JPH0359135B2 - - Google Patents

Info

Publication number
JPH0359135B2
JPH0359135B2 JP21994786A JP21994786A JPH0359135B2 JP H0359135 B2 JPH0359135 B2 JP H0359135B2 JP 21994786 A JP21994786 A JP 21994786A JP 21994786 A JP21994786 A JP 21994786A JP H0359135 B2 JPH0359135 B2 JP H0359135B2
Authority
JP
Japan
Prior art keywords
steel
strength
temperature
added
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21994786A
Other languages
Japanese (ja)
Other versions
JPS6376854A (en
Inventor
Akishi Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP21994786A priority Critical patent/JPS6376854A/en
Publication of JPS6376854A publication Critical patent/JPS6376854A/en
Publication of JPH0359135B2 publication Critical patent/JPH0359135B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L21/00Joints with sleeve or socket

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、超臨界圧ならびに超々臨界圧用ボ
イラの蒸発管、過熱器管、再熱器管、主蒸気配
管、化学工業用プラントの加熱器管、熱交換器
管、高速増殖炉の蒸気発生器管、過熱器管、
核融合炉第一炉壁材料等に用いて好適な、高温強
度に優れたフエライト系耐熱鋼に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to supercritical pressure and ultra-supercritical pressure boiler evaporator tubes, superheater tubes, reheater tubes, main steam piping, and heaters for chemical industrial plants. tubes, heat exchanger tubes, fast breeder reactor steam generator tubes, superheater tubes,
The present invention relates to a ferritic heat-resistant steel with excellent high-temperature strength and suitable for use as a material for the first reactor wall of a nuclear fusion reactor.

[従来の技術] 最近、火力発電用ボイラとしては超臨界ボイラ
が用いられているが、熱効率を上げ、燃料節減を
図るため、超々臨界圧用ボイラが必要とされてい
る。この種のボイラは、電力需要の少ない夜間は
操業をダウンさせるため、高温低温の熱サイクル
をもつた操業となる。熱膨張率の大きいオーステ
ナイト系ステンレス鋼では、熱疲労やスケール剥
離が問題となる。剥離したスケールは鋼管ベンド
部に堆積して局所的に高温となり管が憤破した
り、またスケールがタービンに達することもあり
種々の障害をもたらす。一方、フエライト系の場
合、オーステナイト系に比べ熱膨張率が小さいば
かりでなく、高温での応力腐食割れや粒界腐食が
軽減され、熱伝導率が高く、しかも低廉であると
いう長所を備えている。このため、フエライト系
高クロム鋼は超臨界圧ならびに超々臨界圧用ボイ
ラの蒸発管、過熱器管、再熱器管や、化学工業用
各種機器の過熱器管、熱交換器管、あるいは、高
速増殖炉の蒸気発生器管、過熱器管用材料として
も好適である。
[Prior Art] Recently, supercritical boilers have been used as boilers for thermal power generation, but ultra-supercritical pressure boilers are required in order to increase thermal efficiency and save fuel. This type of boiler shuts down its operation at night when electricity demand is low, so it operates with a heat cycle of high and low temperatures. Austenitic stainless steel, which has a large coefficient of thermal expansion, poses problems such as thermal fatigue and scale peeling. The peeled off scale accumulates at the bent portion of the steel pipe, causing local high temperatures that can cause the pipe to burst, and the scale may even reach the turbine, causing various problems. On the other hand, ferritic materials not only have a lower coefficient of thermal expansion than austenitic materials, but also have the advantage of reducing stress corrosion cracking and intergranular corrosion at high temperatures, high thermal conductivity, and low cost. . For this reason, ferritic high chromium steel is used for evaporator tubes, superheater tubes, and reheater tubes in supercritical pressure and ultrasupercritical pressure boilers, superheater tubes, heat exchanger tubes in various equipment for the chemical industry, and high-speed growth It is also suitable as a material for steam generator tubes and superheater tubes in furnaces.

現時点で実用化されている最も蒸気条件の厳し
いボイラは超臨界圧ボイラ(246気圧、566℃)で
ある。管壁温度が580℃までは通常、2・1/4Cr
−1Mo鋼(STBA24)、620℃までは9Cr−1Mo〜
2Mo系鋼(例えばSTBAや○火STBA27)もしく
は、18Cr−8Ni系ステンレス鋼、620℃を超える
と専ら18Cr−8Ni系ステンレス鋼が管材として用
いられる。
The boiler currently in practical use with the most severe steam conditions is the supercritical pressure boiler (246 atm, 566°C). Normally 2 1/4 Cr when the pipe wall temperature is up to 580℃
−1Mo steel (STBA24), 9Cr−1Mo ~ up to 620℃
2Mo steel (for example, STBA or STBA27) or 18Cr-8Ni stainless steel; if the temperature exceeds 620°C, 18Cr-8Ni stainless steel is used as the pipe material.

[発明が解決しようとする問題点] しかしながら、従来の9Cr−2Mo〜2Mo系鋼
は、2・1/4Cr−1Mo鋼に比べて耐酸化性は向上
するものの、高温強度が皮低いので使用上制約を
受ける。18Cr−8Ni系は高温強度、耐高温酸化性
に優れているものの、既述のようなオーステナイ
ト系特有の欠点があり、その上、Cr、Niを多量
に含有しているために、経済性に問題がある。
[Problems to be solved by the invention] However, although conventional 9Cr-2Mo to 2Mo steels have improved oxidation resistance compared to 2-1/4Cr-1Mo steel, their high-temperature strength is relatively low, making them difficult to use. subject to restrictions. Although the 18Cr-8Ni system has excellent high-temperature strength and high-temperature oxidation resistance, it has the disadvantages peculiar to austenitic systems as mentioned above, and in addition, it contains large amounts of Cr and Ni, making it uneconomical. There's a problem.

ところで、超々臨界圧ボイラとしての第1段階
の蒸気条件(316気圧、566℃)の実用化が近い
が、第2段階では、316気圧、593℃の蒸気条件と
なるため、過熱器管や再熱器管の管壁温度はおよ
そ620℃にもなり、この温度での長時間強度が要
求される。しかしながら、通産省の発電用火力技
術基準に則つて決められた許容応力を比較する
と、既出のフエライト系高クロム鋼の許容応力は
620℃で18Cr−8Ni系ステンレス鋼
(SUS304HTB)のおよそ4/5以下である。した
がつて、高温長時間強度保持のためには肉厚を厚
くしなければならず、熱交換上好ましくない上
に、材料費がかさみ、建設コストを高める。
By the way, the first stage steam conditions (316 atmospheres, 566 degrees Celsius) as an ultra-supercritical pressure boiler will soon be put into practical use, but the second stage will have steam conditions of 316 atmospheres, 593 degrees Celsius, so superheater tubes and The temperature of the tube wall of a heating tube is approximately 620℃, and long-term strength at this temperature is required. However, when comparing the allowable stress determined in accordance with the Ministry of International Trade and Industry's technical standards for thermal power generation, the allowable stress of the already mentioned ferritic high chromium steel is
At 620℃, it is about 4/5 or less than 18Cr-8Ni stainless steel (SUS304HTB). Therefore, in order to maintain strength at high temperatures for a long period of time, the wall thickness must be increased, which is not favorable for heat exchange, and increases material costs and construction costs.

このように、超々臨界圧用ボイラチユーブに対
しては高温強度の一層の改善が求められると同時
に、高温環境下で使用されるため耐高温腐食性の
向上が求められている。
As described above, boiler tubes for ultra-supercritical pressure are required to further improve their high-temperature strength, and at the same time, because they are used in high-temperature environments, they are also required to have improved high-temperature corrosion resistance.

ところで、従来の2・1/4Cr−/Mo鋼や
STBA26(9Cr−1Mo鋼)、○火STBA27(9Cr−2Mo
鋼)の高温強度を改善し鋼として米国オークリツ
ジ国立研究所が中心になつて開発した。
Super9Cr鋼すなわちASTMA213 T91鋼(9Cr−
1Mo、Nb、V鋼)が知られている。
By the way, conventional 2.1/4Cr-/Mo steel and
STBA26 (9Cr−1Mo steel), ○Fire STBA27 (9Cr−2Mo steel)
Oak Ridge National Laboratory in the United States led the development as a steel with improved high-temperature strength.
Super9Cr steel i.e. ASTMA213 T91 steel (9Cr−
1Mo, Nb, V steel) are known.

しかしながら、これらの鋼は従来鋼に比べてあ
る程度高温強度が改善されているものの、まだ不
十分であり、蒸気温度の一層の上昇に対応するべ
き材料開発が求められていた。
However, although the high-temperature strength of these steels has been improved to some extent compared to conventional steels, it is still insufficient, and there has been a need for the development of materials that can cope with further increases in steam temperature.

9〜12Cr系鋼にW添加することにより高温強
度が改善されることや、Nb、Vの添加により高
温強度が改善できることは既に知られている。本
発明者等は、先に特願昭60−293092号において、
高温強度を改善し、さらに溶接性を向上させた鋼
を提案した。その後、更に詳細に検討を続けた結
果、高温強度の改善には種々の元素の適切な組み
合わせが効果的であることを見い出し、高温での
耐酸化性を向上させた高温強度に優れた耐熱鋼を
提案した。
It is already known that high-temperature strength can be improved by adding W to 9-12Cr steel, and that high-temperature strength can be improved by adding Nb and V. The present inventors previously disclosed in Japanese Patent Application No. 60-293092,
We proposed a steel with improved high-temperature strength and further improved weldability. Subsequently, as a result of further detailed studies, we discovered that an appropriate combination of various elements is effective in improving high-temperature strength, and we have developed a heat-resistant steel with excellent high-temperature strength that has improved oxidation resistance at high temperatures. proposed.

本発明は、高Crフエライト鋼において、高温
強度を改善するため検討を続けた結果、種々の成
分の内、Nb、Ti、B、Wの複合添加により著し
い効果があることが知見され完成されたものであ
る。
The present invention was completed after continuing studies to improve the high-temperature strength of high-Cr ferrite steel, and finding that the combined addition of Nb, Ti, B, and W among various components had a significant effect. It is something.

[問題点を解決するための手段] 本発明の第1に係る高温強度に優れたフエライ
ト系耐熱鋼は、重量%で C:0.03〜0.20%、Si:1.0%以下 Mn:0.1〜1.5%、Ni:0.1〜1.0% Cr:7.0〜13.0%、Mo:0.4〜2.5% Nb:0.02〜0.15%、V:0.02〜0.35% Ti:0.01〜0.40%、W:0.05〜2.50% N:0.005〜0.080%、B:0.0008〜0.0100% を含有し、残部Feおよび不可避的不純物からな
るようにしたものである。
[Means for Solving the Problems] The ferritic heat-resistant steel having excellent high-temperature strength according to the first aspect of the present invention has a weight percentage of C: 0.03 to 0.20%, Si: 1.0% or less, Mn: 0.1 to 1.5%, Ni: 0.1-1.0% Cr: 7.0-13.0%, Mo: 0.4-2.5% Nb: 0.02-0.15%, V: 0.02-0.35% Ti: 0.01-0.40%, W: 0.05-2.50% N: 0.005-0.080 %, B: 0.0008 to 0.0100%, with the remainder consisting of Fe and inevitable impurities.

また、本発明の第2に係る高温強度に優れたフ
エライト系耐熱鋼は、重量%で C:0.03〜0.20%、Si:1.0%以下 Mn:0.1〜1.5%、Ni:0.1〜1.0% Cr:7.0〜13.0%、Mo:0.4〜2.5% Nb:0.02〜0.15%、V:0.02〜0.35% Ti:0.01〜0.40%、W:0.05〜2.50% N:0.005〜0.080%、B:0.0008〜0.0100% に加え、Cu:0.3%以下を含有し、残部Feおよび
不可避的不純物からなるようにしたものである。
Further, the ferritic heat-resistant steel having excellent high-temperature strength according to the second aspect of the present invention has, in weight percent, C: 0.03 to 0.20%, Si: 1.0% or less, Mn: 0.1 to 1.5%, Ni: 0.1 to 1.0% Cr: 7.0-13.0%, Mo: 0.4-2.5% Nb: 0.02-0.15%, V: 0.02-0.35% Ti: 0.01-0.40%, W: 0.05-2.50% N: 0.005-0.080%, B: 0.0008-0.0100% In addition, it contains Cu: 0.3% or less, with the balance consisting of Fe and inevitable impurities.

[作用] 本発明を達成するために、種々の元素の添加が
高温強度に及ぼす影響を詳細に検討した結果、適
量のMo、Nb、Vを含む高Cr鋼において、さら
に適量のW、Ti、Bを添加することにより、高
温強度、特に高温クリープ破断強度が著しく向上
することが知見された。Mo、Wはともにフエラ
イト形成元素であり、あまり多量に添加するとデ
ルタフエライトの体積率が増し、高温強度が低下
する。一方Mo、W添加量が少なくては強度向上
効果が薄れる。この考えのもとにMo、W添加量
の多くの組合せにわたつて650℃×5000hのクリ
ープ破断強度を調べ、適切なMoとW量の組み合
わせの時、優れたクリープ破断強度を有する耐熱
鋼を開発し、特願昭60−293092号にて提示した。
[Function] In order to achieve the present invention, as a result of detailed studies on the effects of the addition of various elements on high-temperature strength, it was found that in high Cr steel containing appropriate amounts of Mo, Nb, and V, additionally appropriate amounts of W, Ti, It has been found that high temperature strength, particularly high temperature creep rupture strength, is significantly improved by adding B. Both Mo and W are ferrite-forming elements, and if they are added in too large a quantity, the volume fraction of delta ferrite will increase and the high temperature strength will decrease. On the other hand, if the amounts of Mo and W added are small, the strength improvement effect will be diminished. Based on this idea, we investigated the creep rupture strength at 650°C for 5000 hours across many combinations of Mo and W addition amounts, and found that heat-resistant steel with excellent creep rupture strength was obtained when an appropriate combination of Mo and W amounts was used. It was developed and presented in Japanese Patent Application No. 60-293092.

本発明は、それに続くものであり、Ti、B、
Wを複合添加することによりクリープ強度が著し
く改善される。第1図は、0.09%C−91%Cr−
1.1%Mo−0.11%Nb−0.21%V−0.11%Ti−0.88
%W−0.03%Nを含有する鋼(S鋼)におけるB
の効果を示したものである。図に示したように、
S鋼の場合、Ti、Wを含有した鋼であり、この
鋼にBを0.0008%以上複合して添加することによ
り、650℃で10Kg/mm2の応力をかけた場合の破断
時間が著しく向上することが示される。一方、
Tiを含まない同種の鋼(T鋼)やWを含まない
同種の鋼(U鋼)ではBを添加してもS鋼ほどに
はクリープ強度が改善されないことが分かる。
The present invention is a continuation of that, and includes Ti, B,
Creep strength is significantly improved by adding W in combination. Figure 1 shows 0.09%C-91%Cr-
1.1%Mo-0.11%Nb-0.21%V-0.11%Ti-0.88
%W-B in steel containing 0.03%N (S steel)
This shows the effect of As shown in the figure,
In the case of S steel, it is a steel containing Ti and W, and by adding B in combination to this steel at a rate of 0.0008% or more, the rupture time when a stress of 10Kg/ mm2 is applied at 650℃ is significantly improved. It is shown that on the other hand,
It can be seen that in the same type of steel that does not contain Ti (T steel) and the same type of steel that does not contain W (U steel), the creep strength is not improved as much as in S steel even if B is added.

次に第2図は0.10%C−8.9%Cr−1.2%Mo−
0.12%Nb−0.20%V−0.85%W−0.03%N−0.003
%Bを含有する鋼(X鋼)におけるTiの効果を
示したものである。図に示したようにX鋼の場
合、W、Bを含有した鋼であり、この鋼にTiを
0.01%以上複合して添加することにより650℃で
10Kg/mm2の応力をかけた場合の破断時間が著しく
向上することが示される。一方Bを含まない同種
の鋼(Y鋼)やWを含まない同種の鋼(Z鋼)で
は、Tiを添加してもX鋼に比べると著しく小さ
い効果しか得られない。このように適量のNb、
V、N等を含む高Cr−Mo鋼において、さらに適
量のTi、B、Wを複合添加することによりクリ
ープ破断強度が著しく向上することが知見され
た。本発明は上記に説明したTi、B、Wの相乗
効果の知見により完成したものである。
Next, Figure 2 shows 0.10%C-8.9%Cr-1.2%Mo-
0.12%Nb-0.20%V-0.85%W-0.03%N-0.003
% B-containing steel (X steel). As shown in the figure, in the case of steel X, it is a steel containing W and B, and Ti is added to this steel.
By adding 0.01% or more in combination, at 650℃
It is shown that the rupture time is significantly improved when a stress of 10 Kg/mm 2 is applied. On the other hand, in the same type of steel that does not contain B (Y steel) and the same type of steel that does not contain W (Z steel), even if Ti is added, only a significantly smaller effect can be obtained compared to X steel. In this way, an appropriate amount of Nb,
It has been found that in a high Cr-Mo steel containing V, N, etc., the creep rupture strength is significantly improved by further adding appropriate amounts of Ti, B, and W in combination. The present invention was completed based on the knowledge of the synergistic effect of Ti, B, and W explained above.

以下、本発明の成分限定理由について説明す
る。
The reasons for limiting the components of the present invention will be explained below.

Cは低温変態生成物の形成、炭化物の析出から
クリープ破断強度の向上に寄与する低廉な元素で
ある。0.20%を越えると焼入れ性が著しく増し、
強度は増加するが、溶接性、加工性が劣化するの
で、Cは0.20%以下とした。0.03%未満では高温
強度の確保が困難であり、デルタフエライト量が
増加し、切欠靭性の劣化をもたらすので、Cは
0.03%以上とした。
C is an inexpensive element that contributes to improving creep rupture strength through the formation of low-temperature transformation products and the precipitation of carbides. If it exceeds 0.20%, the hardenability increases significantly,
Although the strength increases, weldability and workability deteriorate, so the C content was set to 0.20% or less. If it is less than 0.03%, it is difficult to ensure high temperature strength, the amount of delta ferrite increases, and the notch toughness deteriorates.
It was set at 0.03% or more.

Siは脱酸剤として添加するが、多量に用いると
鋼の靭性が劣化するので、上限を1.00%とした。
高温長時間強度と靭性向上のためには、Siを下げ
た方がよいので下限は規定しない。
Si is added as a deoxidizing agent, but if used in large amounts, the toughness of the steel will deteriorate, so the upper limit was set at 1.00%.
In order to improve long-term strength and toughness at high temperatures, it is better to lower the Si content, so no lower limit is specified.

Mnは脱酸、脱硫剤として、また強度、熱間加
工性を改善した適正な組織を得るために有用な元
素であるが、0.1%未満では有用な効果がなく、
1.5%を越えると焼入れ性が高くなり、強度が上
がるものの曲げ等の加工性や靭性の劣化を招くの
で、0.1〜1.5%とした。
Mn is a useful element as a deoxidizing and desulfurizing agent, and for obtaining a suitable structure with improved strength and hot workability, but if it is less than 0.1%, it has no useful effect.
If it exceeds 1.5%, hardenability becomes high and strength increases, but it causes deterioration in workability such as bending and toughness, so it was set at 0.1 to 1.5%.

Niはデルタフエライト量を適正値に制御し、
高温強度を維持することと、改善のために添加す
るが、0.10%未満では効果がなく、1.0%を越え
ると熱間変形抵抗が増し、熱間加工上好ましくな
い上に、1.0%を越えても一層の靭性改善効果は
みられず、しかもNiは高価な元素であるので上
限を1.0%とした。
Ni controls the amount of delta ferrite to an appropriate value,
It is added to maintain and improve high-temperature strength, but if it is less than 0.10%, it has no effect, and if it exceeds 1.0%, the hot deformation resistance increases, making it unfavorable for hot processing. However, since no further toughness improvement effect was observed, and Ni is an expensive element, the upper limit was set at 1.0%.

Crは耐高温酸化性、高温長時間強度の向上の
ために添加するもので、650℃以上の高温長時間
強度はCrが7.0〜13.0%のとき高く、Crが13.0%
より多くなるとデルタフエライトが増し、高温長
時間強度が低下する。一方、7.0未満ではCr炭化
物による析出強化、Crの固溶強化が期待できず、
高温長時間強度が低下し、しかも7.0%未満では
高温の耐酸化性が低下する。このため、Crの成
分範囲は7.0〜13.0%とした。
Cr is added to improve high-temperature oxidation resistance and high-temperature long-term strength.High-temperature long-term strength above 650℃ is high when Cr is 7.0 to 13.0%, and Cr is 13.0%.
If the amount is higher, delta ferrite will increase and the high temperature long-term strength will decrease. On the other hand, if it is less than 7.0, precipitation strengthening due to Cr carbides and solid solution strengthening of Cr cannot be expected.
High-temperature long-term strength decreases, and if it is less than 7.0%, high-temperature oxidation resistance decreases. Therefore, the Cr component range was set to 7.0 to 13.0%.

Mo、Wは高温長時間強度を著しく高めるた
め、耐熱鋼には、不可欠の元素である。両元素は
鋼中固溶し強化するほか、炭化物を析出してクリ
ープ強度を向上させるが、0.4%未満のMoや0.05
%未満のWではこの効果がなく、第3図に示した
直線BCより下の範囲では高温強度の向上は十分
発揮されない。一方、2.5%を越えるMo、2.5%
を越えるWもしくは直線ADより上の範囲ではデ
ルタフエライト量が増し、高温強度を低下させる
上に、Mo、Wは高価な元素であるからコスト高
となり経済性の上からも好ましくない。またMo
単独添加では600℃を越える温度のクリープ強度
が十分でないので、Wは少なくとも0.05%添加す
る必要がある。
Mo and W are indispensable elements for heat-resistant steel because they significantly increase high-temperature, long-term strength. Both elements dissolve in solid solution in steel and strengthen it, as well as precipitate carbides and improve creep strength.
If the amount of W is less than %, this effect will not be obtained, and the high temperature strength will not be sufficiently improved in the range below the straight line BC shown in FIG. On the other hand, Mo exceeding 2.5%, 2.5%
In a range where W exceeds 100% or above the straight line AD, the amount of delta ferrite increases, lowering the high-temperature strength, and since Mo and W are expensive elements, the cost increases, which is also unfavorable from an economic point of view. Also Mo
Since the creep strength at temperatures exceeding 600° C. is insufficient when added alone, it is necessary to add at least 0.05% of W.

Nb、Vは炭化物もしくは炭窒化物として析出
し、長時間にわたつて高温強度の低下を抑制す
る。Nb炭化物もしくはNb炭窒化物の溶解度積は
V炭化物もしくはV炭窒化物の溶解度積より小さ
く、析出しやすいので高温短時間強度を著しく高
めるが、単独添加ではNb炭化物、Nb炭窒化物は
凝集、粗大化しやすく長時間高温強度を維持する
のが困難となる。長時間強度の向上にはNb、V
の複合添加が有効で、製造過程で析出したNb
(C、N)に高温で使用中M23C6、M6Cの炭化物
が析出し、VはV4C3の炭化物のほかに固溶状態
にあるVが上記炭化物M23C6、M6Cに拡散し、こ
れら炭化物の粗大化を抑制する。Nb、Vの複合
添加により微細析出したNb、Vの析出物、さら
に長時間経過後に微細析出するM23C6、M6C、固
有Vが高温長時間強度を向上させる。したがつ
て、V単独でも微細炭化物M23C6、M6Cは得られ
ず、長時間強度を改善することはできない。Nb、
Vはいずれも0.02%未満では上記の効果が不十分
である。また、NbもしくはVが多すぎても炭化
物が著しく粗大化しクリープ破断強度を下げ、し
かも切欠靭性や溶接性を低下させるので、Nbは
0.15%以下、Vは0.35%以下とした。
Nb and V precipitate as carbides or carbonitrides and suppress the decline in high temperature strength over a long period of time. The solubility product of Nb carbide or Nb carbonitride is smaller than the solubility product of V carbide or V carbonitride, and it is easy to precipitate, so it significantly increases the high temperature short-time strength, but when added alone, Nb carbide and Nb carbonitride aggregate, It tends to coarsen and it is difficult to maintain high temperature strength for a long time. Nb, V to improve long-term strength
The combined addition of Nb is effective, and Nb precipitated during the manufacturing process is
During use at high temperatures (C, N), carbides of M 23 C 6 and M 6 C precipitate, and V is in a solid solution state in addition to the carbides of V 4 C 3 . 6 C and suppresses the coarsening of these carbides. Precipitates of Nb and V that are finely precipitated by the combined addition of Nb and V, as well as M 23 C 6 , M 6 C, and intrinsic V that are finely precipitated after a long period of time improve the high-temperature long-term strength. Therefore, even if V is used alone, fine carbides M 23 C 6 and M 6 C cannot be obtained, and long-term strength cannot be improved. Nb,
If V is less than 0.02%, the above effects are insufficient. Also, if too much Nb or V is present, the carbides will become coarser and the creep rupture strength will be reduced, as well as notch toughness and weldability.
0.15% or less, and V 0.35% or less.

Tiは適量のNb、Vを含有する高Cr鋼におい
て、さらに適量のW、Bと一緒にTiを複合添加
することにより高温クリープ破断強度が著しく増
加することの知見による。この効果はTi単独で
は得られずTiとWとBを複合して添加するとき
に顕著にその効果が認められるものであり、この
効果を得るためには、0.01%以上の添加が必要で
あり、一方0.4%を越えての添加は、その効果が
飽和するとともに炭化物が粗大化する傾向がでて
くるので0.4%如何でなければならない。
Ti is based on the knowledge that high-temperature creep rupture strength is significantly increased by adding Ti in combination with appropriate amounts of W and B to high Cr steel containing appropriate amounts of Nb and V. This effect cannot be obtained with Ti alone, but is noticeable when Ti, W, and B are added in combination, and in order to obtain this effect, it is necessary to add 0.01% or more. On the other hand, if it is added in excess of 0.4%, the effect will be saturated and the carbides will tend to coarsen, so the content must be 0.4%.

Nは窒化物もしくは炭窒化物の形成、さらに固
有Nの残存から高温長時間強度を向上させるが、
0.005%未満ではその効果がなく、0.08%を越え
ると溶接時ブローホールが形成され、著しく溶接
性を劣化するので、Nは0.05%〜0.080%とした。
N improves high-temperature long-term strength due to the formation of nitrides or carbonitrides and the residual inherent N.
If it is less than 0.005%, it has no effect, and if it exceeds 0.08%, blowholes are formed during welding and weldability is significantly deteriorated, so the N content is set to 0.05% to 0.080%.

Bは適量のNb、Vを含有する高Cr鋼において
さらに適量のW、Tiと一緒にBを複合添加する
ことにより高温のクリープ強度が著しく増加する
ことの知見による。この効果はB単独では得られ
ず、BとWとTiを複合して添加するときに顕著
にその効果が認められるものであり、この効果を
得るためにはBは0.0008%以上の添加が必要であ
り、一方0.01%を越えての添加はその効果が飽和
するとともに熱間加工性の低下を生じるようにな
るので0.01%以下でなければならない。
B is based on the knowledge that high-temperature creep strength is significantly increased by adding B in combination with appropriate amounts of W and Ti to high Cr steel containing appropriate amounts of Nb and V. This effect cannot be obtained with B alone, but is noticeable when B, W, and Ti are added in combination. To obtain this effect, B must be added in an amount of 0.0008% or more. On the other hand, if added in excess of 0.01%, the effect will be saturated and hot workability will decrease, so the content must be 0.01% or less.

Cuは高Cr鋼に添加する場合、Crを含んだ酸化
被膜に粘性を与え、さらに被膜の定着性を良く
し、Cr鋼の耐酸化性を助ける。この効果を発揮
するためには、Cuは0.05%以上の添加が必要であ
る。一方、多量に添加すると靭性の劣化を招くの
で上限を0.3%とした。
When added to high Cr steel, Cu gives viscosity to the Cr-containing oxide film, improves the adhesion of the film, and helps the oxidation resistance of the Cr steel. In order to exhibit this effect, Cu needs to be added in an amount of 0.05% or more. On the other hand, since adding too much leads to deterioration of toughness, the upper limit was set at 0.3%.

[実施例] 第1表は本発明鋼、第2表は比較鋼の化学成分
を示す。これら化学成分の鋼塊を高周波溶解炉に
て製造し、その鋼塊を熱間圧延で20mm厚みの鋼板
とし、1050℃で焼きならし、760℃、1時間の焼
戻しの処理を行なつた。その後、6mmφ丸棒クリ
ープ試験片と溶接硬さ試験片を採取した。クリー
プ試験は、650℃、応力10Kg/mm2における破断時
間、溶接性試験は18Cr−8Niステンレス溶接棒を
用いた一層の肉盛溶接後、750℃、1時間の後熱
処理をした後の熱影響部の最高硬さを調べた。
[Example] Table 1 shows the chemical composition of the steel of the present invention, and Table 2 shows the chemical composition of the comparative steel. A steel ingot with these chemical components was manufactured in a high-frequency melting furnace, and the steel ingot was hot rolled into a 20 mm thick steel plate, normalized at 1050°C, and tempered at 760°C for 1 hour. Thereafter, a 6 mmφ round bar creep test piece and a weld hardness test piece were taken. The creep test is the rupture time at 650℃ and a stress of 10Kg/ mm2 , and the weldability test is the thermal effect after one-layer overlay welding using a 18Cr-8Ni stainless steel welding rod, followed by post-heat treatment at 750℃ for 1 hour. The maximum hardness of the part was investigated.

本発明における鋼種としては、C、Si、Ni、
Cr、Mo、Nb、V、W、Ti、B、Cuを変化させ
た鋼種を示した。比較鋼のうちイ鋼はSTBA26、
ロ鋼は○火STBA27の従来鋼、ハ鋼はNb、Vを添
加した鋼、ニ鋼はNb、V、Wを添加した鋼、ホ
鋼はNb、V、Wに加えてTiを添加した鋼、ヘ鋼
はNb、V、Wに加えてBを添加した鋼、ト鋼は
Nb、Vに加えてTi、Bを添加した鋼であり、チ
鋼はASTM T91(Super9Cr)鋼である。
The steel types used in the present invention include C, Si, Ni,
Steel types with varying Cr, Mo, Nb, V, W, Ti, B, and Cu are shown. Among the comparative steels, steel is STBA26,
B steel is a conventional steel with STBA27, C steel is a steel with Nb and V added, D steel is a steel with Nb, V, and W added, E steel is a steel with Ti added in addition to Nb, V, and W. , F steel is steel with B added in addition to Nb, V, and W;
It is a steel to which Ti and B are added in addition to Nb and V, and the steel is an ASTM T91 (Super9Cr) steel.

本発明の試験結果は第1表右欄に示すごとく、
優れた高温強度を有し、クリープ破断時間は9000
時間以上となつている。最高硬さ(Hv)は最高
強度が優れている割には大きな上昇はなく、すべ
て300以下となつている。
The test results of the present invention are as shown in the right column of Table 1.
Has excellent high temperature strength and creep rupture time of 9000
It's been over an hour. The maximum hardness (Hv) did not increase significantly despite the excellent maximum strength, and all were below 300.

一方、第2表右欄に示すごとく、比較鋼イ、ロ
はNb、V、W、Ti、Bを含有せず、クリープ破
断時間は著しく短い。ハ、ニ鋼はNb、Vならび
にWの添加によりクリープ破断時間が改善される
ものの本発明鋼に比べると短く劣つている。ホ、
ヘ鋼はNb、V、Wに加えてTiやBの添加により
クリープ破断時間が改善されるが、本発明鋼より
劣つている。ト鋼はWを添加していないため破断
時間は劣つている。なお従来の標準鋼である
Super9Cr鋼のチ鋼は本発明鋼に比べて大幅にク
リープ特性が劣つている。
On the other hand, as shown in the right column of Table 2, comparative steels A and B do not contain Nb, V, W, Ti, or B, and their creep rupture times are extremely short. Although the creep rupture time of steel C and D is improved by the addition of Nb, V and W, the creep rupture time is shorter than that of the steel of the present invention. Ho,
Although the creep rupture time of F steel is improved by adding Ti and B in addition to Nb, V, and W, it is inferior to the steel of the present invention. Since steel is not added with W, its rupture time is inferior. Note that this is the conventional standard steel.
Super9Cr steel has significantly inferior creep properties compared to the steel of the present invention.

上記のように、本発明鋼は、現用のCr−Mo鋼
より高温当時管強度に優れ、600〜650℃の温度範
囲でSUS304以上の長時間強度を有する鋼であ
る。しかも、溶接性も考慮し、最高硬さ(Hv
(10))が300以下となつて実用上差しつかえなく
使用できる範囲である。したがつて、高価な
18Cr−8Ni系オーステナイトステンレス鋼の代替
使用が可能で、本発明鋼は経済的な熱交換器材等
の耐熱鋼として極めて有用である。
As mentioned above, the steel of the present invention has superior pipe strength at high temperatures than the currently used Cr-Mo steel, and has long-term strength equal to or higher than SUS304 in the temperature range of 600 to 650°C. Moreover, considering weldability, the maximum hardness (Hv
(10)) is 300 or less, which is a range that can be used without any problem in practical use. Therefore, expensive
It is possible to use the steel as an alternative to 18Cr-8Ni austenitic stainless steel, and the steel of the present invention is extremely useful as an economical heat-resistant steel for heat exchange equipment and the like.

本発明鋼の用途としては、ボイラ管、化学プラ
ント用耐熱鋼管、高速増殖炉用蒸気発生器管、過
熱器管のような耐熱用鋼管として好適であり、さ
らに、一般に耐熱性が要求される部材としても広
く使用可能である。
The steel of the present invention is suitable for use as heat-resistant steel pipes such as boiler pipes, heat-resistant steel pipes for chemical plants, steam generator pipes for fast breeder reactors, and superheater pipes. It can also be widely used.

[発明の効果] 以上のように、本発明に係る高温強度に優れた
フエライト系耐熱鋼によれば、従来のフエライト
系耐熱鋼に比べ、高温特に600℃以上での強度
(特にクリープ破断強度)が大幅に改善されてお
り、しかも溶接性、加工性も良好な鋼であり、例
えば、高温、高圧環境下で使用される超々臨界圧
ボイラ材料としてやFBR用蒸気発生管、過熱器
管等に使用し、薄肉化、長寿命化に寄与できる。
[Effects of the Invention] As described above, the ferritic heat-resistant steel with excellent high-temperature strength according to the present invention has higher strength (especially creep rupture strength) at high temperatures, particularly at temperatures above 600°C, than conventional ferritic heat-resistant steels. It is a steel with significantly improved weldability and workability.For example, it can be used as a material for ultra-supercritical pressure boilers used in high-temperature, high-pressure environments, steam generator tubes for FBR, superheater tubes, etc. This can contribute to thinner walls and longer lifespans.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はクリープ破断時間へのBの影響を示す
線図、第2図はクリープ破断時間へのTiの影響
を示す線図、第3図はMo量とW量とクリープ破
断強度の関係を示す線図である。
Figure 1 is a diagram showing the influence of B on creep rupture time, Figure 2 is a diagram showing the influence of Ti on creep rupture time, and Figure 3 is a diagram showing the relationship between Mo content, W content, and creep rupture strength. FIG.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 重量%で C:0.03〜0.20%、Si:1.0%以下 Mn:0.1〜1.5%、Ni:0.1〜1.0% Cr:7.0〜13.0%、Mo:0.4〜2.5% Nb:0.02〜0.15%、V:0.02〜0.35% Ti:0.01〜0.40%、W:0.05〜2.50% N:0.005〜0.080%、B:0.0008〜0.0100% を含有し、残部Feおよび不可避的不純物からな
ることを特徴とする高温強度に優れたフエライト
系耐熱鋼。 2 重量%で C:0.03〜0.20%、Si:1.0%以下 Mn:0.1〜1.5%、Ni:0.1〜1.0% Cr:7.0〜13.0%、Mo:0.4〜2.5% Nb:0.02〜0.15%、V:0.02〜0.35% Ti:0.01〜0.40%、W:0.05〜2.50% N:0.005〜0.080%、B:0.0008〜0.0100% に加え、Cu:0.3%以下を含有し、残部Feおよび
不可避的不純物からなることを特徴とする高温強
度に優れたフエライト系耐熱鋼。
[Claims] 1. C: 0.03-0.20%, Si: 1.0% or less Mn: 0.1-1.5%, Ni: 0.1-1.0% Cr: 7.0-13.0%, Mo: 0.4-2.5% Nb: Contains 0.02 to 0.15%, V: 0.02 to 0.35%, Ti: 0.01 to 0.40%, W: 0.05 to 2.50%, N: 0.005 to 0.080%, B: 0.0008 to 0.0100%, with the remainder consisting of Fe and inevitable impurities. A ferritic heat-resistant steel with excellent high-temperature strength. 2 Weight% C: 0.03-0.20%, Si: 1.0% or less Mn: 0.1-1.5%, Ni: 0.1-1.0% Cr: 7.0-13.0%, Mo: 0.4-2.5% Nb: 0.02-0.15%, V : 0.02~0.35% Ti: 0.01~0.40%, W: 0.05~2.50%, N: 0.005~0.080%, B: 0.0008~0.0100%, and contains Cu: 0.3% or less, with the balance containing Fe and unavoidable impurities. A ferritic heat-resistant steel with excellent high-temperature strength.
JP21994786A 1986-09-18 1986-09-18 Heat resistant ferritic steel having superior strength at high temperature Granted JPS6376854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21994786A JPS6376854A (en) 1986-09-18 1986-09-18 Heat resistant ferritic steel having superior strength at high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21994786A JPS6376854A (en) 1986-09-18 1986-09-18 Heat resistant ferritic steel having superior strength at high temperature

Publications (2)

Publication Number Publication Date
JPS6376854A JPS6376854A (en) 1988-04-07
JPH0359135B2 true JPH0359135B2 (en) 1991-09-09

Family

ID=16743526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21994786A Granted JPS6376854A (en) 1986-09-18 1986-09-18 Heat resistant ferritic steel having superior strength at high temperature

Country Status (1)

Country Link
JP (1) JPS6376854A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621323B2 (en) * 1989-03-06 1994-03-23 住友金属工業株式会社 High strength and high chrome steel with excellent corrosion resistance and oxidation resistance
JP2548637B2 (en) * 1991-05-29 1996-10-30 高砂熱学工業株式会社 Operating method of supercooled water production equipment
JP3480061B2 (en) * 1994-09-20 2003-12-15 住友金属工業株式会社 High Cr ferritic heat resistant steel
FR2902111B1 (en) * 2006-06-09 2009-03-06 V & M France Soc Par Actions S STEEL COMPOSITIONS FOR SPECIAL PURPOSES
JP5371420B2 (en) * 2008-12-26 2013-12-18 三菱重工業株式会社 Heat resistant cast steel and steam turbine main valves
CN106735853A (en) * 2016-12-26 2017-05-31 重庆派馨特机电有限公司 A kind of creep resistant stirs head material
CN115852265B (en) * 2022-11-08 2023-10-24 江阴兴澄特种钢铁有限公司 Steel tube for hollow ball screw in high-temperature environment and manufacturing method thereof

Also Published As

Publication number Publication date
JPS6376854A (en) 1988-04-07

Similar Documents

Publication Publication Date Title
US5069870A (en) High-strength high-cr steel with excellent toughness and oxidation resistance
JP3334217B2 (en) Low Cr ferritic heat resistant steel with excellent toughness and creep strength
JP2967886B2 (en) Low alloy heat resistant steel with excellent creep strength and toughness
JPH0885849A (en) High chromium ferritic heat resistant steel
JP3982069B2 (en) High Cr ferritic heat resistant steel
JPH062927B2 (en) High strength low alloy steel with excellent corrosion resistance and oxidation resistance
JP2631250B2 (en) High-strength ferritic heat-resistant steel for steel tubes for boilers
EP0199046B1 (en) High-strength heat-resisting ferritic steel pipe and tube
JP2002235154A (en) HIGH Cr FERRITIC HEAT RESISTANT STEEL
KR20140117417A (en) Austenitic alloy
JP3745567B2 (en) Boiler steel excellent in ERW weldability and ERW boiler steel pipe using the same
JPH04371552A (en) High strength ferritic heat resisting steel
JPH0359135B2 (en)
JP4377869B2 (en) Boiler steel excellent in ERW weldability and ERW boiler steel pipe using the same
JPS5914097B2 (en) Ferritic heat-resistant steel with improved toughness
JP3531228B2 (en) High Cr ferritic heat resistant steel
JPH11226738A (en) Method for welding high-cr ferritic heat resisting steel and production of its welded steel tube
JP3418884B2 (en) High Cr ferritic heat resistant steel
JPH11193448A (en) Clad steel tube
JPH04365838A (en) Ferritic heat resisting steel excellent in hot workability and strength at high temperature
JP3869908B2 (en) High chromium ferritic heat resistant steel with excellent high temperature creep strength
JPH055891B2 (en)
JPH02217438A (en) Heat-resistant steel having high creep strength at high temperature
JP3091125B2 (en) Low alloy heat resistant steel with excellent creep strength and toughness
JP2002241903A (en) HIGH Cr FERRITIC HEAT RESISTANT STEEL