JPS5825245A - Semiconductor integrated circuit and manufacture thereof - Google Patents

Semiconductor integrated circuit and manufacture thereof

Info

Publication number
JPS5825245A
JPS5825245A JP11550481A JP11550481A JPS5825245A JP S5825245 A JPS5825245 A JP S5825245A JP 11550481 A JP11550481 A JP 11550481A JP 11550481 A JP11550481 A JP 11550481A JP S5825245 A JPS5825245 A JP S5825245A
Authority
JP
Japan
Prior art keywords
region
layer
type semiconductor
type
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11550481A
Other languages
Japanese (ja)
Inventor
Tomoyuki Sato
佐藤 友之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Faurecia Clarion Electronics Co Ltd
Original Assignee
Clarion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clarion Co Ltd filed Critical Clarion Co Ltd
Priority to JP11550481A priority Critical patent/JPS5825245A/en
Publication of JPS5825245A publication Critical patent/JPS5825245A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • H01L21/76281Lateral isolation by selective oxidation of silicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To achieve good electric separation of elements and high integration by a method wherein a semiconductor layer is grown on a semiconductor substrate and an island region is provided in the layer while an insulation film for separation is formed not only in both side ends of this region but also in the bottom. CONSTITUTION:A p<+> type layer 13 is formed on the outer layer of a p type Si substrate 11 by diffusion, and an n type layer 14 having required resistivity is provided on the layer 13 by epitaxial growth, then a p<+> type region 15 reaching the layer 13 is formed at the endmost portions of the layer 14 by diffusion, so that the layer 14 is separated as an islanded region 12. Next, the substrate 11 is dipped in hydrofluoric acid liquid and receives anode formation processing to convert only the layer 13 and the region 15 into porosity Si layer 13' and 15'. Afterward these layers are converted into SiO2 layers 6 and 6' by heat treatment to electrically separate the region 12 not only at its both sides but also at the base by the layers 6 and 6'. After this a p<+> type source region 2 and a drain region 3 are formed on the region 12 by diffusion, and a polycrystalline Si gate 5 is provided on the region 12 which is between the regions 2 and 3 via a gate SiO2 film 4.

Description

【発明の詳細な説明】 本発明は、絶縁膜分離構造を有する半導体集積回路およ
びその製法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor integrated circuit having an insulating film isolation structure and a method for manufacturing the same.

半導体集積回路(以下ICと称する)に採用されている
素子間の電気的分離方式は大別して(IIPN接合分離
方式、(2)絶縁膜分離方式が知られている。
Electrical isolation methods between elements employed in semiconductor integrated circuits (hereinafter referred to as ICs) are broadly classified into (IIPN junction isolation method) and (2) insulating film isolation method.

このうち後者の絶縁膜分離方式は前者に比べて優れた点
が多いので今後広く用いられる傾向にある。
Of these, the latter insulating film separation method has many advantages over the former, and therefore tends to be widely used in the future.

この絶縁膜分離方式はLOOO8(Local 0xi
dation(+f 5ilicon)構造として一般
的に知られており、第1図のような絶縁膜分離構造を有
している。同図はMO8IOの場合を示しており、1は
n型領域、2.3はn型領域1に選択的に形成されたソ
ース領域およびドレイン領域となるべき一対のp生型領
域、4は一対のp生型領域2,3間のゲート部となるべ
き位置に形成された8t()z等からなるゲート絶縁膜
、5はこのゲート絶縁膜4上に形成された多結−晶シリ
コン、6は素手間の分離を行うための5iOz等からな
る絶縁膜、7は上記多結晶シリコン5および絶縁膜6を
覆うガラス膜、8,9は上記一対のp生型領域2,3に
各々設けられたソース電極およびゲート電極である。
This insulation film separation method is called LOOO8 (Local 0xi).
It is generally known as a dation (+f 5 ilicon) structure, and has an insulating film isolation structure as shown in FIG. The figure shows the case of MO8IO, where 1 is an n-type region, 2.3 is a pair of p-type regions that are selectively formed in the n-type region 1 and is to become a source region and a drain region, and 4 is a pair of p-type regions. 5 is a polycrystalline silicon film formed on the gate insulating film 4; 7 is a glass film covering the polycrystalline silicon 5 and the insulating film 6, and 8 and 9 are provided in the pair of p-type regions 2 and 3, respectively. a source electrode and a gate electrode.

ところで上記構造のMO8IOにおいては、n型領域1
と一対のp生型領域2.3間のPN接合部10の端部は
上記絶縁膜6で分離されているが、それ以外の部分はP
N接合部10のラインがそのまま存在しているために電
気的分離は完全ではない。
By the way, in MO8IO with the above structure, the n-type region 1
The end of the PN junction 10 between the pair of p-type regions 2.3 and 2.3 is separated by the insulating film 6, but the other parts are P-type.
Electrical isolation is not complete because the line of N junction 10 remains as it is.

そのためにソース領域2およびドレイ/領域3において
PN接合容量が存在し、また絶縁膜6あるいはガラス膜
T上に形成される配線によって寄生容量が存在するよう
になって、回路の動作速度が低下する欠点が生ずる。ま
たそれらの容量による影響を防止するために回路構成が
複雑になる欠点も生ずる。
Therefore, a PN junction capacitance exists in the source region 2 and the drain/region 3, and a parasitic capacitance also exists due to the wiring formed on the insulating film 6 or the glass film T, which reduces the operating speed of the circuit. Defects arise. Another disadvantage is that the circuit configuration is complicated in order to prevent the influence of these capacitances.

本発明は以上の問題に対処してなされたもので、半導体
回路素子を形成すべき半導体島領域の側端部のみでなく
この底部にも絶縁膜を介在させるようにして従来欠点を
除去し得るように構成した半導体集積回路およびその製
法を提供することを目的とするものである。
The present invention has been made in response to the above problems, and it is possible to eliminate the conventional drawbacks by interposing an insulating film not only at the side ends of the semiconductor island region where semiconductor circuit elements are to be formed, but also at the bottom thereof. It is an object of the present invention to provide a semiconductor integrated circuit configured as described above and a method for manufacturing the same.

以下図面を参照して本発明実施例を説明する。Embodiments of the present invention will be described below with reference to the drawings.

第2図は本発明実施例による半導体集積回路を示す断面
図で第1図と同一部分は同一番号で示し、11はp型半
導体層、6はこのp型半導体層表面に選択的に形成され
これ以外の半導体層を複数の島領域12に分離している
絶縁膜、6′は上記島領域12の底部に形成され上記絶
縁膜6に連なるように形成された第二の絶縁膜である。
FIG. 2 is a cross-sectional view showing a semiconductor integrated circuit according to an embodiment of the present invention, in which the same parts as in FIG. An insulating film 6' separating the other semiconductor layers into a plurality of island regions 12 is a second insulating film formed at the bottom of the island region 12 so as to be continuous with the insulating film 6.

上記島領域12には例えばp十型ソース領域2およびド
レイン領域3、多結晶シリコンゲート5を有するMOS
FETが形成される。
The island region 12 has, for example, a p-type source region 2, a drain region 3, and a polycrystalline silicon gate 5.
A FET is formed.

以上の構造の半導体集積回路は第3図のような製法によ
って製造される。
The semiconductor integrated circuit having the above structure is manufactured by the manufacturing method shown in FIG.

以下第3図を参照してその製法を工程順に説明する。Hereinafter, the manufacturing method will be explained step by step with reference to FIG.

工程(a):第3図(alのように、p型シリコン基板
11の表面にボロンを拡散して高不純物濃度のp生型層
13を形成し、この94層13表面に所望の抵抗率。
Step (a): As shown in FIG. 3 (al), a p-type layer 13 with a high impurity concentration is formed by diffusing boron on the surface of a p-type silicon substrate 11, and a desired resistivity is formed on the surface of this 94 layer 13. .

厚みを有するn型層14をエピタキシャル成長法により
形成する。
A thick n-type layer 14 is formed by epitaxial growth.

工程(b):第3図(b)のように、上記n型層14に
周知の選択拡散法によりポロンを拡散して上記p十型層
13に達する第二の高不純物濃度のp中型領域15を形
成する。これによりn型層14はp中型領域15によっ
て複数の島領域12に分離される。
Step (b): As shown in FIG. 3(b), a second high impurity concentration p medium type region is formed by diffusing poron into the n type layer 14 by a well-known selective diffusion method to reach the p 10 type layer 13. form 15. As a result, the n-type layer 14 is separated into a plurality of island regions 12 by the p-medium region 15.

工程(C):第3図(C)のように、上記半導体基板を
例えば弗化水素酸(HF )液内に侵して陽極化成処理
を施こすことにより、上記p十型層13および領域15
のみに陽極化成電流を流してそれらの部分を多孔質シリ
コン13′および15′に変換する。
Step (C): As shown in FIG. 3(C), the semiconductor substrate is immersed in, for example, a hydrofluoric acid (HF) solution and anodized, thereby forming the p-type layer 13 and the region 15.
An anodizing current is applied only to the silicon wafers to convert those portions into porous silicon 13' and 15'.

工程(d):第3図(d)のように、上記半導体基板を
熱酸化処理を施こすことにより、上記多孔質シリコン部
分13′および15′を酸化シリコン膜6および6′に
変化する。この熱酸化処理においては多孔質シリコン部
分は他の単結晶シリコン部分に比べて早く酸化される性
質を有しているので、短時間で酸化シリコン膜6および
6′を形成することができるO これにより上記複数の島領域12は互いに絶縁膜6およ
び6′によって電気的に分離される。
Step (d): As shown in FIG. 3(d), the semiconductor substrate is thermally oxidized to transform the porous silicon portions 13' and 15' into silicon oxide films 6 and 6'. In this thermal oxidation treatment, the porous silicon portion has the property of being oxidized faster than other single crystal silicon portions, so the silicon oxide films 6 and 6' can be formed in a short time. Therefore, the plurality of island regions 12 are electrically isolated from each other by the insulating films 6 and 6'.

工程(e):第3図(e)のように、例えば通常のMO
Sプロセスを用いて島領域12にp十型ソース領域2お
よびドレイン領域3、多結晶シリコンゲート5を有する
MOSFETを形成することによシ、第2図の構造のM
O8IOが得られる。
Step (e): As shown in FIG. 3(e), for example, a normal MO
By forming a MOSFET having a p-type source region 2, a drain region 3, and a polycrystalline silicon gate 5 in the island region 12 using the S process, the M of the structure shown in FIG.
O8IO is obtained.

本発明実施例による半導体集積回路の構造においては、
MOSFET等の回路素子を形成すべき島領域12の側
端部のみならず底部も絶縁膜6′によって他の領域と絶
縁分離されているので、従来構造のようにPN接合部1
0が存在していない。したがってソース領域およびドレ
イン領域におけるPN接合容量を著るしく小さく抑える
ことができる。また絶縁膜を厚く形成しこの上に配線を
形成するので、寄生容量も小さくすることができる。
In the structure of the semiconductor integrated circuit according to the embodiment of the present invention,
Not only the side ends but also the bottom of the island region 12 where circuit elements such as MOSFETs are to be formed are insulated from other regions by the insulating film 6'.
0 does not exist. Therefore, the PN junction capacitance in the source region and drain region can be significantly reduced. Furthermore, since the insulating film is formed thick and the wiring is formed on it, parasitic capacitance can also be reduced.

以上のように本発明によれば、半導体回路素子を形成す
べき半導体島領域の側端部のみならずこの底部にも絶縁
膜を介在させるように構成するものであるから、各種の
望ましくない容量を少なく抑えることができるようにな
り、回路の動作速度を向上させることができる。
As described above, according to the present invention, since the insulating film is interposed not only at the side edges of the semiconductor island region where the semiconductor circuit element is to be formed but also at the bottom thereof, various undesirable capacitances are generated. This makes it possible to keep the amount of noise to a minimum, thereby improving the operating speed of the circuit.

またこれにより素子間の電気的分離度が改善されるので
、回路構成を簡単化することもできる。
Furthermore, since the degree of electrical isolation between elements is improved, the circuit configuration can also be simplified.

さらに島領域あるいは絶縁膜領域の面積を減少させるこ
とが可能なので、よシ高集積化を計ることもできる。ま
た集積度の向上に伴い、共通の半導体基板上に種々の特
性を有する回路素子を形成することができるので多様な
ICを製造することができる。
Furthermore, since it is possible to reduce the area of the island region or the insulating film region, higher integration can be achieved. Furthermore, as the degree of integration increases, circuit elements having various characteristics can be formed on a common semiconductor substrate, making it possible to manufacture a wide variety of ICs.

本文実施例ではMO8IOを製造する場合に例をあげて
説明したが、これに限らずバイポーラICを製造する場
合にも同じように適用することができる。
Although the present embodiment has been described using an example in which MO8IO is manufactured, the present invention is not limited to this and can be similarly applied to the case where bipolar ICs are manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例を示す断面図、第2図および第3図(a
)乃至(elはいずれも本発明実施例を示す断面図であ
る。 2・・・ソース領域、3・・・ドレイン領域、5・・・
多結晶シリコンゲート、6,6′・・絶縁膜、12・・
・島領域。 第1図 第2図 第3図
Figure 1 is a sectional view showing a conventional example, Figures 2 and 3 (a
) to (el are all cross-sectional views showing examples of the present invention. 2... Source region, 3... Drain region, 5...
Polycrystalline silicon gate, 6, 6'...insulating film, 12...
- Island area. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1、半導体基板表面に選択的に形成されこれ以外の半導
体基板表面を複数の島領域に分離するだめの絶縁膜と、
上記島領域の底部に形成され上記絶縁膜に連なるように
形成された第二の絶縁膜とを含むことを特徴とする半導
体集積回路。 2、上記島領域にMOSFETが形成されることを特徴
とする特許請求の範囲第1項記載の半導体集積回路。 3、  (A)  第1導電型半導体層上にこれより高
不純物濃度の第1導電型半導体層を有する半導体基板を
用意し、上記高不純物濃度の第1導電型半導体層上に第
2導電型半導体層を形成する工程。 (B)  上記第2導電型半導体層に選択的に上記高不
純物濃度の第1導電型半導体層に達する第二の高不純物
濃度の第1導電型半導体領域を形成することにより、上
記第2導電型半導体層を複数の島領域に分離する工程。 (0)  上記半導体基板を陽極化成処理することによ
り上記高不純物濃度の第1導電型半導体層および第二の
高不純物濃度の第1導電型半導体領域のみを多孔質化す
る工程。 (D)  上記多孔質化された第1導電型半導体領域お
よび半導体層を絶縁膜に変換する工程。 (l 上記島領域に所望の半導体回路素子を形成する工
程。 を含むことを特徴とする半導体集積回路の製法。 4、上記(6)工程における第2導電型半導体層をエピ
タキシャル成長法により形成することを特徴とする特許
請求の範囲第3項記載の半導体集積回路の製法。
[Claims] 1. An insulating film that is selectively formed on the surface of the semiconductor substrate and separates the other surface of the semiconductor substrate into a plurality of island regions;
and a second insulating film formed at the bottom of the island region so as to be continuous with the insulating film. 2. The semiconductor integrated circuit according to claim 1, wherein a MOSFET is formed in the island region. 3. (A) A semiconductor substrate having a first conductivity type semiconductor layer with a higher impurity concentration on the first conductivity type semiconductor layer, and a second conductivity type semiconductor layer on the first conductivity type semiconductor layer with a higher impurity concentration. A process of forming a semiconductor layer. (B) forming a first conductivity type semiconductor region with a high impurity concentration that selectively reaches the first conductivity type semiconductor layer with a high impurity concentration in the second conductivity type semiconductor layer; A process of separating a type semiconductor layer into multiple island regions. (0) A step of making only the high impurity concentration first conductivity type semiconductor layer and the second high impurity concentration first conductivity type semiconductor region porous by anodizing the semiconductor substrate. (D) A step of converting the porous first conductivity type semiconductor region and semiconductor layer into an insulating film. (l) A method for manufacturing a semiconductor integrated circuit, comprising the step of forming a desired semiconductor circuit element in the island region. 4. Forming the second conductive type semiconductor layer in the step (6) above by an epitaxial growth method. A method for manufacturing a semiconductor integrated circuit according to claim 3, characterized in that:
JP11550481A 1981-07-23 1981-07-23 Semiconductor integrated circuit and manufacture thereof Pending JPS5825245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11550481A JPS5825245A (en) 1981-07-23 1981-07-23 Semiconductor integrated circuit and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11550481A JPS5825245A (en) 1981-07-23 1981-07-23 Semiconductor integrated circuit and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS5825245A true JPS5825245A (en) 1983-02-15

Family

ID=14664150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11550481A Pending JPS5825245A (en) 1981-07-23 1981-07-23 Semiconductor integrated circuit and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5825245A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02502596A (en) * 1987-12-19 1990-08-16 ミテル セミコンダクター リミテッド Manufacturing method of semiconductor device
US5258322A (en) * 1991-01-16 1993-11-02 Canon Kabushiki Kaisha Method of producing semiconductor substrate
FR2844920A1 (en) * 2002-09-24 2004-03-26 Corning Inc Thin film silicon transistor incorporating a substrate, a porous silica barrier layer and a thin film of silicon, for display screen applications

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51278A (en) * 1974-06-18 1976-01-05 Matsushita Electric Ind Co Ltd HANDOTAISHUSEKIKAIROKITAINO SEIZOHOHO

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51278A (en) * 1974-06-18 1976-01-05 Matsushita Electric Ind Co Ltd HANDOTAISHUSEKIKAIROKITAINO SEIZOHOHO

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02502596A (en) * 1987-12-19 1990-08-16 ミテル セミコンダクター リミテッド Manufacturing method of semiconductor device
US5258322A (en) * 1991-01-16 1993-11-02 Canon Kabushiki Kaisha Method of producing semiconductor substrate
FR2844920A1 (en) * 2002-09-24 2004-03-26 Corning Inc Thin film silicon transistor incorporating a substrate, a porous silica barrier layer and a thin film of silicon, for display screen applications
WO2004042827A1 (en) * 2002-09-24 2004-05-21 Corning Incorporated A silicon thin film transistor, a method of manufacture, & a display screen

Similar Documents

Publication Publication Date Title
US5442223A (en) Semiconductor device with stress relief
JPS6159853A (en) Structure of silicon crystalline body
JPH0783050B2 (en) Method for manufacturing semiconductor device
JP3014012B2 (en) Method for manufacturing semiconductor device
US5406113A (en) Bipolar transistor having a buried collector layer
JPS63157475A (en) Semiconductor device and manufacture thereof
JPS5825245A (en) Semiconductor integrated circuit and manufacture thereof
JPS6095969A (en) Manufacture of semiconductor integrated circuit
JPS62108539A (en) Manufacture of soi-structure semiconductor device
JPS6094737A (en) Manufacture of semiconductor device
JPS5834943A (en) Semiconductor device and manufacture thereof
JPS61172346A (en) Semiconductor integrated circuit device
JPS58107645A (en) Manufacture of semiconductor device
JPH0548108A (en) Semiconductor device and its manufacture
JPH06302826A (en) Insulated gate field-effect transistor and preparation thereof
JPH06132477A (en) Semiconductor device having mos capacitor
JPH0745699A (en) Dielectric isolation type semiconductor device
JPS6155249B2 (en)
JPS63199454A (en) Semiconductor device
JPS5942979B2 (en) Manufacturing method of semiconductor device
JPS59186340A (en) Manufacture of complementary type dielectric isolation substrate
JPS58159348A (en) Separation of semiconductor device
JPS5939044A (en) Manufacture of substrate for insulating isolation integrated circuit
JPS5951745B2 (en) Manufacturing method of semiconductor device
JPS6155253B2 (en)