca− 0.016%Taを含有
する鋼( A1鋼) と、同一成分系でのB, Caお
よびTaを含まない鋼( A2鋼)とについての熱間変
形能(加工性)の比較グラフである。この熱間変形能は
、上記A1鋼, A2鋼の鋼塊を高周波炉にて製造し、
この鋼塊を熱間圧延して20mm厚みの鋼板とし、その
後次のようなグリーブル試験を行うことにより得られる
。このグリーブル試験は、平行部6mmφの丸棒引張試
験片について、平行部を1250℃に加熱後、各温度に
温度低下させその温度で引張試験を行い、試験後破断部
の直径減少率の値で評価したものである。直径減少率が
大きいほど熱間変形能が優れている。
[0013] Figure 1 shows 0.10wt% (hereinafter referred to as "%").
) C-0.18%Si-0.41%Mn-11
.. 9%Cr-0.47%Mo-0.09%Nb-0.2
1%V-2.1%W-0.04%N steel 0.0032
Hot deformability of steel containing %B-0.0021%Ca-0.016%Ta (A1 steel) and steel without B, Ca and Ta (A2 steel) with the same composition system ( This is a comparison graph of processability). This hot deformability is obtained by manufacturing the above A1 steel and A2 steel ingots in a high frequency furnace.
This steel ingot is hot rolled into a 20 mm thick steel plate, which is then subjected to the following Greeble test. In this Greeble test, a round bar tensile test piece with a parallel part of 6 mmφ is heated to 1250°C, then lowered to each temperature, and a tensile test is performed at that temperature. It was evaluated. The larger the diameter reduction rate, the better the hot deformability.

【0014】また、高温強度レベルを明らかにするため
に、クリープ破断試験を行った。この試験は、上記鋼板
をさらに1050℃で焼ならしし、引続き760℃で1
時間の焼もどし処理を行い、その後この処理鋼板より平
行部6mmφの丸棒試験片を採取して行ったものである
。図1に示す結果から判るように、B, CaおよびT
aを複合添加したA1鋼は、これらの添加がないA2鋼
に比べて、直径減少率すなわち熱間加工性が大きく向上
することが明白である。
[0014] In addition, a creep rupture test was conducted to clarify the high temperature strength level. In this test, the steel plate was further normalized at 1050°C, and then heated to 760°C for 1
A round bar test piece with a parallel portion of 6 mmφ was taken from the treated steel plate after being tempered for a period of time. As can be seen from the results shown in Figure 1, B, Ca and T
It is clear that the diameter reduction rate, that is, the hot workability, of the A1 steel with the composite addition of a is greatly improved compared to the A2 steel without these additions.

【0015】次に、図2は、Cr含有の0.11%C−
0.16%Si−0.45%Mn−0.51%Mo−0
.08%Nb−0.22%V−1.9 %W−0.04
%N鋼に、0.0029%Bと0.0018%Caおよ
び0.022 %Taを含有させた鋼(B1鋼)と、そ
れと同一の成分系でB, Ca, Taを含まない鋼(
B2鋼)とについて、Cr量を変えて直径減少率(熱間
加工性)の評価をグリーブル試験にて行った結果を示し
ている。成分は試験した試料によって若干の変動はあっ
たが、上述の値にほぼ近いものとなった。この図から判
るように、B, CaおよびTaを含有するB1鋼の場
合、直径減少率が65〜85%と良好なのに対して、こ
れらの元素を含まないB2鋼は大きく劣っていることが
明白である。
Next, FIG. 2 shows 0.11% C- containing Cr.
0.16%Si-0.45%Mn-0.51%Mo-0
.. 08%Nb-0.22%V-1.9%W-0.04
%N steel containing 0.0029% B, 0.0018% Ca, and 0.022% Ta (B1 steel), and steel with the same composition system but without B, Ca, and Ta (B1 steel).
The graph shows the results of evaluating the diameter reduction rate (hot workability) of B2 steel by changing the Cr content using the Greeble test. Although the components varied slightly depending on the sample tested, the values were close to the values listed above. As can be seen from this figure, in the case of B1 steel containing B, Ca, and Ta, the diameter reduction rate is good at 65 to 85%, whereas it is clear that B2 steel, which does not contain these elements, is significantly inferior. It is.

【0016】これらの試験結果から判るように、適量の
Nb, Vを含む高Cr−Mo−W鋼において、さらに
適量のB, CaおよびTaを複合添加することにより
熱間加工性、すなわち製造性も大きく改善されることが
確かめられた。なお、A1鋼, B1鋼のように加工性
が良好な鋼種は、マンネスマン方式で疵の発生なく造管
できるものである。
As can be seen from these test results, hot workability, that is, manufacturability, can be improved by adding appropriate amounts of B, Ca, and Ta in a high Cr-Mo-W steel containing appropriate amounts of Nb and V. It was confirmed that there was also a significant improvement. Note that steel types with good workability, such as A1 steel and B1 steel, can be made into pipes using the Mannesmann method without producing any flaws.

【0017】次に、高温強度について調査したのでその
結果について説明する。この調査は、クリープ破断特性
についてのものである。図3は、Cr含有の0.10%
C−0.15%Si−0.43%Mn−0.49%Mo
−0.09%Nb−0.21%V−2.0 %W−0.
04%N鋼に0.0031%Bと0.0019%Caお
よび0.034 %Taを添加した鋼 (C1鋼)につ
いて、そのCr含有量を変えて、 650℃で11kg
/mm2の応力をかけたときのクリープ破断特性を評価
したものである。熱処理や試験片採取の要領は、前記グ
リーブル試験の場合と同じである。この図に示すように
、適量のB, CaおよびTaを複合添加したことによ
り、この鋼種はクリープ破断時間すなわちクリープ破断
強度が十分に高いものとなった。
Next, the high temperature strength was investigated and the results will be explained. This study is about creep rupture properties. Figure 3 shows 0.10% Cr content.
C-0.15%Si-0.43%Mn-0.49%Mo
-0.09%Nb-0.21%V-2.0%W-0.
04%N steel with 0.0031%B, 0.0019%Ca, and 0.034%Ta added (C1 steel), the Cr content was changed, and 11kg was produced at 650℃.
The creep rupture properties were evaluated when a stress of /mm2 was applied. The procedures for heat treatment and sample collection are the same as in the Greeble test. As shown in this figure, by adding appropriate amounts of B, Ca, and Ta in combination, this steel type had a sufficiently high creep rupture time, that is, creep rupture strength.

【0018】以上の試験結果ならびに説明から明らかな
ように、適量のNb,V等を含む高Cr−Mo−W鋼に
おいて、さらに適量のB, CaおよびTaを複合添加
することにより、熱間加工性が大きく改善されると共に
、さらにクリープ破断時間すなわちクリープ破断強度も
十分高いものが得られることが判る。
[0018] As is clear from the above test results and explanation, hot working is improved by adding appropriate amounts of B, Ca, and Ta in a high Cr-Mo-W steel containing appropriate amounts of Nb, V, etc. It can be seen that not only the properties are greatly improved, but also the creep rupture time, that is, the creep rupture strength is sufficiently high.

【0019】以下に、本発明にかかるフェライト耐熱鋼
が上述の如き成分組成に限定させる理由について説明す
る。 C:Cは、低温変態生成物の形成ならびに炭化物の析出
を通じてクリープ破断強度の向上に寄与する元素である
。0.20%を越えると、焼入れ性が著しく増し、強度
は増加するが、溶接性、加工性が劣化するので、C含有
量の上限は0.20%以下とした。一方、0.03%未
満では、高温強度の確保が困難となるため、その下限を
0.03%とした。 Si:Siは、脱酸剤として添加するが、多量に用いる
と鋼の靭性が劣化するので、その上限を1.00%とし
た。なお、このSiは、高温長時間強度と靭性向上のた
めには低い方が望ましい。 Mn:Mnは、脱酸や脱硫剤として、また強度や熱間加
工性を改善した適正な組織を得るために有用な元素であ
る。 このMn含有量が 0.1%未満では、上記の効果がな
く、一方、1.5 %を越えると、焼入れ性が高くなり
、強度は上がるものの曲げ等の加工性や靭性の劣化を招
くので、0.1 〜1.5 %とした。 Cr:Crは、耐高温酸化性、高温長時間強度の向上の
ために添加するもので、 650℃以上の高温長時間強
度は、Cr:7.0 〜13.0%のとき高く、そして
このCr含有量が13.0%よりも多くなると、δフェ
ライトが増して高温長時間強度が低下する。一方、7.
0 %未満では、Cr炭化物による析出強化、Crの固
溶強化が期待できず、高温長時間強度が低下し、しかも
高温の耐酸化性が低下する。このため、Cr含有量は7
.0 〜13.0%とした。 Mo, W:Mo, Wは、ともに高温長時間強度を著
しく高めるため、耐熱鋼には不可欠の元素である。この
両元素は、鋼中に固溶してこの鋼を強化する他、炭化物
を析出してクリープ強度を向上させるが、0.4 %未
満のMoや0.05%未満のWではその効果がない。一
方、 2.5%を超えるMoあるいは 2.5%を超え
るWは、δフェライト量が増加して高温強度を低下させ
る。しかも、Mo, Wは高価な元素であるからコスト
高となり、経済性の上からも好ましくないので、上限を
 2.5%とした。また、Mo単独添加では、 600
℃を超える温度のクリープ強度が十分でないので、Wは
、少なくとも0.05%添加する必要がある。 Nb, V:Nb, Vは、炭化物もしくは炭窒化物と
して析出し、長時間にわたって高温強度の低下を抑制す
る作用がある。Nb炭化物もしくはNb炭窒化物の溶解
度積は、V炭化物もしくはV炭窒化物の溶解度積より小
さく、析出しやすいので、高温短時間強度を著しく高め
る。しかし、これらの単独添加では、Nb炭化物、Nb
炭窒化物の凝集、粗大化を招きやすく、かつ長時間高温
強度を維持するのが困難となる。すなわち、長時間強度
の向上には、NbおよびVの複合添加が不可欠である。 それは、製造過程で析出したNb (C, N) が、
高温で析出する炭化物: M23C6, M6C の粗
大化を抑制するからである。すなわち、V4C3炭化物
のほかに固溶状態にあるVが上記炭化物 M23C6,
 M6C に拡散することにより、これらの炭化物の粗
大化を抑制するのである。このように、NbおよびVの
複合添加により、微細析出したこれらの析出物、さらに
は長時間経過後に微細析出するM23C6、M6C 、
固溶Vが、高温長時間強度を向上させる。したがって、
V単独では微細炭化物 M23C6、M6C は得られ
ず、長時間強度を改善することはできない。なお、V,
 Nbはいずれも0.02%未満では上記の効果が不十
分である。また、VもしくはNbが多すぎても、炭化物
が著しく粗大化しクリープ破断強度を下げ、しかも切欠
靭性や溶接性を低下させるので、Nbは0.15%以下
、Vは0.35%以下とした。 B:Bは、適量のVおよびNbならびにMoおよびWを
含有する高Cr鋼において、さらに適量のCa, Ta
と共に複合添加することにより、熱間加工性の改善に大
きく寄与し、高温クリープ強度を増加させる。この効果
は、B単独では得られない効果であり、とくにCaおよ
びTaにあわせて複合添加するときに顕著にその効果が
認められる。このような効果を得るためのB含有量は、
少なくとも0.0008%以上の添加が必要であり、一
方、0.01%を超える添加はその効果が飽和するとと
もに、むしろ熱間加工性の低下を招くようになるので、
0.01%以下としなければならない。 Ca, Ta:CaとTaは、適量のNbおよびVなら
びにWを含有する高Cr鋼において、適量のBと共にこ
れらを一緒に複合添加することにより、著しい熱間加工
性の改善および高温クリープ破断強度を改善することが
できる。このように改善効果は、CaおよびTaのみの
添加では得られず、Ca, TaおよびBの三位一体の
複合添加により初めて顕著にその効果が認められるもの
である。この効果を得るためには、Caは0.0005
%以上、Taは0.010 %以上の添加が必要である
。なお、このCaについては、0.0150%を超える
添加、またTaについては、0.100 %を超える添
加の場合、いずれもその効果が飽和し、しかもコスト上
昇になることから、それぞれCaについては0.015
0%以下に、Taについては 0.100%以下を含有
させる。 Ni:Niは、δフェライト量を適正に制御し、高温強
度を維持することと、靭性の改善のために添加する。そ
の量が0.10%未満では効果がなく、一方、1.0 
%を超えると、靭性改善効果が飽和の傾向となる。しか
も、このNiは高価な元素であるので、上限を1.0 
%とした。 Ti:Tiは、適量のNb, V, WおよびMoを含
有する高Cr鋼において、さらにTiを添加することに
より、高温クリープ破断強度が改善できる。この効果を
得るためのTi含有量は、0.01%以上の添加が必要
であり、一方、0.4 %を超える添加は、その効果が
飽和するとともに炭化物が粗大化する傾向がでてくるの
で、0.4%以下にしなければならない。 N:Nは、窒化物もしくは炭窒化物の形成、さらに固有
Nは高温長時間強度を向上させる元素である。このN含
有量は、0.005 %未満ではその効果がなく、一方
、0.08%を超えると溶接時ブローホールが形成され
、著しく溶接性を劣化するので、Nは 0.005〜0
.008 %とした。
The reason why the ferritic heat-resistant steel according to the present invention is limited to the above-mentioned composition will be explained below. C: C is an element that contributes to improving creep rupture strength through the formation of low-temperature transformation products and precipitation of carbides. If it exceeds 0.20%, the hardenability increases significantly and the strength increases, but weldability and workability deteriorate, so the upper limit of the C content was set to 0.20% or less. On the other hand, if it is less than 0.03%, it becomes difficult to ensure high temperature strength, so the lower limit was set at 0.03%. Si: Si is added as a deoxidizer, but if used in a large amount, the toughness of the steel deteriorates, so the upper limit was set at 1.00%. Note that it is desirable that this Si content be low in order to improve high-temperature long-term strength and toughness. Mn: Mn is an element useful as a deoxidizing and desulfurizing agent, and for obtaining a suitable structure with improved strength and hot workability. If the Mn content is less than 0.1%, the above effects will not be achieved, while if it exceeds 1.5%, the hardenability will increase, and although the strength will increase, it will cause deterioration of workability such as bending and toughness. , 0.1 to 1.5%. Cr: Cr is added to improve high-temperature oxidation resistance and high-temperature long-term strength.The high-temperature long-term strength of 650°C or higher is high when Cr: 7.0 to 13.0%, and this When the Cr content exceeds 13.0%, δ ferrite increases and the high temperature long-term strength decreases. On the other hand, 7.
If it is less than 0%, precipitation strengthening due to Cr carbides and solid solution strengthening of Cr cannot be expected, and high-temperature long-term strength decreases, and high-temperature oxidation resistance also decreases. Therefore, the Cr content is 7
.. The content was set at 0 to 13.0%. Mo, W: Mo and W are indispensable elements for heat-resistant steel because both significantly increase high-temperature long-term strength. These two elements not only strengthen the steel by forming a solid solution in the steel, but also precipitate carbides to improve creep strength, but this effect is not achieved when Mo is less than 0.4% and W is less than 0.05%. do not have. On the other hand, Mo exceeding 2.5% or W exceeding 2.5% increases the amount of δ ferrite and lowers the high temperature strength. Moreover, since Mo and W are expensive elements, the cost is high and it is not preferable from an economic point of view, so the upper limit was set at 2.5%. In addition, when Mo is added alone, 600
Since the creep strength at temperatures exceeding .degree. C. is insufficient, it is necessary to add at least 0.05% of W. Nb, V: Nb, V precipitates as carbides or carbonitrides and has the effect of suppressing a decrease in high temperature strength over a long period of time. The solubility product of Nb carbide or Nb carbonitride is smaller than the solubility product of V carbide or V carbonitride, and because it is easy to precipitate, the high-temperature short-time strength is significantly increased. However, when these are added alone, Nb carbide, Nb
Carbonitrides tend to aggregate and coarsen, and it becomes difficult to maintain high-temperature strength for a long time. That is, the combined addition of Nb and V is essential for improving long-term strength. This is because Nb (C, N) precipitated during the manufacturing process,
This is because it suppresses the coarsening of carbides: M23C6 and M6C that precipitate at high temperatures. That is, in addition to the V4C3 carbide, V in a solid solution state is the carbide M23C6,
By diffusing into M6C, coarsening of these carbides is suppressed. In this way, due to the combined addition of Nb and V, these finely precipitated precipitates, as well as M23C6, M6C, which finely precipitates after a long period of time,
Solid solution V improves high-temperature long-term strength. therefore,
If V is used alone, fine carbides M23C6, M6C cannot be obtained and long-term strength cannot be improved. In addition, V,
If Nb is less than 0.02%, the above effects are insufficient. In addition, if too much V or Nb is present, the carbides will become coarser and the creep rupture strength will be lowered, as well as notch toughness and weldability. Therefore, Nb was set to 0.15% or less, and V was set to 0.35% or less. . B: B is a high Cr steel containing appropriate amounts of V and Nb, Mo and W, and additionally appropriate amounts of Ca and Ta.
By adding it in combination with C, it greatly contributes to improving hot workability and increases high-temperature creep strength. This effect cannot be obtained with B alone, and is particularly noticeable when B is added in combination with Ca and Ta. The B content to obtain this effect is
It is necessary to add at least 0.0008% or more; on the other hand, if the addition exceeds 0.01%, the effect will be saturated and the hot workability will deteriorate.
Must be 0.01% or less. Ca, Ta: Ca and Ta can significantly improve hot workability and high-temperature creep rupture strength by adding them together with an appropriate amount of B in high Cr steel containing appropriate amounts of Nb, V, and W. can be improved. As described above, the improvement effect cannot be obtained by adding only Ca and Ta, but is noticeable only by the combined addition of the trinity of Ca, Ta, and B. To obtain this effect, Ca is 0.0005
% or more, and Ta needs to be added in an amount of 0.010% or more. Furthermore, if Ca is added in excess of 0.0150%, and Ta is added in excess of 0.100%, the effect will be saturated and the cost will increase. 0.015
0% or less, and 0.100% or less of Ta is contained. Ni: Ni is added to appropriately control the amount of δ ferrite, maintain high temperature strength, and improve toughness. If the amount is less than 0.10%, there is no effect; on the other hand, if the amount is less than 0.10%,
%, the toughness improving effect tends to be saturated. Moreover, since Ni is an expensive element, the upper limit is set to 1.0.
%. Ti: High-temperature creep rupture strength can be improved by further adding Ti to high-Cr steel containing appropriate amounts of Nb, V, W, and Mo. To obtain this effect, it is necessary to add Ti content of 0.01% or more; on the other hand, if it exceeds 0.4%, the effect will be saturated and the carbides will tend to coarsen. Therefore, it must be kept at 0.4% or less. N: N is an element that forms nitrides or carbonitrides, and furthermore, inherent N is an element that improves high-temperature long-term strength. If the N content is less than 0.005%, there will be no effect, while if it exceeds 0.08%, blowholes will be formed during welding and weldability will be significantly deteriorated.
.. 008%.

【0021】[0021]

【実施例】表1は、本発明にかかるフェライト系耐熱鋼
の成分組成ならびにこれらの鋼のクリープ破断時間と直
径減少率の試験結果とを示すものであり、表2は、比較
鋼についてのものを示す。上記の試験結果は、表中の各
成分組成の鋼塊を高周波溶解炉にて製造し、この鋼塊を
熱間圧延して20mm厚みの鋼板とし、その後グリーブ
ル試験を行い、熱間加工性を1100℃での直径減少率
(%) にて評価したものである。また、クリープ試験
は、1050℃で焼ならし、 760℃で1時間の焼も
どし処理をしたのち、6mmφの丸棒引張型試験片に加
工して 650℃, 応力11kg/mm2で行い、破
断時間を求めたものである。
[Example] Table 1 shows the chemical composition of heat-resistant ferritic steels according to the present invention as well as test results of creep rupture time and diameter reduction rate of these steels, and Table 2 shows the results of comparison steels. shows. The above test results were obtained by manufacturing a steel ingot with each component composition in the table in a high-frequency melting furnace, hot rolling this steel ingot into a 20 mm thick steel plate, and then conducting a Greeble test to determine hot workability. The evaluation was based on the diameter reduction rate (%) at 1100°C. In addition, the creep test was performed by normalizing at 1050°C and tempering at 760°C for 1 hour, and then processing into a 6mmφ round bar tensile test piece and conducting it at 650°C with a stress of 11kg/mm2, and the rupture time. This is what we sought.

【0022】なお、記号A〜Rとして示した本発明鋼と
しては、C, Si,Cr, Mo, Nb, V,W
, B, Ta, Ca, Ti, Niを変化させた
鋼種を例示した。
[0022] The steels of the present invention indicated by symbols A to R include C, Si, Cr, Mo, Nb, V, W.
, B, Ta, Ca, Ti, and Ni.

【0023】比較鋼のうち、イ鋼は、Nb, V, W
を添加した鋼、ロ鋼はNb, V, Wに加えてBを添
加した鋼、ハ鋼はNb, V, Wに加えてBとTaを
添加した鋼、ニ鋼はNb, V, Wに加えてBとCa
を添加した鋼であり、ホ鋼はNb, V, Wに加えて
TaとCaを添加した鋼で、ヘ鋼はNb, V, Wに
加えてTaとCaとBを添加した鋼であるが、本発明鋼
として必要な量に満たないB量の場合の例である。 比較例はいずれも本発明成分に適合していない場合の例
示である。
[0023] Among the comparative steels, steel A contains Nb, V, W
B steel is a steel in which B is added in addition to Nb, V, and W; C steel is a steel in which B and Ta are added in addition to Nb, V, and W, and D steel is a steel in which B and Ta are added in addition to Nb, V, and W. In addition, B and Ca
E steel is a steel that has Ta and Ca added in addition to Nb, V, and W. F steel is a steel that has Ta, Ca, and B added in addition to Nb, V, and W. This is an example in which the amount of B is less than the amount required for the steel of the present invention. All of the comparative examples are examples of cases in which the components of the present invention are not compatible.

【0024】表1, 表2に示す結果から、まず本発明
にかかる鋼種はグリーブル試験による1100℃での直
径減少率にて評価した熱間加工性が70%以上を示して
良好であり、しかもクリープ破断時間は4000時間以
上と優れた高温強度を有している。
[0024] From the results shown in Tables 1 and 2, first, the steel type according to the present invention has good hot workability of 70% or more as evaluated by the diameter reduction rate at 1100°C by the Greeble test, and It has a creep rupture time of 4000 hours or more and has excellent high temperature strength.

【0025】一方、表2に示す比較鋼の場合、いずれも
上記本発明鋼に比べてクリープ破断時間は短く劣ってい
る。しかも、グリーブル試験による1100℃での直径
減少率にて評価した熱間加工性についても、本発明鋼に
比べていずれも劣っていることがわかる。
On the other hand, in the case of the comparative steels shown in Table 2, the creep rupture times are shorter and inferior to the above-mentioned steel of the present invention. Moreover, it can be seen that the hot workability evaluated by the diameter reduction rate at 1100° C. by the Greeble test is also inferior to the steel of the present invention.

【0026】[0026]

【表1】[Table 1]

【0027】[0027]

【表2】[Table 2]

【0028】このように本発明鋼は、従来鋼に比べて製
造性に重要な特性である熱間加工性が大幅に優れており
、しかも高温で優れた長時間強度を有する鋼である。 従って、高価な18Cr−8Ni系オーステナイト系ス
テンレス鋼の代替使用が可能で、本発明鋼は熱交換器材
等の耐熱鋼として極めて有用である。
As described above, the steel of the present invention has significantly better hot workability, which is an important property for manufacturability, than conventional steels, and also has excellent long-term strength at high temperatures. Therefore, it is possible to use the steel as an alternative to the expensive 18Cr-8Ni austenitic stainless steel, and the steel of the present invention is extremely useful as a heat-resistant steel for heat exchange equipment and the like.

【0029】以上説明したように、本発明にかかるフェ
ライト系耐熱鋼は、従来のフェライト系耐熱鋼に比べ、
製造特性に影響を与える熱間加工性が大幅に改善されて
おり、その上、高温、とくに 600℃以上での強度 
(特にクリープ破断強度) が大幅に改善された鋼であ
る。それ故に、高温、高圧環境下で使用される超超臨界
圧ボイラ材料やFBR用蒸気発生管、加熱器管等に好適
に用いられ、この鋼材の使用によってこれらの器材の薄
肉化、長寿命化が実現できる。
As explained above, the ferritic heat-resistant steel according to the present invention has a higher temperature than the conventional ferritic heat-resistant steel.
Hot workability, which affects manufacturing properties, has been significantly improved, and strength at high temperatures, especially above 600℃, has been significantly improved.
This is a steel with significantly improved creep rupture strength (especially creep rupture strength). Therefore, it is suitable for use in super-supercritical pressure boiler materials used in high-temperature, high-pressure environments, steam generator tubes for FBR, heater tubes, etc., and the use of this steel material makes these devices thinner and has a longer lifespan. can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1は、グリーブル試験で求めた直径減少率に
対するB, Ca, Ta複合添加の有無の効果を比較
したグラフ。
FIG. 1 is a graph comparing the effect of the presence or absence of combined addition of B, Ca, and Ta on the diameter reduction rate determined by the Greeble test.

【図2】図2は、Cr量を変えた鋼でグリーブル試験で
求めた直径減少率に対するB, Ca, Taの複合添
加の有無の効果を比較したグラフ。
[Fig. 2] Fig. 2 is a graph comparing the effect of the presence or absence of combined addition of B, Ca, and Ta on the diameter reduction rate determined by the Greeble test for steels with varying amounts of Cr.

【図3】図3は、Cr量を変えた鋼でクリープ破断時間
に対するB, Ca, Taの複合添加の有無の効果を
比較したグラフ。
[Fig. 3] Fig. 3 is a graph comparing the effect of the presence or absence of combined addition of B, Ca, and Ta on the creep rupture time of steels with varying amounts of Cr.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  C:0.03〜0.20wt%、  
Si:1.0wt%以下、Mn:0.1 〜1.5 w
t%、  Cr:7.0 〜13.0wt%、Mo:0
.4 〜2.5 wt%、  W:0.05〜2.50
wt%、V:0.02〜0.35wt%、  Nb:0
.01〜0.15wt%、B:0.0008〜0.01
00wt%、  Ta:0.010 〜0.100 w
t%、Ca:0.0005〜0.0150wt%、およ
びN:0.005 〜0.080 wt%、を含有し、
残部Feおよび不可避的不純物からなることを特徴とす
る熱間加工性ならびに高温強度に優れたフェライト系耐
熱鋼。
[Claim 1] C: 0.03 to 0.20 wt%,
Si: 1.0 wt% or less, Mn: 0.1 to 1.5 w
t%, Cr: 7.0 to 13.0wt%, Mo: 0
.. 4 ~ 2.5 wt%, W: 0.05 ~ 2.50
wt%, V: 0.02-0.35wt%, Nb: 0
.. 01-0.15wt%, B: 0.0008-0.01
00wt%, Ta: 0.010 ~ 0.100w
t%, Ca: 0.0005 to 0.0150 wt%, and N: 0.005 to 0.080 wt%,
A ferritic heat-resistant steel with excellent hot workability and high-temperature strength, characterized in that the remainder consists of Fe and unavoidable impurities.
【請求項2】  C:0.03〜0.20wt%、  
Si:1.0wt%以下、Mn:0.1 〜1.5 w
t%、  Cr:7.0 〜13.0wt%、Mo:0
.4 〜2.5 wt%、  W:0.05〜2.50
wt%、V:0.02〜0.35wt%、  Nb:0
.01〜0.15wt%、B:0.0008〜0.01
00wt%、  Ta:0.010 〜0.100 w
t%、Ca:0.0005〜0.0150wt%、およ
びN:0.005 〜0.080 wt%、に加え、T
i:0.01〜0.40wt%もしくはNi:0.1 
〜1.0wt%以下の1種または2種を含有し、残部F
eおよび不可避的不純物からなることを特徴とする熱間
加工性ならびに高温強度に優れたフェライト系耐熱鋼。
[Claim 2] C: 0.03 to 0.20 wt%,
Si: 1.0 wt% or less, Mn: 0.1 to 1.5 w
t%, Cr: 7.0 to 13.0wt%, Mo: 0
.. 4 ~ 2.5 wt%, W: 0.05 ~ 2.50
wt%, V: 0.02-0.35wt%, Nb: 0
.. 01-0.15wt%, B: 0.0008-0.01
00wt%, Ta: 0.010 ~ 0.100w
t%, Ca: 0.0005 to 0.0150 wt%, and N: 0.005 to 0.080 wt%, in addition to T
i:0.01-0.40wt% or Ni:0.1
Contains up to 1.0 wt% of one or two types, with the remainder F
A ferritic heat-resistant steel with excellent hot workability and high-temperature strength, which is characterized by comprising e.g. and inevitable impurities.
JP16896991A 1991-06-14 1991-06-14 Ferritic heat resisting steel excellent in hot workability and strength at high temperature Pending JPH04365838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16896991A JPH04365838A (en) 1991-06-14 1991-06-14 Ferritic heat resisting steel excellent in hot workability and strength at high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16896991A JPH04365838A (en) 1991-06-14 1991-06-14 Ferritic heat resisting steel excellent in hot workability and strength at high temperature

Publications (1)

Publication Number Publication Date
JPH04365838A true JPH04365838A (en) 1992-12-17

Family

ID=15877929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16896991A Pending JPH04365838A (en) 1991-06-14 1991-06-14 Ferritic heat resisting steel excellent in hot workability and strength at high temperature

Country Status (1)

Country Link
JP (1) JPH04365838A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09122972A (en) * 1995-10-30 1997-05-13 Nippon Steel Corp Coated electrode for high-cr ferrite heat resisting steel
JPH09122971A (en) * 1995-10-26 1997-05-13 Sumitomo Metal Ind Ltd Welding material for high-strength, high-corrosion resistant steel having excellent welding procedure characteristic
JP2010156008A (en) * 2008-12-26 2010-07-15 Jfe Steel Corp Precipitation strengthened type ferritic stainless steel, and method for producing the same
WO2017180647A1 (en) * 2016-04-11 2017-10-19 Terrapower, Llc High temperature, radiation-resistant, ferritic-martensitic steels
WO2021129836A1 (en) * 2019-12-26 2021-07-01 华新丽华股份有限公司 Corrosion-resistant free-cutting steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09122971A (en) * 1995-10-26 1997-05-13 Sumitomo Metal Ind Ltd Welding material for high-strength, high-corrosion resistant steel having excellent welding procedure characteristic
JPH09122972A (en) * 1995-10-30 1997-05-13 Nippon Steel Corp Coated electrode for high-cr ferrite heat resisting steel
JP2010156008A (en) * 2008-12-26 2010-07-15 Jfe Steel Corp Precipitation strengthened type ferritic stainless steel, and method for producing the same
WO2017180647A1 (en) * 2016-04-11 2017-10-19 Terrapower, Llc High temperature, radiation-resistant, ferritic-martensitic steels
CN108779535A (en) * 2016-04-11 2018-11-09 泰拉能源公司 High temperature, radiation hardness ferrite-martensite steel
WO2021129836A1 (en) * 2019-12-26 2021-07-01 华新丽华股份有限公司 Corrosion-resistant free-cutting steel

Similar Documents

Publication Publication Date Title
JP4424471B2 (en) Austenitic stainless steel and method for producing the same
US5069870A (en) High-strength high-cr steel with excellent toughness and oxidation resistance
WO2006109664A1 (en) Ferritic heat-resistant steel
JPH04268040A (en) Heat resisting low alloy steel excellent in creep strength and toughness
JPS59176501A (en) Boiler tube
CN113186468B (en) High-durability petroleum cracking pipe steel and heat treatment method and production method thereof
JP4369612B2 (en) Steel plate for low quenching or normalizing type low alloy boiler steel pipe excellent in toughness, and method of manufacturing steel pipe using the same
CN109266971B (en) Reheating crack resistant W-containing high-strength low-alloy heat-resistant steel
KR102094655B1 (en) Austenitic alloy
JP3982069B2 (en) High Cr ferritic heat resistant steel
JP3534413B2 (en) Ferritic heat-resistant steel excellent in high-temperature strength and method for producing the same
JP3508667B2 (en) High Cr ferritic heat resistant steel excellent in high temperature strength and method for producing the same
US4529454A (en) Low C-Cr-Mo steel used under wet steam
JP3745567B2 (en) Boiler steel excellent in ERW weldability and ERW boiler steel pipe using the same
JP2002235154A (en) HIGH Cr FERRITIC HEAT RESISTANT STEEL
JP3552517B2 (en) Method for welding high Cr ferritic heat resistant steel and method for manufacturing welded steel pipe
JPH04365838A (en) Ferritic heat resisting steel excellent in hot workability and strength at high temperature
JPS5914097B2 (en) Ferritic heat-resistant steel with improved toughness
JP3848463B2 (en) High strength austenitic heat resistant steel with excellent weldability and method for producing the same
JPH0359135B2 (en)
JP3570288B2 (en) High Cr martensitic heat resistant steel with excellent hot workability
JP3698058B2 (en) High Cr ferritic heat resistant steel
JP2689198B2 (en) Martensitic heat resistant steel with excellent creep strength
JPH05263196A (en) Ferritic heat resistant steel excellent in high temperature strength and toughness
JPH08134585A (en) Ferritic heat resistant steel, excellent in high temperature strength and oxidation resistance, and its production