JPS5951745B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device

Info

Publication number
JPS5951745B2
JPS5951745B2 JP54133251A JP13325179A JPS5951745B2 JP S5951745 B2 JPS5951745 B2 JP S5951745B2 JP 54133251 A JP54133251 A JP 54133251A JP 13325179 A JP13325179 A JP 13325179A JP S5951745 B2 JPS5951745 B2 JP S5951745B2
Authority
JP
Japan
Prior art keywords
type
substrate
porous
region
island region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54133251A
Other languages
Japanese (ja)
Other versions
JPS5656647A (en
Inventor
清司 大仲
孝生 梶原
龍典 中島
数利 長野
耕介 安野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP54133251A priority Critical patent/JPS5951745B2/en
Publication of JPS5656647A publication Critical patent/JPS5656647A/en
Publication of JPS5951745B2 publication Critical patent/JPS5951745B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • H01L21/7627Vertical isolation by full isolation by porous oxide silicon, i.e. FIPOS techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • H01L21/76281Lateral isolation by selective oxidation of silicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Bipolar Transistors (AREA)
  • Element Separation (AREA)

Description

【発明の詳細な説明】 本発明は複数の島領域が互いに絶縁分離されてなる半導
体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device in which a plurality of island regions are insulated and isolated from each other.

集積回路に用いる半導体装置の製造方法において、集積
回路の各素子間を絶縁分離する方法として、以下に述べ
る多孔質化シリコンを用いた絶縁分離法が特願昭51−
133371号において提案されている。
In a manufacturing method of a semiconductor device used in an integrated circuit, a method for insulating and isolating each element of an integrated circuit is proposed in a patent application filed in 1972 using porous silicon as described below.
No. 133371.

同号は、N形半導体基板上にP形半導体層を介して島領
域が設けられた基板を陽極処理によりP形半導体層を多
孔質化し、、多孔質化された半導体層を絶縁物化するこ
とにより、島領域の側面および底面が絶縁物で分離され
た半導体装置を得るものである。第1図a−dに同号に
よつて提案された誘電体分離法による集積回路用基板構
成の工程図を示す。
The same issue describes the process of making the P-type semiconductor layer porous by anodizing a substrate in which an island region is provided through the P-type semiconductor layer on the N-type semiconductor substrate, and converting the porous semiconductor layer into an insulator. Accordingly, a semiconductor device is obtained in which the side and bottom surfaces of the island region are separated by an insulator. FIGS. 1a to 1d show process diagrams for constructing an integrated circuit substrate using the dielectric separation method proposed in the same issue.

まずN形シリコン基板1上にP形のシリコン層2をたと
えばエピタキシャル成長により形成する。
First, a P-type silicon layer 2 is formed on an N-type silicon substrate 1 by, for example, epitaxial growth.

そして上記P形シリコン層2の表面にN形のシリコン層
3をたとえばエピタキシャル成長により形成する。さら
に上記N形シリコン層3の表面に拡散マスクとしてたと
えば熱酸化により酸化シリコン膜4を形成し、周知のフ
ォトエッチングにより拡散窓5を開孔する (同図a・
)。その後、熱拡散法あるいはイオン注入法などにより
、拡散窓5からP形不純物を拡散し、N形シリコン層3
を横切つてP形シリコン層2に達するようにP形拡散層
6を形成する。その結果、側面および底面がP形領域2
、6で取り囲まれたN形島領域7が形成される(同図b
)。次に上記基板1を電解液たとえば弗化水素酸化溶液
に浸漬して陽極処理を施し、上記P形領域2、6多孔質
化すると、N形島領域7を取り囲んで多孔質化シリコン
8が形成される (同図c)。
Then, an N-type silicon layer 3 is formed on the surface of the P-type silicon layer 2 by, for example, epitaxial growth. Further, a silicon oxide film 4 is formed as a diffusion mask on the surface of the N-type silicon layer 3 by, for example, thermal oxidation, and a diffusion window 5 is opened by well-known photoetching.
). Thereafter, P-type impurities are diffused through the diffusion window 5 by thermal diffusion or ion implantation, and the N-type silicon layer 3 is
A P-type diffusion layer 6 is formed so as to reach the P-type silicon layer 2 across the P-type silicon layer 2 . As a result, the side and bottom surfaces are P-shaped regions 2
, 6 is formed (see figure b).
). Next, the substrate 1 is immersed in an electrolytic solution, such as a hydrogen fluoride oxidation solution, and anodized to make the P-type regions 2 and 6 porous, and porous silicon 8 is formed surrounding the N-type island region 7. (Figure c).

その後上記基板1を酸化性雰囲気中で熱処理すると、上
記多孔質シリコン8は酸化シリコン膜9になるので、酸
化シリコン膜9で取り囲まれたN形島領域を有する集積
回路用基板が構成される。上記従来例においては、島領
域の絶縁分離が完全に行なわれ、また多孔質化される領
域の厚さは基板に制限されて均一性が良くなり、島領域
に割れやクラツタを生じないという利点があつた。しか
し、第1図で示した従来例で得られる集積回路用基板を
用いて半導体装置を形成し、半導体装置の高性能化、高
密度化を追求していつたところ、従来考えられなかつた
新たな欠点があることがわかつた。以下にその内容を詳
しく述べる。まず、上記従来例における多孔質化につい
て簡単に述べる。第2図a−cに多孔質化の進行の経過
を示す。第1図bに示すように形成された基板を、弗化
水素酸水溶液に浸漬し、第2図aに示すようにN形基板
1とP形領域2との間のP−N接合に逆バイアスを印加
し、基板表面から光Lを照射すると上記P−N接合全面
に均一に光電流U。が生ずる。多孔質化は前記光電流U
Oによる陽極反応による第1図bに示すP形拡散層6か
ら始まり、多孔質化シリコン8になる。多孔質化がさら
に進み、多孔質化シリコン8がN形基板1に達すると、
次に第2図bに示すように島領域の下に横方向にも広が
る。このとき多孔質化の進行は、横方向にはN形基板1
とP形領域2との間のP−N接合に発生する光電流U1
により律速され、深さ方向にはN形基板1と、弗化水素
酸水溶液との界面の電位障壁に発生する光電流U2によ
り律速される。上記従来例においては、光電流U1とU
2とは、単位面積当り同じ程度の電流密度であるので、
多孔質化はN形基板1の内部にも進行し第2図bに示す
ように島領域7の下の多孔質化シリコン層8の厚さが不
均一となつていた。さらに多孔質化を進め、多孔質化シ
リコン層8を島領域7の下に全面に形成したのち、上記
基板1を酸化性雰囲気中で熱処理すると第2図Cに示す
ように多孔質化シリコン層8は酸化シリコン膜9になる
Thereafter, when the substrate 1 is heat-treated in an oxidizing atmosphere, the porous silicon 8 becomes a silicon oxide film 9, thereby forming an integrated circuit substrate having an N-type island region surrounded by the silicon oxide film 9. In the above conventional example, the insulation of the island region is completely isolated, and the thickness of the porous region is limited to the substrate, resulting in good uniformity, which has the advantage that no cracks or clutter occur in the island region. It was hot. However, as semiconductor devices were formed using integrated circuit substrates obtained in the conventional example shown in Figure 1, and in pursuit of higher performance and higher density semiconductor devices, new and previously unimaginable results were discovered. I found out that there are drawbacks. The details are described below. First, the porous structure in the conventional example described above will be briefly described. FIGS. 2a to 2c show the progress of porosity. The substrate formed as shown in FIG. 1b is immersed in a hydrofluoric acid aqueous solution, and the P-N junction between the N-type substrate 1 and the P-type region 2 is inverted as shown in FIG. 2a. When a bias is applied and light L is irradiated from the substrate surface, a photocurrent U is uniformly distributed over the entire surface of the P-N junction. occurs. Porous formation is caused by the photocurrent U
The process starts from a P-type diffusion layer 6 shown in FIG. 1b due to an anodic reaction caused by O, and becomes porous silicon 8. When the porous silicon 8 reaches the N-type substrate 1 as the porosity progresses further,
It then extends laterally below the island area as shown in Figure 2b. At this time, the porosity progresses in the lateral direction of the N-type substrate 1.
A photocurrent U1 generated in the P-N junction between and P-type region 2
In the depth direction, the rate is determined by the photocurrent U2 generated at the potential barrier at the interface between the N-type substrate 1 and the hydrofluoric acid aqueous solution. In the above conventional example, the photocurrents U1 and U
2 is the same current density per unit area, so
The porosity progressed to the inside of the N-type substrate 1, and as shown in FIG. 2b, the thickness of the porous silicon layer 8 under the island region 7 became non-uniform. After further increasing the porosity and forming a porous silicon layer 8 on the entire surface under the island region 7, when the substrate 1 is heat-treated in an oxidizing atmosphere, a porous silicon layer 8 is formed as shown in FIG. 2C. 8 becomes a silicon oxide film 9.

ここで、多孔質化シリコン層8の酸化ζに際し、多孔質
化シリコン層8に収縮が起こり、島領域7が第2図Cに
示すようにへ字状に屈曲する。したがつて島領域7は第
1図dに示すような平坦な形状にはならない。したがつ
て、従来例において半導体装置の高性能化を追求してい
くと、島領域がへ字状に曲がることにより発生する部分
的な歪みによつて起こる島領域内のキヤリアの移動度の
低下,欠陥に起因する雑音,リーク電流が無視できなく
なり、新たな問題点になつてきた。
Here, upon oxidation ζ of the porous silicon layer 8, the porous silicon layer 8 contracts, and the island region 7 is bent in an F-shape as shown in FIG. 2C. Therefore, the island region 7 does not have a flat shape as shown in FIG. 1d. Therefore, as conventional semiconductor devices pursue higher performance, carrier mobility within the island region decreases due to local distortion caused by the island region bending into an F-shape. , noise and leakage current caused by defects can no longer be ignored and have become new problems.

また、半導体装置の高密度化を追求していくうえで、従
来例では島領域がへ字状に曲がり表面が平坦にならない
ので、フオトエツチングによる微細加工が困難になると
いう″問題点も発生してきた。本発明は前述のような従
来の問題点を解決するためになされたもので、多孔質化
を行なつた後の島領域の下の多孔質化シリコン層の厚さ
を均一にして、多孔質化シリコン層の酸化の際に島領域
に歪が発生せず、しかも島領域の表面が平坦な半導体装
置の製造方法を提供しようとするものである。
In addition, in pursuit of higher density semiconductor devices, in the conventional example, the island region curves in a curved shape and the surface is not flat, making microfabrication by photo etching difficult. The present invention was made in order to solve the above-mentioned conventional problems, and it is possible to make the thickness of the porous silicon layer under the island region uniform after making it porous, It is an object of the present invention to provide a method for manufacturing a semiconductor device in which no strain occurs in the island region during oxidation of a porous silicon layer, and the surface of the island region is flat.

前述したように、従来方法においては、多孔質化速度は
光電流Ul,U2によつて律速され、光電流U2によつ
て深さ方向に多孔質化が進み多孔質化シリコン膜厚が不
均一となつていた。
As mentioned above, in the conventional method, the rate of porosity formation is determined by the photocurrents Ul and U2, and the photocurrent U2 causes the porosity to progress in the depth direction, resulting in an uneven thickness of the porous silicon film. It was becoming.

そこで、基板に不純物濃度の分布をつけて、島領域の中
央部分直下の基板の不純物濃度に比べその周囲の基板の
不純物濃度を十分高くすることにより、基板の深さ方向
への多孔質化を律速する光電流が、横方向への多孔質化
を律速する光電流に比べ十分小さくなるようにでき、島
領域の下の多孔質化シリコン層の厚さを均一にできるこ
とを知り本発明を得るに至つた。
Therefore, by creating an impurity concentration distribution in the substrate and making the impurity concentration of the surrounding substrate sufficiently higher than that of the substrate directly under the central part of the island region, it is possible to make the substrate porous in the depth direction. The present invention was achieved by knowing that the rate-determining photocurrent can be made sufficiently smaller than the photocurrent rate-determining rate of porosity formation in the lateral direction, and that the thickness of the porous silicon layer under the island region can be made uniform. It came to this.

以下、図面に従つて詳細に説明する。A detailed description will be given below with reference to the drawings.

第3図aは、本発明の一実施例における多孔質化のため
の陽極処理する前の基板の構成を示す。10はN形基板
、11はN形基板10に熱拡散あるいはイオン注入によ
つて形成された高濃度N+形領域、12はP形基板、1
3はN形領域である。
FIG. 3a shows the structure of a substrate before being anodized to make it porous in one embodiment of the present invention. 10 is an N-type substrate, 11 is a high concentration N+ type region formed in the N-type substrate 10 by thermal diffusion or ion implantation, 12 is a P-type substrate, 1
3 is an N-type region.

本発明の特徴とするところは、N形基板10で、N形島
領域の中央部の直下を残し、その周囲の基板10の表面
にN形半導体基板10よりも十分に不純物濃度が高い高
濃度N+形領域11が形成されていることである。
A feature of the present invention is that the N-type semiconductor substrate 10 has a high impurity concentration that is sufficiently higher than that of the N-type semiconductor substrate 10 on the surface of the substrate 10 around the N-type island region, leaving just below the central part. An N+ type region 11 is formed.

第3図bは、多孔質化処理を進行している状態を示す。
多孔質化処理は、従来例と同様に、基板を電解液たとえ
ば弗化水素酸水溶液中に浸漬し、第3図bに示すように
バイアスを印加して基板表面に光Lを照射する。同図に
おいて、横方向への多孔質化を律速する光電流U3はN
形基板10とP形領域12との間に形成されたP−N接
合によるものであり、深さ方向への多孔質化を律速する
光電流U。は高濃度N゛形領域と、弗化水素酸水溶液と
の界面にできる電位障壁によるものである。ここで光電
流U。
FIG. 3b shows the state in which the porous treatment is in progress.
In the porous treatment, the substrate is immersed in an electrolytic solution such as a hydrofluoric acid aqueous solution, and the substrate surface is irradiated with light L while applying a bias as shown in FIG. 3B, as in the conventional example. In the same figure, the photocurrent U3 that determines the rate of porosity in the lateral direction is N
This is due to the P-N junction formed between the shaped substrate 10 and the P-type region 12, and the photocurrent U that determines the rate of porosity formation in the depth direction. This is due to the potential barrier formed at the interface between the high concentration N-type region and the hydrofluoric acid aqueous solution. Here the photocurrent U.

,U,の大きさについて考える。周知のように光電流は
、P−N接合あるいは電位障壁にバイアスを印加するこ
とによつて形成される空乏層の体積に依存する。たとえ
ばN形基板10の不純物密度がl×10”゜cm−”,
高濃度N’″形領域11の不純物密度が1×10””C
m−’,P形領域12の不純物密度がl×10”゜cm
−゜であるように基板を構成し、陽極反応の印加電圧を
3Vとすると、U3=100mA U。
,U,. As is well known, photocurrent depends on the volume of a depletion layer formed by applying a bias to a PN junction or a potential barrier. For example, if the impurity density of the N-type substrate 10 is l x 10"゜cm-",
The impurity density of the high concentration N''' type region 11 is 1×10''C
m-', the impurity density of the P-type region 12 is l×10”゜cm
-°, and if the applied voltage for the anodic reaction is 3V, then U3=100mA U.

=1mAとなる。=1mA.

したがつて、上記の基板構成では、深さ方向への多孔質
化を律速する光電流U,は横方向への多孔質化を律速す
る光電流U。に比べ無視できる程小さいので、第3図b
において、多孔質化は、深さ方向にはほとんど進まず、
横方向に進む。よつて、島領域17の下の多孔質化シリ
コン層18の厚さを均一にすることが可能となる。第4
図a−eは本発明の一実施例を示す工程図である。まず
N形でたとえば不純物濃度が1×10”5cm−3の基
板10の表面の所望の領域に周知のフオトエツチングに
よりたとえばフオトレジストのマスクを形成し、イオン
注入法によりN形不純物を高濃度にイオン注入して高濃
度N’″形領域11を形成する。高濃度N゛形領域11
はたとえば不純物濃度が1×10”゜cm−”に形成す
る (同図a)。次にその表面にP形で、たとえば不純
物密度が1×10”゜cm−゜のシリコン層12をたと
えばエピタキシヤル成長によつて形成し、さらに上記P
形領域12の表面にN形のシリコン層13をたとえばエ
ピタキシヤル成長により形成する (同図b)。その後
、上記N形シリコン層13の表面に拡散マスクとしてた
とえば熱酸化により酸化シリコン膜14を形成し、周知
のフオトエツチングにより拡散窓15を開孔したのち、
熱拡散法あるいはイオン注入法などにより、拡散窓15
からP形不純物を拡散しN形シリコン層13を横切つて
P形シリコン層12に達するようにP形不純物の拡散層
16を形成する。
Therefore, in the above substrate configuration, the photocurrent U that determines the rate of porosity formation in the depth direction is the same as the photocurrent U that determines the rate of porosity formation in the lateral direction. Since it is negligibly small compared to
, porosity hardly progresses in the depth direction,
Proceed laterally. Therefore, it is possible to make the thickness of the porous silicon layer 18 under the island region 17 uniform. Fourth
Figures a to e are process diagrams showing one embodiment of the present invention. First, a photoresist mask, for example, is formed by well-known photoetching on a desired region of the surface of the substrate 10, which is N-type and has an impurity concentration of, for example, 1 x 10''5 cm-3, and then N-type impurities are added to a high concentration by ion implantation. A high concentration N''' type region 11 is formed by ion implantation. High concentration N-shaped region 11
For example, it is formed to have an impurity concentration of 1×10"cm-" (FIG. 1A). Next, a P-type silicon layer 12 having an impurity density of, for example, 1×10” cm-° is formed on the surface by, for example, epitaxial growth, and then the P-type silicon layer 12 is formed by epitaxial growth.
An N-type silicon layer 13 is formed on the surface of the shaped region 12 by, for example, epitaxial growth (FIG. 2b). Thereafter, a silicon oxide film 14 is formed as a diffusion mask on the surface of the N-type silicon layer 13 by, for example, thermal oxidation, and a diffusion window 15 is opened by well-known photoetching.
Diffusion window 15 is formed by thermal diffusion method or ion implantation method.
A P-type impurity diffusion layer 16 is formed by diffusing the P-type impurity from the wafer to cross the N-type silicon layer 13 and reach the P-type silicon layer 12.

その結果側面および底面をP形領域12,16に取り囲
まれたN形島領域17が形成される (同図c)。次に
第3図A,bで説明したように、上記基板10を電解液
たとえば弗化水素酸水溶液に浸漬して陽極処理を行ない
、上記P形領域12,16のみを多孔質化シリコン18
にする。
As a result, an N-type island region 17 whose side and bottom surfaces are surrounded by P-type regions 12 and 16 is formed (FIG. 3(c)). Next, as explained in FIGS. 3A and 3B, the substrate 10 is immersed in an electrolytic solution, such as a hydrofluoric acid aqueous solution, and subjected to anodization, so that only the P-type regions 12 and 16 are exposed to the porous silicon 18.
Make it.

上述したように、基板10には高濃度N゛形領域11が
形成されているので多孔質化は基板10の内部にはほと
んど進まず、島領域の下の多孔質化シリコン層18の厚
さは均一に形成される (同図d)。その後さらに上記
基板10を酸化性雰囲気中で熱処理すると、多孔質化シ
リコン層18は酸化シリコン膜19になり、底面および
側面を酸化シリコン膜19で分離された複数のN形島領
域17を有する集積回路用基板10′が形成される (
同図e)。なお、上記多孔質化シリコン層18の酸化に
際し従来例の場合と同様に多孔質化シリコン層18の収
縮が起こるが、本発明においては島領域17の下の多孔
質化シリコン層18の厚さは均一に形成されているので
、従来例で示したような島領域がへ字状に屈曲すること
はなく、島領域17の表面は第4図eに示すように平坦
に形成され、歪も発生しない。上記基板10′の複数の
N形島領域17内に通常の半導体装置の製造方法により
、種々の半導体装置を形成することが可能である。
As described above, since the highly doped N-type region 11 is formed in the substrate 10, porosity hardly progresses into the interior of the substrate 10, and the thickness of the porous silicon layer 18 under the island region are formed uniformly (d in the same figure). Thereafter, when the substrate 10 is further heat-treated in an oxidizing atmosphere, the porous silicon layer 18 becomes a silicon oxide film 19, and an integrated structure having a plurality of N-type island regions 17 whose bottom and side surfaces are separated by a silicon oxide film 19 is formed. The circuit board 10' is formed (
Figure e). Note that when the porous silicon layer 18 is oxidized, the porous silicon layer 18 shrinks as in the conventional example, but in the present invention, the thickness of the porous silicon layer 18 under the island region 17 is Since the island region 17 is formed uniformly, the island region 17 is not bent in a F-shape as shown in the conventional example, and the surface of the island region 17 is formed flat as shown in FIG. 4e, with no distortion. Does not occur. Various semiconductor devices can be formed within the plurality of N-type island regions 17 of the substrate 10' by a normal semiconductor device manufacturing method.

第5図は上記島領域17内にバイポーラトランジスタを
製造した場合の一実施例である。ここで20はNf形コ
レクタ埋め込み層、21はP形ベース層、22はN形エ
ミツタ層、23,24,25はそれぞれコレクタ電極,
ベース電極,エミツタ電極である。なお本実施例ではN
形シリコン層13を形成する前にあらかじめ島領域17
にN゛形不純物層20を形成した。上述したバイポーラ
トランジスタのほかに上記島領域内には公知の種々の半
導体装置たとえばI−FET,IIL,MOSなどを形
成することが可能であり、それらの半導体装置を形成す
るために必要であれば、あらかじめ上記島領域内にP形
シリコン層を形成しておくことも可能である。
FIG. 5 shows an embodiment in which a bipolar transistor is manufactured within the island region 17. Here, 20 is an Nf type collector buried layer, 21 is a P type base layer, 22 is an N type emitter layer, 23, 24, and 25 are collector electrodes, respectively.
These are the base electrode and the emitter electrode. Note that in this example, N
Before forming the shaped silicon layer 13, the island region 17 is
An N-type impurity layer 20 was formed thereon. In addition to the above-mentioned bipolar transistor, it is possible to form various known semiconductor devices such as I-FET, IIL, MOS, etc. in the above-mentioned island region, and if necessary to form these semiconductor devices, It is also possible to form a P-type silicon layer in the island region in advance.

以上の実施例では、上記多孔質化シリコンを酸化性雰囲
気で熱処理し、上記多孔質化シリコンを酸化シリコン膜
としたが、上記熱処理は酸化性雰囲気に限定されるもの
ではない。
In the above embodiments, the porous silicon was heat-treated in an oxidizing atmosphere to form the porous silicon into a silicon oxide film, but the heat treatment is not limited to an oxidizing atmosphere.

すなわち、アンモニアガス中で熱処理することにより、
窒化シリコン膜とすることも可能である。しかし、上記
多孔質化シリコンを絶縁物化するのに要する熱処理時間
および熱処理温度は酸化性雰囲気中の方が短かくてかつ
低いので好ましい。また、本実施例ではP形シリコン層
12,N形シリコン層13はエピタキシヤル成長によつ
て、P形不純物拡散層16は熱拡散法あるいはイオン1
注入法により形成したが、上記シリコン層12,13,
拡散層16の形成方法は実施例に限定されるものではな
く、本発明の目的を達成する上では、公知のどのような
方法あるいはそれらの組み合わせでも用いることが可能
である。
That is, by heat treatment in ammonia gas,
It is also possible to use a silicon nitride film. However, the heat treatment time and heat treatment temperature required to convert the porous silicon into an insulator are preferably shorter and lower in an oxidizing atmosphere. In this embodiment, the P-type silicon layer 12 and the N-type silicon layer 13 are formed by epitaxial growth, and the P-type impurity diffusion layer 16 is formed by thermal diffusion or ion 1 growth.
Although formed by an implantation method, the silicon layers 12, 13,
The method for forming the diffusion layer 16 is not limited to the embodiments, and any known method or a combination thereof can be used to achieve the object of the present invention.

1以上説明してきたように本発明は、N形基
板の所望の領域にN形半導体基板よりも十分に不純物濃
度が高い高濃度N+形領域を形成し、その上にP形半導
体層によつて包囲された島領域を有する半導体基板にお
いて、P形半導体層を均一に多孔2質化してこれを絶縁
物化することによつて分離領域を形成する半導体装置の
製造方法であつて、島領域の表面が平坦に形成されるの
で、島領域に従来発生していたような歪がなくなり、島
領域内のキヤリア移動度の低下,欠陥に起因する雑音の
発生といつた従来の問題点が解消され、また島領域の表
面が平坦であることから、フオトエツチングによる微細
加工が容易となり、半導体装置の高性能化,高密度化を
図ることができるので、工業的価値は高い。
As explained above, in the present invention, a high concentration N+ type region having an impurity concentration sufficiently higher than that of the N type semiconductor substrate is formed in a desired region of an N type substrate, and a P type semiconductor layer is formed on the high concentration N+ type region. A method for manufacturing a semiconductor device in which an isolation region is formed by uniformly making a P-type semiconductor layer porous and dimorphic and making it an insulator in a semiconductor substrate having an enclosed island region, the method comprising: Since it is formed flat, the distortion that conventionally occurs in the island region is eliminated, and conventional problems such as a decrease in carrier mobility within the island region and the generation of noise due to defects are solved. In addition, since the surface of the island region is flat, microfabrication by photoetching is easy, and the high performance and high density of semiconductor devices can be achieved, so the industrial value is high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a−dは従来例による集積回路用基板の製造工程
図、第2図a−cは従来例による多孔質化の進行を示す
図、第3図A,bは本発明の一実施例における多孔質化
の進行を示す図、第4図a〜eは本発明の一実施例にお
ける集積回路用基板の製造工程図、第5図は第4図a−
eで得られた島領域内に素子を形成した一実施例におけ
る半導体装置の要部断面図である。 ]0・・・・・・N形シリコン基板、]1・・・・・・
高濃度N+形シリコン層、12・・・・・・P形シリコ
ン層、17・・・・・・N形島領域、18・・・・・・
多孔質化シリコン層、19・・・・・・酸化シリコン層
Figures 1 a to d are manufacturing process diagrams of an integrated circuit board according to a conventional example, Figures 2 a to c are diagrams showing the progress of porosity according to a conventional example, and Figures 3 A and b are one embodiment of the present invention. Figures 4a to 4e are diagrams showing the progress of porosity in an example, and Figures 4a to 4e are manufacturing process diagrams of an integrated circuit substrate in an embodiment of the present invention.
FIG. 3 is a cross-sectional view of a main part of a semiconductor device in an example in which elements are formed within the island region obtained in step e. ]0...N-type silicon substrate, ]1...
High concentration N+ type silicon layer, 12...P type silicon layer, 17...N type island region, 18...
Porous silicon layer, 19...Silicon oxide layer.

Claims (1)

【特許請求の範囲】[Claims] 1 N形半導体基板表面に該N形半導体基板に比べ不純
物濃度が十分に高いN^+形半導体層を上記N形半導体
基板表面が選択的に露出するように形成する工程と、上
記N形半導体基板上にP形半導体層を形成し、上記P形
半導体層表面にN形半導体の島領域を上記N形半導体基
板露出部分をおおうように形成する工程と、光を照射し
ながら行う陽極処理により上記P形半導体層を均一に多
孔質化する工程と、上記多孔質化された半導体層を絶縁
物化する工程とを備えたことを特徴とする半導体装置の
製造方法。
1. Forming an N^+ type semiconductor layer on the surface of the N-type semiconductor substrate so that the surface of the N-type semiconductor substrate is selectively exposed, the layer having an impurity concentration sufficiently higher than that of the N-type semiconductor substrate; A step of forming a P-type semiconductor layer on a substrate, forming an island region of an N-type semiconductor on the surface of the P-type semiconductor layer so as to cover the exposed portion of the N-type semiconductor substrate, and anodizing while irradiating light. A method for manufacturing a semiconductor device, comprising the steps of uniformly making the P-type semiconductor layer porous, and making the porous semiconductor layer an insulator.
JP54133251A 1979-10-15 1979-10-15 Manufacturing method of semiconductor device Expired JPS5951745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54133251A JPS5951745B2 (en) 1979-10-15 1979-10-15 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54133251A JPS5951745B2 (en) 1979-10-15 1979-10-15 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5656647A JPS5656647A (en) 1981-05-18
JPS5951745B2 true JPS5951745B2 (en) 1984-12-15

Family

ID=15100233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54133251A Expired JPS5951745B2 (en) 1979-10-15 1979-10-15 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5951745B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326140Y2 (en) * 1983-05-11 1991-06-06

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105575879A (en) * 2015-12-17 2016-05-11 上海集成电路研发中心有限公司 Forming method of totally-isolated active region structure
CN105590892A (en) * 2015-12-17 2016-05-18 上海集成电路研发中心有限公司 Method for preparing full-isolated active region structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51278A (en) * 1974-06-18 1976-01-05 Matsushita Electric Ind Co Ltd HANDOTAISHUSEKIKAIROKITAINO SEIZOHOHO
JPS5357979A (en) * 1976-11-06 1978-05-25 Matsushita Electric Ind Co Ltd Semiconductor device and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51278A (en) * 1974-06-18 1976-01-05 Matsushita Electric Ind Co Ltd HANDOTAISHUSEKIKAIROKITAINO SEIZOHOHO
JPS5357979A (en) * 1976-11-06 1978-05-25 Matsushita Electric Ind Co Ltd Semiconductor device and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0326140Y2 (en) * 1983-05-11 1991-06-06

Also Published As

Publication number Publication date
JPS5656647A (en) 1981-05-18

Similar Documents

Publication Publication Date Title
US3954523A (en) Process for fabricating devices having dielectric isolation utilizing anodic treatment and selective oxidation
US4140558A (en) Isolation of integrated circuits utilizing selective etching and diffusion
US3919060A (en) Method of fabricating semiconductor device embodying dielectric isolation
US4343080A (en) Method of producing a semiconductor device
JPS6135705B2 (en)
JPS5951745B2 (en) Manufacturing method of semiconductor device
JPS61208277A (en) High-efficiency photo detector and manufacture thereof
JPH0864674A (en) Insulating method for semiconductor device
US4627883A (en) Method of forming an isolated semiconductor structure
JPH07245400A (en) Field-effect transistor and its manufacture
JPS62108539A (en) Manufacture of soi-structure semiconductor device
JPS58200554A (en) Manufacture of semiconductor device
JPS6094737A (en) Manufacture of semiconductor device
JPS5942979B2 (en) Manufacturing method of semiconductor device
JPH1012897A (en) Glass-coated semiconductor device and manufacture thereof
KR0157965B1 (en) Soi structure and fabricating method therefor
JPS5831730B2 (en) Manufacturing method of semiconductor device
JPS60138937A (en) Substrate for integrated circuit
KR100320677B1 (en) method for manufacturing thyristor devices
JPS58107645A (en) Manufacture of semiconductor device
JP3537494B2 (en) Semiconductor device and method of manufacturing semiconductor device
JPS6210027B2 (en)
JPH0778833A (en) Bipolar transistor and its manufacture
KR19980084714A (en) Method for manufacturing isolation region of semiconductor device
JPS5825245A (en) Semiconductor integrated circuit and manufacture thereof