JPS6214003B2 - - Google Patents

Info

Publication number
JPS6214003B2
JPS6214003B2 JP56192797A JP19279781A JPS6214003B2 JP S6214003 B2 JPS6214003 B2 JP S6214003B2 JP 56192797 A JP56192797 A JP 56192797A JP 19279781 A JP19279781 A JP 19279781A JP S6214003 B2 JPS6214003 B2 JP S6214003B2
Authority
JP
Japan
Prior art keywords
gas
molten steel
decarburization
furnace
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56192797A
Other languages
Japanese (ja)
Other versions
JPS5896812A (en
Inventor
Yasumasa Ikehara
Haruki Aryoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19279781A priority Critical patent/JPS5896812A/en
Publication of JPS5896812A publication Critical patent/JPS5896812A/en
Publication of JPS6214003B2 publication Critical patent/JPS6214003B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/35Blowing from above and through the bath

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】 本発明は鋼の希釈脱炭法において、脱炭効率を
より一層向上させるための方法に関するものであ
る。 一般に溶鋼中〔C〕はその温度、含有〔Cr〕
%が一定であれば溶鋼中炭素と接触する気相中の
COガス分圧の低いほど脱炭が進行する。このCO
ガス分圧(以下Pcoと略す)を低くするために溶
鋼と接触する界面を真空にしたり、希釈ガスを酸
素ガスと共に吹込んだりして、Pcoを低下させて
いるのである。 希釈脱炭法においては大量の酸素ガスと希釈ガ
スとが炉底又は炉底近傍の側壁から溶鋼中に吹込
まれるため、希釈ガスと溶鋼との接触界面は非常
に大きくなり、希釈ガス中にCOが移行し、Pco
は希釈され脱炭が容易に進行する。しかし前述し
た如く溶鋼中の温度、〔Cr〕%と平衡するPcoが
達成されれば脱炭は停止する。脱炭を更に効率よ
く行うためには希釈ガスを更に大量に吹込めば理
論的には可能であるが、高圧(10〜20Kg/cm2)の
希釈ガスを大量に炉底から吹込むことは操業上の
問題で不可能である。即ち溶鋼のスプラツシユ増
大、及びガスによる冷却作用が大きくなりかえつ
て脱炭には逆効果となる。又スプラツシユ等の問
題を回避しようとすれば相対的に酸素の吹込量を
低下させることが必要であり、精錬時間の延長を
もたらし、生産性を著しく阻害し好ましくない。 一方、すでに述べたように大量のガスを炉底部
より溶鋼中に吹込むため、溶鋼上面の“おどり”
が激しく該溶鋼上面における気相部と溶鋼との接
触界面もあまりガスを吹込まない真空脱炭よりも
かなり大きなものとなることは容易に推定出来
る。この気相部のPcoを下げてやれば接触界面に
おいてPcoの平衡がくずれるので脱炭の進行が容
易になることが考えられる。しかし旧法ではこの
気相部のPcoは溶鋼中から抜け出て来た希釈ガス
とCOガスで占められているため基本的には界面
における希釈ガス中のPcoと同じである。 本発明者はこの気相部のPcoを更に低下させれ
ば接触界面における酸素の脱炭に費やされる比率
すなわち脱炭酸素効率が上昇するであろうことを
推定し気相を雰囲気(Pco)コントロールする実
験を種々行つた結果気相部に雰囲気希釈ガスを吹
込むことにより脱炭がより一層進行することを見
い出した。 以下本発明を具体的な実施例にそつて詳細に説
明する。 第1図は炉底部側壁に設けた2重管羽口の外管
から保護ガスとしてアルゴンを、内管から酸素ガ
スと希釈ガスとしてのアルゴンとの混合ガスを溶
鋼中に吹込むAOD炉を用いて、脱炭期にAOD炉
頂部より雰囲気希釈ガスとしてN2とAr又は空気
を、圧力3〜10Kg/cm2の範囲で炉内気相部に吹込
んだ結果を示す。N2とArの場合も、空気の場合
も底吹酸素量との比率が向上するにつれて、脱炭
酸素効率の改善が見られ、その比率が20%でほぼ
飽和している。 すなわち本発明の要旨は、2重管羽口の外管か
ら保護ガスを、内管から希釈ガスと酸素ガスとの
混合ガスを溶鋼中に吹込むことにより脱炭精錬を
行う方法において、炉内の気相部に雰囲気希釈ガ
スを溶鋼中に吹込まれる酸素ガス量の20%以上吹
込むことを特徴とする脱炭精錬方法である。 本発明において炉内の気相部に吹込む雰囲気希
釈ガスとしてはアルゴン等の不活性ガスの他の窒
素ガス、二酸化炭素ガス、空気、炭化水素等Pco
を低下可能なガスであれば周知のあらゆるガスが
使用可能である。 2重管羽口の外管から吹込む保護ガスとしては
アルゴン等の不活性ガス、炭酸ガス、窒素ガス、
水蒸気等を、また内管から吹込む希釈ガスとして
はアルゴン等の不活性ガス、窒素ガス等周知の他
のガスを使用可能である。また鋼種はステンレス
鋼の他に希釈脱炭を行う他の鋼種にも適用可能で
ある。 第1図においてN2とArよりも空気の方が効果
が大きいのは空気中の酸素が、発生するCOと反
応し、CO2となることによる発熱の影響が溶鋼温
度の低下を防止するとともにCO→CO2となるこ
とによつてもPcoの低下を促進するため不活性ガ
スを用いたときよりも効果が大きいものと推定さ
れる。 次に具体例を示す。18Cr―8Ni(SUS304)ス
テンレス鋼を炉底側壁に設置された2重管羽口の
内管から酸素ガスとアルゴンを、外管からアルゴ
ンを吹込んで希釈脱炭精錬する際に、脱炭期にお
いても底吹酸素量23m3/T―溶鋼の20%に相当す
る5m3/T―溶鋼の空気を炉頂より気相部に圧力
5〜6Kg/cm2で吹込んだ。その結果をまとめて表
―1に示す。表―1より明らかな如く脱炭酸素効
率の向上により脱炭期の時間、及び要した還元剤
原単位はいずれも92〜93%に低下し、又耐火物の
溶損量は時間短縮の効果により従来の96%に低下
した。 尚本発明の論理的説明の中から容易に推定可能
な如く気相部と溶鋼との界面を出来るだけ広くか
つ有効に利用するために溶鋼上に浮遊するスラグ
量が少なければ少ないほど効率的である。従つて
炉内に装入する粗溶鋼中の成分、特にスラグ形成
元素である〔Si〕%を0.15%以下に規定し、かつ
持込スラグ量を10Kg/t―粗溶鋼以下に規定する
ことは効果をより一層大きくする。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for further improving decarburization efficiency in a steel dilution decarburization method. In general, [C] in molten steel is determined by its temperature and content [Cr].
% in the gas phase that comes into contact with the carbon in the molten steel.
The lower the CO gas partial pressure, the more decarburization progresses. This CO
In order to lower the gas partial pressure (hereinafter abbreviated as Pco), Pco is lowered by creating a vacuum at the interface that contacts the molten steel, or by blowing diluent gas together with oxygen gas. In the dilution decarburization method, a large amount of oxygen gas and diluent gas are injected into the molten steel from the bottom of the furnace or the side wall near the bottom of the furnace, so the contact interface between the dilution gas and the molten steel becomes very large, and the CO migrates and Pco
is diluted and decarburization progresses easily. However, as mentioned above, decarburization stops when a Pco that is in equilibrium with the temperature and [Cr]% in molten steel is achieved. In order to make decarburization more efficient, it is theoretically possible to inject a larger amount of diluent gas, but it is not possible to inject a large amount of high-pressure (10 to 20 kg/cm 2 ) diluent gas from the bottom of the furnace. This is not possible due to operational issues. That is, the splash of molten steel increases and the cooling effect of the gas increases, which has the opposite effect on decarburization. Furthermore, in order to avoid problems such as splash, it is necessary to relatively reduce the amount of oxygen blown, which is undesirable as it prolongs the refining time and significantly impedes productivity. On the other hand, as mentioned above, since a large amount of gas is injected into the molten steel from the bottom of the furnace, the ``dancing'' on the top surface of the molten steel occurs.
It can be easily estimated that the contact interface between the gas phase portion and the molten steel on the upper surface of the molten steel is considerably larger than that in vacuum decarburization in which less gas is blown into the molten steel. It is thought that if Pco in this gas phase is lowered, the equilibrium of Pco at the contact interface will be disrupted, making it easier for decarburization to proceed. However, in the old method, the Pco in this gas phase is occupied by the dilution gas and CO gas that have escaped from the molten steel, so it is basically the same as the Pco in the dilution gas at the interface. The present inventor estimates that if the Pco of this gas phase is further reduced, the ratio of oxygen spent on decarburization at the contact interface, that is, the decarburization oxygen efficiency, will increase, and the gas phase is controlled by the atmosphere (Pco). As a result of various experiments, it was found that decarburization progressed further by blowing atmospheric dilution gas into the gas phase. The present invention will be described in detail below with reference to specific examples. Figure 1 shows an AOD furnace in which argon is injected into the molten steel from the outer pipe of a double-tube tuyere installed on the side wall of the furnace bottom as a protective gas, and a mixed gas of oxygen gas and argon as a diluting gas is injected into the molten steel from the inner pipe. The results are shown below, in which N 2 and Ar or air were blown into the gas phase in the furnace at a pressure in the range of 3 to 10 kg/cm 2 from the top of the AOD furnace as an atmosphere diluent gas during the decarburization period. In the case of N 2 and Ar as well as in the case of air, as the ratio of bottom-blown oxygen increases, the decarburization oxygen efficiency improves, and the ratio is almost saturated at 20%. That is, the gist of the present invention is to provide a method for decarburizing refining by injecting a protective gas from the outer pipe of a double-tube tuyere and a mixed gas of diluent gas and oxygen gas from the inner pipe into the molten steel. This decarburization refining method is characterized by injecting at least 20% of the amount of oxygen gas injected into the molten steel into the gas phase of the molten steel. In the present invention, the atmosphere diluting gas to be blown into the gas phase in the furnace includes inert gas such as argon, nitrogen gas, carbon dioxide gas, air, hydrocarbons, etc.
Any known gas can be used as long as it is capable of lowering the temperature. The protective gas injected from the outer pipe of the double-pipe tuyere includes inert gas such as argon, carbon dioxide gas, nitrogen gas,
Water vapor or the like can be used, and other well-known gases such as inert gas such as argon, nitrogen gas, etc. can be used as the diluent gas blown from the inner tube. In addition to stainless steel, other steel types that undergo dilution decarburization can also be used. In Figure 1, air has a greater effect than N 2 and Ar because the oxygen in the air reacts with the generated CO and the heat generated by the formation of CO 2 prevents the temperature of the molten steel from decreasing. The change from CO to CO 2 also promotes the reduction of Pco, so it is estimated that the effect is greater than when an inert gas is used. A specific example is shown next. When 18Cr-8Ni (SUS304) stainless steel is diluted and decarburized by blowing oxygen gas and argon through the inner tube of the double-tube tuyere installed on the side wall of the furnace bottom, and argon from the outer tube, during the decarburization period. A bottom-blown oxygen amount of 23 m 3 /T - 5 m 3 /T, which corresponds to 20% of the molten steel, was blown into the gas phase from the top of the furnace at a pressure of 5 to 6 kg/cm 2 . The results are summarized in Table 1. As is clear from Table 1, due to improved decarburization oxygen efficiency, the decarburization period time and the required reducing agent consumption rate were both reduced to 92-93%, and the amount of erosion of refractories was reduced due to the effect of shortening the time. This decreased to 96% of the previous level. As can be easily deduced from the logical explanation of the present invention, in order to utilize the interface between the gas phase and the molten steel as widely and effectively as possible, the smaller the amount of slag floating on the molten steel, the more efficient it is. be. Therefore, it is impossible to specify the composition of the crude molten steel charged into the furnace, especially the slag-forming element [Si]%, to be 0.15% or less, and to specify the amount of slag brought in to be 10 kg/t - crude molten steel or less. Make the effect even bigger. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は炉底部側壁に設けた2重管羽口の外管
から保護ガスとしてアルゴンを、内管から酸素ガ
スと希釈ガスとしてのアルゴンとの混合ガスを溶
鋼中に吹込むAOD炉を用いて、脱炭期に炉頂部
より雰囲気希釈ガスとしてN2とAr又は空気を、
圧力3〜10Kg/cm2の範囲で炉内気相部に吹込んだ
結果を示す図である。
Figure 1 shows an AOD furnace in which argon is injected into the molten steel from the outer tube of a double-tube tuyere installed on the side wall of the furnace bottom as a protective gas, and a mixed gas of oxygen gas and argon as a diluent gas is injected into the molten steel from the inner tube. During the decarburization period, N 2 and Ar or air are introduced as atmosphere dilution gas from the top of the furnace.
It is a figure which shows the result of blowing into the gas phase part in a furnace in the pressure range of 3-10Kg/cm <2> .

Claims (1)

【特許請求の範囲】 1 2重管羽口の外管から保護ガスを、内管から
希釈ガスと酸素ガスとの混合ガスを溶鋼中に吹込
むことにより脱炭精錬を行う方法において、炉内
の気相部に雰囲気希釈ガスを溶鋼中に吹込まれる
酸素ガス量の20%以上吹込むことを特徴とする脱
炭精錬方法。 2 溶鋼中の〔Si〕を0.15%以下とし、かつ持込
スラグ量を10Kg/T―溶鋼以下とする特許請求の
範囲第1項記載の脱炭精錬方法。
[Claims] 1. A method for decarburizing refining by injecting a protective gas from the outer tube of a double-tube tuyere and a mixed gas of diluent gas and oxygen gas from the inner tube into molten steel. A decarburization refining method characterized by injecting at least 20% of the amount of oxygen gas injected into molten steel into the gas phase of molten steel. 2. The decarburization refining method according to claim 1, wherein [Si] in the molten steel is 0.15% or less, and the amount of slag brought in is 10 kg/T-molten steel or less.
JP19279781A 1981-12-02 1981-12-02 Refining method by decarburization Granted JPS5896812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19279781A JPS5896812A (en) 1981-12-02 1981-12-02 Refining method by decarburization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19279781A JPS5896812A (en) 1981-12-02 1981-12-02 Refining method by decarburization

Publications (2)

Publication Number Publication Date
JPS5896812A JPS5896812A (en) 1983-06-09
JPS6214003B2 true JPS6214003B2 (en) 1987-03-31

Family

ID=16297144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19279781A Granted JPS5896812A (en) 1981-12-02 1981-12-02 Refining method by decarburization

Country Status (1)

Country Link
JP (1) JPS5896812A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690137A3 (en) * 1994-06-06 1997-04-23 Kawasaki Steel Co Method of decarburizing refining molten steel containing Cr

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3550941B2 (en) * 1997-04-25 2004-08-04 トヨタ自動車株式会社 Press bending method and apparatus
JP3550942B2 (en) * 1997-05-08 2004-08-04 トヨタ自動車株式会社 Press bending method and apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3307937A (en) * 1964-04-28 1967-03-07 Nyby Bruk Ab Method when degassing carboncontaining metal melts
JPS55158213A (en) * 1979-05-29 1980-12-09 Daido Steel Co Ltd Pefining method of chromium containing steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3307937A (en) * 1964-04-28 1967-03-07 Nyby Bruk Ab Method when degassing carboncontaining metal melts
JPS55158213A (en) * 1979-05-29 1980-12-09 Daido Steel Co Ltd Pefining method of chromium containing steel
US4272287A (en) * 1979-05-29 1981-06-09 Daido Tokushuko Kabushiki Kaisha Process for refining molten steel containing chromium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690137A3 (en) * 1994-06-06 1997-04-23 Kawasaki Steel Co Method of decarburizing refining molten steel containing Cr

Also Published As

Publication number Publication date
JPS5896812A (en) 1983-06-09

Similar Documents

Publication Publication Date Title
US3891429A (en) Method for selective decarburization of alloy steels
KR910002950B1 (en) Method for controlling secondary top-blown oxygen in subsurface pneumatic steel refining
JPS6214003B2 (en)
FI67094C (en) FOERFARANDE FOER ATT FOERHINDRA ATT SLAGGMETALL VAELLER UPP VI PNEUMATISK UNDER YTAN SKEENDE RAFFINERING AV STAOL
JPH044388B2 (en)
US4397685A (en) Production of ultra low carbon steel by the basic oxygen process
JP3843589B2 (en) Melting method of high nitrogen stainless steel
EP0073274B1 (en) Method of preliminary desiliconization of molten iron by injecting gaseous oxygen
EP0015396B1 (en) A method for increasing vessel lining life for basic oxygen furnaces
JPS6138248B2 (en)
JPH0953109A (en) Method for temperature-raising and refining molten steel
JP2728184B2 (en) Oxygen top-blowing vacuum decarburization of molten steel
JPS63143216A (en) Melting method for extremely low carbon and low nitrogen steel
US3219440A (en) Method of metal purification
JPH08302419A (en) Refining method of molten steel
JPS60194009A (en) Method for refining stainless steel
JPS6337162B2 (en)
KR101697096B1 (en) Method for refining stainless steel in converter
EP0087328A1 (en) Process to produce low hydrogen steel by argon-oxygen decarburization
JPS58181817A (en) Manufacture of low-phosphorus al-killed steel
JP2962163B2 (en) Melting method of high clean ultra low carbon steel
JP2005060782A (en) Method for smelting low-carbon high-manganese steel
JPH0254725A (en) Method for preventing foaming of molten slag
JP2585351B2 (en) Top and bottom blown converter steelmaking method
JPS59104421A (en) Decarburization of chromium-containing molten steel