JPS6214106B2 - - Google Patents

Info

Publication number
JPS6214106B2
JPS6214106B2 JP3279579A JP3279579A JPS6214106B2 JP S6214106 B2 JPS6214106 B2 JP S6214106B2 JP 3279579 A JP3279579 A JP 3279579A JP 3279579 A JP3279579 A JP 3279579A JP S6214106 B2 JPS6214106 B2 JP S6214106B2
Authority
JP
Japan
Prior art keywords
region
field effect
effect transistor
porous
junction field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3279579A
Other languages
Japanese (ja)
Other versions
JPS55124270A (en
Inventor
Kazutoshi Nagano
Tatsunori Nakajima
Kosuke Yasuno
Kosei Kajiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3279579A priority Critical patent/JPS55124270A/en
Publication of JPS55124270A publication Critical patent/JPS55124270A/en
Publication of JPS6214106B2 publication Critical patent/JPS6214106B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/808Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a PN junction gate, e.g. PN homojunction gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 本発明は接合形電界効果トランジスタの製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a junction field effect transistor.

第1図に島領域の底面および側面が絶縁物で分
離された構造を有する従来の接合形電界効果トラ
ンジスタの一部断面模形図を示す。第1図で1は
シリコン基板、2は絶縁物、3はたとえばN形シ
リコン領域、4はソース領域あるいはドレイン領
域と金属配線とのオーミツクコンタクトをとるた
めのN+形シリコン領域、5はゲート領域であり
3と反対導電形すなわちP形シリコン領域であ
る。
FIG. 1 shows a partial cross-sectional schematic diagram of a conventional junction field effect transistor having a structure in which the bottom and side surfaces of an island region are separated by an insulator. In Figure 1, 1 is a silicon substrate, 2 is an insulator, 3 is, for example, an N-type silicon region, 4 is an N + type silicon region for making ohmic contact between the source or drain region and metal wiring, and 5 is a gate. This region is of the opposite conductivity type to 3, that is, it is a P-type silicon region.

なお第1図では金属配線を省略している。第1
図において4のN+形シリコン領域からソースお
よびドレイン電極を、5のP形シリコン領域から
ゲート電極を金属配線たとえばアルミニウムによ
り取り出せば、島領域の底面および側面が絶縁物
で分離された絶縁分離形接合形電界効果トランジ
スタとなる。
Note that metal wiring is omitted in FIG. 1. 1st
In the figure, if the source and drain electrodes are taken out from the N + type silicon region 4 and the gate electrode is taken out from the P type silicon region 5 using metal wiring, for example, aluminum, the bottom and side surfaces of the island regions are separated by an insulating material. It becomes a junction field effect transistor.

第2図に第1図に示した従来の絶縁分離形接合
形電界効果トランジスタにおける絶縁分離構造の
製造方法を工程順に示す。まずN形シリコン基板
1の主表面にP形シリコン層11を形成し(同図
A)、さらにその表面にN形シリコン層3を形成
する(同図B)。次いでその表面に耐弗酸性の被
膜である窒化膜Si3N412を島領域14のみに選
択的に被着する(同図C)。次に上記基板15を
弗酸溶液中に浸漬し、基板15に正の電圧を印加
し光を照射しながら陽極処理を行なう。そうする
と弗酸溶液に露出しているN形シリコン層3の分
離領域13から上記基板15の内部に向かつてシ
リコンの多孔質化が進行していく。多孔質化がP
形シリコン層11に到達すると、そこから多孔質
化はP形シリコン層11内を進行していき、やが
てP形シリコン層11はすべて多孔質化されてし
まう。従つて同図Dに示したようにN形シリコン
層3からなる島領域17は底面および側面が多孔
質シリコン16で取り囲まれた構造となる。上記
基板18を酸化性雰囲気中で熱処理すると多孔質
シリコン16は容易に酸化され、絶縁物2とな
る。その後窒化膜12を除去すれば、第2図Eに
示したように絶縁分離構造が得られる。次いで、
通常の半導体装置の製造方法を行なうことによ
り、第1図に示した絶縁分離形接合形電界効果ト
ランジスタを得ることができる。
FIG. 2 shows, in order of steps, a method for manufacturing the insulation isolation structure in the conventional insulation isolation type junction field effect transistor shown in FIG. First, a P-type silicon layer 11 is formed on the main surface of an N-type silicon substrate 1 (FIG. 1A), and an N-type silicon layer 3 is further formed on that surface (FIG. 2B). Next, a nitride film 12 , which is a hydrofluoric acid-resistant film, is selectively deposited on the surface only on the island region 14 (FIG. 3C). Next, the substrate 15 is immersed in a hydrofluoric acid solution, and anodic treatment is performed while applying a positive voltage to the substrate 15 and irradiating it with light. Then, the silicon becomes porous from the separation region 13 of the N-type silicon layer 3 exposed to the hydrofluoric acid solution toward the inside of the substrate 15. Porousness is P
When reaching the P-type silicon layer 11, the porosity progresses within the P-type silicon layer 11, and eventually the entire P-type silicon layer 11 becomes porous. Therefore, as shown in FIG. D, the island region 17 made of the N-type silicon layer 3 has a structure in which the bottom and side surfaces are surrounded by the porous silicon 16. When the substrate 18 is heat-treated in an oxidizing atmosphere, the porous silicon 16 is easily oxidized and becomes the insulator 2. If the nitride film 12 is then removed, an insulating isolation structure as shown in FIG. 2E is obtained. Then,
The insulated junction type field effect transistor shown in FIG. 1 can be obtained by performing a normal semiconductor device manufacturing method.

ところで第1図の従来の絶縁分離形接合形電界
効果トランジスタにおいては、島領域の底面をす
べて多孔質化してしまわなければならない。通常
の接合形電界効果トランジスタでは島領域の大き
さは300〜500μm角である。
In the conventional isolated junction field effect transistor shown in FIG. 1, the entire bottom surface of the island region must be made porous. In a typical junction field effect transistor, the size of the island region is 300 to 500 μm square.

島領域が大きくなると多孔質化時間はそれに比
例して増加し、前述の300〜500μm角の島領域で
は多孔質化時間は20〜30分間となる。
As the island area becomes larger, the time required to make it porous increases in proportion to the size of the island, and for the above-mentioned island area of 300 to 500 μm square, the time required to make it porous is 20 to 30 minutes.

多孔質化時間が長くなるとそれにつれて耐弗酸
性被膜である窒化膜も3000Å以上必要となる。と
ころが窒化膜が3000Å以上になるとシリコン基板
の反りや、シリコン基板にクラツクが生じてしま
う。
As the porosity formation time increases, the nitride film, which is a hydrofluoric acid-resistant film, also needs to be 3000 Å or more thick. However, if the thickness of the nitride film exceeds 3000 Å, the silicon substrate may warp or crack.

また多孔質化時間が長くなると前述した多孔質
シリコンを酸化した後に島領域に歪が急激に生じ
る。第3図に多孔質化時間と酸化後の島領域の段
差の関係を示す。多孔質化時間が10分以上になる
と島領域の段差が急激に増大し、島領域の歪も急
激に増大する。島領域の段差が大きくなると、フ
オトエツチ工程で微細加工が困難になる、あるい
はアルミ配線の断線が生じるなど半導体装置製造
工程上不都合である。また歪の増大に伴なつて、
ソース・ドレイン間耐圧、ゲート耐圧の減少ある
いはゲートリーク電流の増大など電気的特性に悪
影響をおよぼす。
Moreover, when the porous formation time becomes longer, strain rapidly occurs in the island region after oxidizing the above-mentioned porous silicon. FIG. 3 shows the relationship between the porosity formation time and the level difference in the island region after oxidation. When the porous formation time exceeds 10 minutes, the level difference in the island region increases rapidly, and the strain in the island region also increases rapidly. If the step difference in the island region becomes large, it is inconvenient in the semiconductor device manufacturing process, such as making microfabrication difficult in the photo-etching process or causing disconnection of the aluminum wiring. Also, as the strain increases,
This adversely affects electrical characteristics, such as a decrease in source-drain breakdown voltage and gate breakdown voltage, or an increase in gate leakage current.

以上述べたように従来の絶縁分離形接合形電界
効果トランジスタにおいては、島領域の大きさが
300〜500μm角であるので、多孔質化時間が20〜
30分間となり、前述したような欠点が生じてい
た。
As mentioned above, in the conventional isolated junction field effect transistor, the size of the island region is
Since it is 300~500μm square, the porous formation time is 20~
The duration was 30 minutes, and the above-mentioned drawbacks occurred.

本発明は島領域の面積を変えずに、すなわち従
来と同じ相互コンダクタンスを有し、前述した従
来の欠点を生じない絶縁分離形接合形電界効果ト
ランジスタの製造方法を提供するものである。
The present invention provides a method for manufacturing an insulated junction field effect transistor without changing the area of the island region, that is, having the same mutual conductance as in the prior art, and without the above-mentioned drawbacks of the prior art.

すなわち従来と同じ島面積を有する絶縁分離形
接合形電界効果トランジスタにおいて、従来の多
孔質化時間の1/5以下、たとえば3分間の多孔質
化時間で、島領域の底面および側面をすべて多孔
質化できる絶縁分離形接合電界効果トランジスタ
を提供するものである。
In other words, in an isolated junction field effect transistor having the same island area as a conventional one, the bottom and side surfaces of the island region can be made porous in less than 1/5 of the conventional porous formation time, for example, 3 minutes. The present invention provides an isolated type junction field effect transistor that can be used as an insulated junction field effect transistor.

従つて、本発明によると耐弗酸性被膜である窒
化膜は1000Å程度で充分であり、シリコン基板の
反りやシリコン基板のクラツクは生じない。また
島領域の段差も4000Å程度であり、半導体装置の
製造工程上何らの問題も発生しない。さらに島領
域の歪もほとんど生じなく、電気的特性も著しく
改善される。
Therefore, according to the present invention, the thickness of the nitride film, which is a hydrofluoric acid-resistant film, is sufficient to be about 1000 Å, and warpage of the silicon substrate or cracking of the silicon substrate does not occur. Furthermore, the level difference in the island region is about 4000 Å, and no problem occurs in the manufacturing process of the semiconductor device. Furthermore, almost no distortion occurs in the island region, and the electrical characteristics are significantly improved.

本発明の接合形電界効果トランジスタの製造方
法は、島領域の底面および側面が絶縁物により取
り囲まれている絶縁分離形の接合形電界効果トラ
ンジスタの製造方法において、前記接合形電界効
果トランジスタの各格子状ゲートの格子点である
無効ゲート領域の少なくとも1個から、前記接合
形電界効果トランジスタの島領域の底面に形成さ
れている第1導電型の半導体層を、陽極処理によ
り多孔質シリコン層に変質する工程、および前記
多孔質シリコン層を絶縁物に変質する工程とを含
んでいることを特徴とするものである。
A method for manufacturing a junction field effect transistor according to the present invention includes a method for manufacturing an insulating type junction field effect transistor in which the bottom and side surfaces of an island region are surrounded by an insulator, in which each lattice of the junction field effect transistor is The semiconductor layer of the first conductivity type formed on the bottom surface of the island region of the junction field effect transistor is transformed into a porous silicon layer by anodization from at least one of the invalid gate regions that are lattice points of the shaped gate. and a step of changing the porous silicon layer into an insulator.

以下本発明の一実施例方法により得られた絶縁
分離形接合形電界効果トランジスタを用いて詳細
に説明する。第4図は従来例による絶縁分離形接
合形電界効果トランジスタの表面パターン図であ
る。図ではアルミ配線は省略している。ここで1
9および20はN形シリコン層からなる島領域で
それぞれソースSあるいはドレインD領域であ
る。21,22はソースおよびドレイン領域から
オーミツクコンタクトをとるためのN+形シリコ
ン領域、23はゲート領域となるP形シリコン領
域である。第4図より、ソースS領域19とドレ
インD領域20はゲート領域23を間にして上下
左右に対向している。従つて上記ゲート領域23
はチヤンネル領域として有効に働らくことがわか
る。このゲート領域23を有効ゲート領域と称す
る。ところが斜線部24は上下左右が有効ゲート
領域であり、斜め方向はソース領域あるいはドレ
イン領域とが対向しており、従つてこの斜線部2
4はチヤンネル領域として働らかない。この斜線
部24を無効ゲート領域と称する。
A detailed explanation will be given below using an insulated junction type field effect transistor obtained by a method according to an embodiment of the present invention. FIG. 4 is a surface pattern diagram of a conventional isolation type junction field effect transistor. The aluminum wiring is omitted in the figure. Here 1
Reference numerals 9 and 20 are island regions made of N-type silicon layers, which are source S and drain D regions, respectively. Numerals 21 and 22 are N + type silicon regions for making ohmic contact with the source and drain regions, and 23 is a P type silicon region serving as a gate region. As shown in FIG. 4, the source S region 19 and the drain D region 20 are vertically and horizontally opposed to each other with the gate region 23 in between. Therefore, the gate region 23
It can be seen that the channel region functions effectively as a channel region. This gate region 23 is called an effective gate region. However, the upper, lower, left, and right sides of the hatched area 24 are effective gate regions, and the source or drain regions face each other in the diagonal direction.
4 does not work as a channel area. This shaded area 24 is referred to as an invalid gate area.

本発明は上述した無効ゲート領域24を多孔質
化の窓として利用するものであり、従つて有効ゲ
ート領域23は従来と同一の面積であり、ゲート
幅は従来と全く同一である。それ故従来と同一の
相互コンダクタンスを得ることができる。
The present invention utilizes the above-mentioned ineffective gate region 24 as a window for making it porous. Therefore, the effective gate region 23 has the same area as the conventional one, and the gate width is exactly the same as the conventional one. Therefore, the same mutual conductance as before can be obtained.

第5図に本発明の接合形電界効果トランジスタ
の製造方法により得られた絶縁分離形電界効果ト
ランジスタの一実施例の一部断面模型図を示す。
ここでアルミ配線は省略している。31はたとえ
ばN形シリコン基板であり、32は多孔質シリコ
ンを酸化して形成した絶縁物である。33はN形
シリコン層からなる島領域であり、34,35は
それぞれソースSおよびドレインD領域のN+
シリコン領域である。36はゲート領域となるP
形シリコン領域である。無効ゲート領域24は分
離領域(第2図の13)の窒化膜12の窓開けを
行なう際、同時に窒化膜の窓開けが行なわれ、そ
の後の多孔質化工程により分離領域と同時に多孔
質化が行なわれ、第5図の構造となる。
FIG. 5 shows a partial cross-sectional model diagram of an example of an insulation-separated field effect transistor obtained by the method of manufacturing a junction field effect transistor of the present invention.
The aluminum wiring is omitted here. 31 is, for example, an N-type silicon substrate, and 32 is an insulator formed by oxidizing porous silicon. 33 is an island region made of an N-type silicon layer, and 34 and 35 are N + type silicon regions of the source S and drain D regions, respectively. 36 is P which becomes the gate region
It is a shaped silicon area. When the nitride film 12 in the isolation region (13 in FIG. 2) is opened, the nitride film is opened at the same time, and the ineffective gate region 24 is made porous at the same time as the isolation region in the subsequent porous process. The structure shown in FIG. 5 is obtained.

第6図に第5図に示した一実施例の表面パター
ン図を示す。ここで37はN形シリコン層よりな
る島領域であり、39はその島領域37の内の一
部分を示している。38は分離領域である。従来
の絶縁分離形接合形電界効果トランジスタにおい
ては、多孔質化すべき島領域37の底面の一辺の
長さは第6図のBであつて、前述したようにB=
300〜500μmであつた。ところが本発明により得
られた絶縁分離形接合形電界効果トランジスタに
おいては、島領域37内のゲート領域の格子点2
4(無効ゲート領域)に多孔質化の窓が島領域3
7内に多数設けられており、多孔質化は分離領域
38の表面からと、無効ゲート領域24の表面か
ら同時に進行する。従つて、島領域37の底面を
すべて多孔質化するためには、第6図のAの長さ
だけ底面の多孔質化を行なえば良い。このAの値
は、本実施例では20μm程度である。従つて多孔
質化時間は約3分間で充分である。それ故多孔質
化におけるマスクである窒化膜は1000Åで充分で
あり、シリコン基板の反りやクラツクは生じるこ
とがなく、また島領域の段差も4000Å程度と小さ
く半導体装置の製造工程上、あるいは電気的特性
への影響もほとんど問題とならない。
FIG. 6 shows a surface pattern diagram of one embodiment shown in FIG. 5. Here, 37 is an island region made of an N-type silicon layer, and 39 indicates a part of the island region 37. 38 is a separation area. In the conventional insulated junction type field effect transistor, the length of one side of the bottom surface of the island region 37 to be made porous is B in FIG. 6, and as described above, B=
It was 300 to 500 μm. However, in the isolated junction field effect transistor obtained by the present invention, the lattice point 2 of the gate region within the island region 37
4 (ineffective gate region) has a porous window in island region 3
A large number of them are provided in 7, and porous formation progresses simultaneously from the surface of the isolation region 38 and from the surface of the invalid gate region 24. Therefore, in order to make the entire bottom surface of the island region 37 porous, it is sufficient to make the bottom surface porous by the length of A in FIG. The value of A is approximately 20 μm in this embodiment. Therefore, a porous formation time of about 3 minutes is sufficient. Therefore, a thickness of 1000 Å for the nitride film, which serves as a mask for creating porosity, is sufficient, and the silicon substrate will not warp or crack, and the step difference in the island region is only about 4000 Å, making it ideal for semiconductor device manufacturing processes and electrical The effect on characteristics is also hardly a problem.

以上の実施例の説明ではアルミ電極を省略した
図面を用いたが、ゲート電極はゲート拡散層の表
面にアルミ配線層を設けることにより、形成され
ている。
In the above description of the embodiment, drawings in which aluminum electrodes are omitted are used, but the gate electrodes are formed by providing an aluminum wiring layer on the surface of the gate diffusion layer.

以上述べたように本発明の接合形電界効果トラ
ンジスタの製造方法では、島領域内のゲート領域
の格子点である無効ゲート領域に多孔質化の窓を
設け、前記無効ゲート領域と分離領域の表面から
多孔質化を進行させるので、島領域の底面をすべ
て多孔質化させるに要する時間は、無効ゲート領
域の間隔により決まつてしまい、従来の1/5以下
の時間となる。また本発明では島領域37の大き
さは多孔質化時間と無関係になつてしまい、従つ
て同じ多孔質化時間でも島領域37の大きさは任
意に大きくできる。
As described above, in the method for manufacturing a junction field effect transistor of the present invention, a porous window is provided in the ineffective gate region, which is a lattice point of the gate region in the island region, and the surface of the ineffective gate region and the separation region is Since the porous state is progressed from the beginning, the time required to make the entire bottom surface of the island region porous is determined by the interval between the invalid gate regions, and is less than 1/5 of the conventional time. Furthermore, in the present invention, the size of the island region 37 is independent of the porous formation time, so the size of the island region 37 can be arbitrarily increased even with the same porous formation time.

多孔質化時間が従来の1/5以下となるので、前述 した従来の欠点は生じ得ない。 As the porous formation time is less than 1/5 of the conventional time, the above-mentioned The drawbacks of the conventional method cannot occur.

なお、前述した本発明の一実施例ではゲート領
域の格子点に多孔質化の窓を設けたが、この窓は
無効ゲート領域より大きく(たとえば第6図の点
線40内の領域)してもあるいは小さくしても本
発明の効果は損なわれることはない。またすべて
の上記格子点に多孔質化の窓を設けずとも、島領
域内に少なくとも1個の格子点に多孔質化の窓を
設ければ本発明の効果が得られる。
In the embodiment of the present invention described above, a porous window is provided at the lattice points of the gate region, but even if this window is larger than the invalid gate region (for example, the region within the dotted line 40 in FIG. 6), Alternatively, even if it is made smaller, the effects of the present invention are not impaired. Further, the effects of the present invention can be obtained without providing porous windows at all of the lattice points as long as a porous window is provided at at least one lattice point within the island region.

また、本発明の他の実施例として、前記格子点
のシリコン基板をP形シリコン層(第2図の1
1)に達するまでエツチングし、その後多孔質化
しても同様の効果が得られる。
Further, as another embodiment of the present invention, the silicon substrate at the lattice points is replaced with a P-type silicon layer (1 in FIG. 2).
A similar effect can be obtained by etching until reaching 1) and then making it porous.

さらに本発明は単体の絶縁分離形接合形電界効
果トランジスタに限られるものではなく、IC・
LSIなどの集積回路内の絶縁分離形接合形電界効
果トランジスタにも適用され得ることは明らかで
ある。
Furthermore, the present invention is not limited to a single isolated type junction field effect transistor, but is also applicable to ICs and
It is clear that the present invention can also be applied to isolated junction field effect transistors in integrated circuits such as LSIs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の接合形電界効果トランジスタの
一部断面模型図、第2図A〜Eは第1図に示した
トランジスタの製造方法を説明するための図、第
3図は多孔質化時間と段差の関係を示す図、第4
図は従来の接合形電界効果トランジスタの表面パ
ターン図、第5図は本発明の一実施例における接
合形電界トランジスタの一部断面模型図、第6図
は第5図に示した実施例の表面パターン図であ
る。 31……シリコン基板、32……絶縁物、33
……島領域、34……ソース領域、35……ドレ
イン領域、36……ゲート領域、24……無効ゲ
ート領域。
Figure 1 is a partial cross-sectional model diagram of a conventional junction field effect transistor, Figures 2 A to E are diagrams for explaining the manufacturing method of the transistor shown in Figure 1, and Figure 3 is the porous formation time. Diagram showing the relationship between and level difference, 4th
The figure is a surface pattern diagram of a conventional junction field effect transistor, Figure 5 is a partial cross-sectional model diagram of a junction field transistor according to an embodiment of the present invention, and Figure 6 is a surface pattern of the embodiment shown in Figure 5. It is a pattern diagram. 31...Silicon substrate, 32...Insulator, 33
... Island region, 34 ... Source region, 35 ... Drain region, 36 ... Gate region, 24 ... Invalid gate region.

Claims (1)

【特許請求の範囲】[Claims] 1 島領域の底面および側面が絶縁物により取り
囲まれている絶縁分離形の接合形電界効果トラン
ジスタを製造するに際し、前記接合形電界効果ト
ランジスタの各格子状ゲートの格子点である無効
ゲート領域の少なくとも1個から、前記接合形電
界効果トランジスタの島領域の底面に形成されて
いる第1導電型の半導体層を、陽極処理により多
孔質シリコン層に変質する工程、および前記多孔
質シリコン層を絶縁物に変質する工程とを含んで
いることを特徴とする接合形電界効果トランジス
タの製造方法。
1. When manufacturing an isolation type junction field effect transistor in which the bottom and side surfaces of the island region are surrounded by an insulator, at least one of the ineffective gate regions which is a lattice point of each lattice gate of the junction field effect transistor is manufactured. A step of changing the first conductivity type semiconductor layer formed on the bottom surface of the island region of the junction field effect transistor into a porous silicon layer by anodizing, and converting the porous silicon layer to an insulator. 1. A method for manufacturing a junction field effect transistor, comprising the step of:
JP3279579A 1979-03-19 1979-03-19 Junction type field effect transistor Granted JPS55124270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3279579A JPS55124270A (en) 1979-03-19 1979-03-19 Junction type field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3279579A JPS55124270A (en) 1979-03-19 1979-03-19 Junction type field effect transistor

Publications (2)

Publication Number Publication Date
JPS55124270A JPS55124270A (en) 1980-09-25
JPS6214106B2 true JPS6214106B2 (en) 1987-03-31

Family

ID=12368776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3279579A Granted JPS55124270A (en) 1979-03-19 1979-03-19 Junction type field effect transistor

Country Status (1)

Country Link
JP (1) JPS55124270A (en)

Also Published As

Publication number Publication date
JPS55124270A (en) 1980-09-25

Similar Documents

Publication Publication Date Title
JPH0352224B2 (en)
JPS5946107B2 (en) Manufacturing method of MIS type semiconductor device
JPS59130465A (en) Manufacture of metal insulator semiconductor device
JPS6214106B2 (en)
JPS6252950B2 (en)
JP2782781B2 (en) Method for manufacturing semiconductor device
JPH05243264A (en) Manufacture of transistor
KR970004079A (en) Semiconductor device and manufacturing method
KR19980077231A (en) Separator for Semiconductor Device and Formation Method
JPS5831730B2 (en) Manufacturing method of semiconductor device
JPH0196960A (en) Semiconductor device
JPH0370156A (en) Manufacture of semiconductor device
KR960006339B1 (en) Fabricating method of semiconductor device
JPS5951745B2 (en) Manufacturing method of semiconductor device
JPS5942979B2 (en) Manufacturing method of semiconductor device
JPS62263658A (en) Semiconductor device and manufacture thereof
JPH0587016B2 (en)
JPH023257A (en) Semiconductor device having field shield structure and its manufacture
JPS6346773A (en) Manufacture of mos transistor
JPS6238870B2 (en)
JPS60173875A (en) Manufacture of semiconductor device
JPH0377376A (en) Manufacture of semiconductor device
JPS60121769A (en) Manufacture of mis semiconductor device
JPS61220451A (en) Manufacture of semiconductor device
JPS6146992B2 (en)