JPS58181817A - Manufacture of low-phosphorus al-killed steel - Google Patents

Manufacture of low-phosphorus al-killed steel

Info

Publication number
JPS58181817A
JPS58181817A JP6448282A JP6448282A JPS58181817A JP S58181817 A JPS58181817 A JP S58181817A JP 6448282 A JP6448282 A JP 6448282A JP 6448282 A JP6448282 A JP 6448282A JP S58181817 A JPS58181817 A JP S58181817A
Authority
JP
Japan
Prior art keywords
steel
blowing
low
blown
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6448282A
Other languages
Japanese (ja)
Inventor
Nobuhide Aoki
青木 伸秀
Isao Yamazaki
勲 山崎
Takeyuki Hirata
平田 武行
Yoshimichi Okita
大喜多 義道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6448282A priority Critical patent/JPS58181817A/en
Publication of JPS58181817A publication Critical patent/JPS58181817A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To extremely efficiently manufacture high-grade low-phosphorus Al-killed steel, by smelting pig iron melt together with necessary adjutant raw materials into a state having low C content with upper-blown oxygen and bottom-blown gas, vacuum degasifying the formed steel to deoxidize and decarburize it, adding Al to it, and then continuously casting it. CONSTITUTION:Pig iron melt tgether with necessary adjutant raw materials is bottom- blown with gas during and/or after being refined with upper-blown O2 in the converter furnace which enables the upper blowing of O2 and the bottom blowing of gas to make steel of [C] below 0.07%, and the resulting steel melt is tapped under an undeoxidized condition. The undeoxidized tapped steel melt is then treated in a vacuum degasifier to perform decarburization, deoxidation and the adjustment of necessary components. From the time when [C] comes close to an objective value with the progress of the decarburizing reaction of C+O CO in the vacuum degasifier, Al is added in installments to reduce [O] down to about 0.002-0.005%. Thereafter, the steel melt after being treated in this way is formed into a cast piece of predetermined size by a continuous casting process. The formation of Al2O3 clusters is little in this continuous cast piece, and said cast piece is a low-phosphorus Al-killed one extremely excellent in quality as compared with a conventional Al-killed cast steel piece.

Description

【発明の詳細な説明】 この発明は、低燐低炭素A/キルド鋼の製造方法、特に
精煉から連続鋳造までの工程の合理的な結合によって、
高品位の上記鋼を経済的に4迅する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for producing low phosphorus, low carbon A/killed steel, particularly by rationally combining the steps from refining to continuous casting.
The present invention relates to a method for economically producing the above-mentioned high-grade steel.

自動車用冷延鋼板等の素材となるIllに、その用途に
応じて多様な特性が要求され、化学酸分や圧延条件等多
方面にわたる研究開発が進められている。一方この種の
鋼は、典型的な大量生産品であり、その製造コストの低
減も業界の至上の命題である。本発明の対象とする低燐
低炭素A/キルド鋼も特に自1車用冷延鋼板として最近
広く使用されつつあるものであるが、その製造方法とし
て現在採用されている工程には、製品の品質上および製
造コスト上いくつかの難点があり、最善のもノ、l!−
け言い難い。
Ill, which is used as a material for cold-rolled steel sheets for automobiles, is required to have a variety of properties depending on its use, and research and development in various fields such as chemical acid content and rolling conditions are being carried out. On the other hand, this type of steel is a typical mass-produced product, and reducing its manufacturing cost is also a top priority for the industry. The low phosphorus, low carbon A/killed steel that is the object of the present invention has recently been widely used, especially as cold rolled steel sheets for automobiles, but the process currently adopted as its manufacturing method involves There are some drawbacks in terms of quality and manufacturing cost, but the best product is the best! −
It's hard to say.

一般に低炭素1キルド鋼は、酸素上吹転炉(以下LD転
炉と記す)による溶製後、脱酸および成分調整を経て連
B−鋳造するという工程で!i!遺されている。この場
合、製品CIを低くしようとすれば、転炉での脱炭反応
を十分に行わせなければならず、この脱炭反応に伴って
Fe 、Mn等の酸化ロスも必然的に増大する。通常転
炉吹錬での吹止〔C〕は、後に成分調整のために添加さ
れるFe 、Mn等からの炭l#量増大′Ir考慮して
製品の炭素含有量よりも低めにする。そのため特に冷延
用低炭素鋼のLD転炉による溶製では、溶鋼の過酸化、
スラグ中FeOの増大が著しい。Arキルド鋼を製造す
る場合、かかる過酸化溶鋼は出鋼後、裳いは出鋼中にA
IKよる脱酸を行わなければならないが、その脱炭用A
/の使用量の増大は、鋼の製造コストに大きく影善する
だけでなく、脱炭反応の結果生成するAr、O,が多く
なると、連続鋳造時のノズル閉塞や製品のクラスター増
大等の好ましくない問題を惹起する。
In general, low-carbon 1-killed steel is produced by a process of melting in an oxygen top-blowing converter (hereinafter referred to as LD converter), followed by deoxidation and composition adjustment, followed by continuous B-casting. i! It is left behind. In this case, in order to lower the product CI, the decarburization reaction must be sufficiently carried out in the converter, and the oxidation loss of Fe, Mn, etc. inevitably increases with this decarburization reaction. Normally, the blow-off point [C] in converter blowing is set lower than the carbon content of the product, taking into account the increase in the amount of coal from Fe, Mn, etc. added later for component adjustment. Therefore, especially when melting low carbon steel for cold rolling using an LD converter, peroxidation of the molten steel,
The increase in FeO in the slag is significant. When producing Ar-killed steel, such peroxidized molten steel is exposed to A after the steel is tapped.
Deoxidation by IK must be performed, but A for decarburization
An increase in the amount of / not only significantly affects the manufacturing cost of steel, but also increases in Ar and O produced as a result of the decarburization reaction, leading to undesirable problems such as nozzle clogging during continuous casting and an increase in product clusters. cause no problems.

一方、鋼の衝撃特性、溶接性等の向上のために要求され
る低燐化の観点からは、ある程度の溶鋼の過酸化が必要
とされる。即ち、従来転炉における脱燐反応の平衡式と
して、 Ba1ajivaの式 但し、Kは温度によって変る定数であり、1550℃で
20.08.1585℃で20.41,1635℃で2
0.83 ()内はスラグ中の、また〔 〕内は 溶鋼中の成分を示す H軸1)lの式 が提唱されており、いずれKしても脱燐には適度なスラ
グ中鉄分(%T、 Fe )又if(%Fed)が必要
であるといわれている。従来のLD転炉による吹錬でP
&0.018%の鋼を溶製するには(%T、Fe)がお
よそ16%が適当である。
On the other hand, from the viewpoint of reducing phosphorus, which is required to improve the impact properties, weldability, etc. of steel, a certain degree of overoxidation of molten steel is required. That is, the equilibrium equation for the dephosphorization reaction in a conventional converter is the Bajiva equation, where K is a constant that changes depending on the temperature: 20.08 at 1550°C, 20.41 at 1585°C, 2 at 1635°C.
0.83 The formula for the H axis 1)l has been proposed, in which the values in parentheses indicate the components in the slag, and those in parentheses indicate the components in the molten steel. %T, Fe) or if(%Fed) is said to be necessary. P by blowing with a conventional LD converter
&0.018% steel, approximately 16% (%T, Fe) is appropriate.

しかし、このように(%T、Fe)を多くすることは前
記のとおりFeの歩留り低下のみならず、脱峻剤として
の1/の使用量の増加等、製造コストの上昇を招く多く
の問題がある。
However, increasing (%T, Fe) in this way not only reduces the yield of Fe as described above, but also causes many problems, such as an increase in the amount of 1/ as a thinning agent, which increases manufacturing costs. There is.

最近、本発明者等は、従来の酸素上吹きのみを行う転炉
吹錬法に代えて溶鋼浴面下からもガスを吹き込む、いわ
ゆる複合吹錬の技術を開発し、実用化しつつある。この
複合吹錬法は、上吹酸素とともに各面下に1主として撹
拌用のガスを導入するものであり、従来のLD法に比較
して反応時間の短縮、歩留り向上等、多くの利点を有す
るものである。本発明者は、上記複合吹錬法の実用化の
過程でこの方法と真空脱ガス法との適切な組合せにより
、低燐低炭素Arキルド鋼が極めて効率よく製造できる
ことをa1認した。本発明はこの知見を基礎とし、従来
のLD転炉沫による低燐低炭素Arキルド鋼製造上の多
くの難点を解決する新しい製造法を提供するものである
Recently, the present inventors have developed and are putting into practical use a so-called composite blowing technique in which gas is also blown from below the surface of the molten steel bath instead of the conventional converter blowing method in which only oxygen is blown from above. This composite blowing method introduces primarily a stirring gas under each surface along with top-blown oxygen, and has many advantages compared to the conventional LD method, such as shortening reaction time and improving yield. It is something. In the process of putting the composite blowing method into practical use, the present inventor recognized that by appropriately combining this method with a vacuum degassing method, low phosphorus, low carbon Ar killed steel can be produced extremely efficiently. The present invention is based on this knowledge and provides a new manufacturing method that solves many of the difficulties in manufacturing low phosphorus, low carbon, Ar killed steel using conventional LD converter filtration.

本発明の低燐低炭素Arキルド鋼の製造方法は、(イ)
溶銑と所要の副原料とを酸素上吹とガス下吹の可能な転
炉中で酸素上吹精錬中、又は酸素上吹精錬後の少なくと
も一方において、ガス下吹を行って[C] 0.07%
以下の鋼を溶製し、未脱酸で出鋼する工程、 (ロ)上記未脱酸出鋼した[C) 0.07%以下の1
SIII4を真空脱ガス装置内で処理し、脱酸と脱炭を
行う工程、 C9上記処理中、又は処理終了後、真空処理装置内でA
r又はArと所要の添加物とを添加する工程、 に)上記Cfつまでの処理の済んだ溶鋼を連続鋳造する
工程、 の4工程を含むことを特徴とする。
The method for producing low phosphorus low carbon Ar killed steel of the present invention includes (a)
Hot metal and required auxiliary raw materials are subjected to gas downward blowing during oxygen top blowing refining or at least either after oxygen top blowing refining in a converter capable of oxygen top blowing and gas downward blowing [C] 0. 07%
A process of melting the following steel and tapping it without deoxidizing, (B) The above-mentioned undeoxidizing tapped steel [C) 0.07% or less 1
A step of treating SIII4 in a vacuum degassing device to deoxidize and decarburize, C9 during the above treatment or after the completion of the treatment, A
The method is characterized by comprising the following four steps: a step of adding r or Ar and necessary additives, and a) a step of continuously casting the molten steel that has been treated up to Cf above.

以下、上記各工程に沿って本発明方法を詳しく説明する
Hereinafter, the method of the present invention will be explained in detail along each of the above steps.

第1図は、従来のLD法と複合吹錬法の吹錬中の溶鋼中
炭素[C]とスラグ中の鉄(T、Fe)の変化を示す概
念図である。この図を得た実験条件の概略は下記のとお
りである。
FIG. 1 is a conceptual diagram showing changes in carbon [C] in molten steel and iron (T, Fe) in slag during blowing in the conventional LD method and combined blowing method. The experimental conditions for obtaining this figure are outlined below.

共通事項 溶銑率二85〜100% 溶銑成分:C4,50% Si  0.45% Mn 0.30% P  0.120% S  O,01% 転炉容量: 250 トン 上吹送酸速度 :2.1〜2.5Nd1分Oトン複合吹
錬法のみの事項 下吹きガス: Ar 、 N、、 Co、、 0゜ノズ
ル:下吹き二重管 流 量: o、o3N−/分・トン 第1図にみられるとおり、いずれの場合も脱炭の進行に
伴って(T、Fe)Fi増大していくが、複合吹錬法で
は、その曲線がLD法のそれに比べて大きく左寄りにな
っている。図中の破線が示すように[C]を0.05%
まで下げる吹錬を行つ九場合、LD法でFi(T、Fe
)が20%に達するが複合吹錬法では、(T、Fe)#
−i15%にとどまる。即ち、複合吹錬法によれば溶鋼
中の縦索を低くする低炭素化吹錬を行ってもFeの峻化
ロスは少なくて済むということであり、これFiFeだ
けでなく、Mn等の有用成分についてもいえる。これは
複合吹錬法では浴面下へのガス吹込みにより、溶鋼の撹
拌が活発になり、c+o−coの脱炭反応が促進される
ことが主な原因である。
Common items Hot metal ratio: 285-100% Hot metal composition: C4, 50% Si 0.45% Mn 0.30% P 0.120% SO, 01% Converter capacity: 250 tons Top blown acid rate: 2.1 ~2.5Nd 1 minute O ton Combined blowing method only Bottom blowing gas: Ar, N, Co, 0° Nozzle: Bottom blowing double pipe Flow rate: o, o3N-/min・ton Figure 1 As can be seen, (T, Fe)Fi increases as decarburization progresses in all cases, but in the combined blowing method, the curve is much more to the left than in the LD method. As the broken line in the figure shows, [C] is 0.05%
In the case of performing blowing to lower Fi (T, Fe) using the LD method,
) reaches 20%, but in the composite blowing method, (T, Fe)#
-i stays at 15%. In other words, according to the composite blowing method, even if low-carbon blowing is performed to lower the length of longitudinal cables in molten steel, the loss of Fe hardening is small, and this means that not only FiFe but also useful materials such as Mn can be used. The same can be said about ingredients. This is mainly due to the fact that in the combined blowing method, gas is blown below the bath surface, which actively stirs the molten steel and promotes the decarburization reaction of c+o-co.

なお、駿素上吹き終了後、ごく短時1llll Ar、
 pipeCOl等の下吹きだけを行ういわゆるリンス
処理によって、極低[C]溶鋼を得ることも可能であり
、この場合、第1図の[C’l −(T、Fe )曲線
は一層左寄りの好ましい形となる。即ち本発明方法の第
1工程C4)においてガス下吹は駿素の上吹中、又は峻
素上吹終了後の少なくとも一方で行うことが必要であり
、勿論、上吹中および上吹終了後の両期間で行ってもよ
い。ここで下吹とは転炉炉底又は炉壁の浴面下の位置に
設けたノズル又はボークスレンガによるガス吹込みを意
味する。使用する下吹ガスとしてはN* * CO! 
I Ot * C@H@ + A rが用いられるが、
本発明の目的とする低炭素低燐鋼の溶製にFi N t
 、 COt 。
In addition, after the end of Shunso, 1llll Ar for a very short time,
It is also possible to obtain extremely low [C] molten steel by a so-called rinsing process that only performs downward blowing, such as pipeCOl. It takes shape. That is, in the first step C4) of the method of the present invention, it is necessary to carry out the downward blowing of the gas during the top blowing of the sulfur element or at least once after the top blowing of the sulfur element is completed. It may be done during both periods. Here, "bottom blowing" means blowing gas through a nozzle or Volks brick provided at the bottom of the converter furnace or at a position below the bath surface of the furnace wall. The bottom blowing gas to be used is N* *CO!
I Ot * C@H@ + A r is used, but
Fi N t is used for the melting of low carbon low phosphorus steel which is the object of the present invention.
, COt.

Ow 、 Cs Hsを用いるのが望ましい。It is desirable to use Ow, Cs, and Hs.

第2図は本発明方法における(A)の工程におけるガス
吹込パターンの1例を示している。0.上吹に先立って
N、を下吹きしておき、0.上吹開始後まず2重管ノズ
ルの内管からはN、−0,を、また外管からFiN* 
 COtを吹込み、吹錬末期の低炭素領域では内管から
CO,−O,を、ま九外管からけCO7を吹込む。そし
て吹錬終点後は再びN、のみを下吹きする。
FIG. 2 shows an example of the gas blowing pattern in step (A) in the method of the present invention. 0. Before blowing up, blow N. down, and then blow 0. After starting top blowing, N, -0, is first supplied from the inner tube of the double tube nozzle, and then FiN* is supplied from the outer tube.
COt is injected, and in the low carbon region at the end of blowing, CO, -O, are injected from the inner tube, and CO7 is injected from the outer tube. After the end of the blowing process, blow the N chisel down again.

吹錬の初期、中期においては〔%N〕が許容される範囲
内で安価なN!ガスを混合使用するのがよく、末期にお
いては過酸化を抑制すべく流量を増して下吹ガスによる
撹拌を強化するのがよい。
In the early and middle stages of blowing, [%N] is within the allowable range and is inexpensive! It is preferable to use a mixture of gases, and in the final stage, it is preferable to increase the flow rate to suppress overoxidation and strengthen the stirring by the downward blowing gas.

第3図は、第1図の場合と同じ条件でスラグ中のFe 
(T、Fe)と溶鋼中の燐[P]の変化を調べたもので
ある。(T、Fe)が多くなる1i(P)が低下するの
は、前記Healy 、 Ba1ijin等の平衡式と
同じ傾向である。
Figure 3 shows Fe in the slag under the same conditions as in Figure 1.
(T, Fe) and changes in phosphorus [P] in molten steel were investigated. The fact that 1i(P) decreases as (T, Fe) increases is the same tendency as in the equilibrium equation of Healy and Balijin.

しかし複合吹錬法によれば、同じ「]レベルに達するた
めの(T、Fe)Vi、LD決に比較してけるかく少な
くてよい。即ち、CP)が0.015%の鋼を得るに必
要な(T、Fe)tfLD法ではおよそ20%前徒であ
るが、複合吹錬法ならば15%でよいことKなる。
However, according to the combined blowing method, the amount of (T, Fe) Vi, LD required to reach the same level is much less than that required for obtaining steel with CP) of 0.015%. The required (T, Fe) tf is about 20% in the LD method, but it is only 15% in the composite blowing method.

言いかえれば、低燐鋼の溶製においても複合吹錬法によ
れば、Feの歩留りの低下を最小限におさえることが可
能となり、併せて溶鋼中駿素0]も低く抑えられるので
、後のA/脱酸に伴う難点が除かれることになる。かか
る複合吹錬法における脱燐反応の促進は、溶鋼撹拌、の
増大によるスラグ−メタル間の反応活発化、即ちCaO
KよるP、O,捕捉の機会増大と、撹拌強化により、ス
ラグ−メタル間の温度差が減少して恰も温度が低下し九
如くに脱P反応を促進することKよるものと考えられる
In other words, even in the melting of low-phosphorus steel, if the combined blowing method is used, it is possible to minimize the decrease in the Fe yield, and at the same time, it is possible to keep the amount of iron in the molten steel low. A/Difficulties associated with deoxidation will be eliminated. The promotion of the dephosphorization reaction in such a composite blowing method is due to the activation of the slag-metal reaction by increasing the molten steel stirring, that is, the CaO
It is thought that K increases the chance of capturing P, O, and strengthens the stirring, which reduces the temperature difference between the slag and metal, lowers the temperature, and promotes the deP reaction.

本発明においては、低燐鋼として燐含有量がおよそ0.
018%以下のものを得ることを目標としているので、
第3図からみて(T、Fe)は約12%以上とすればよ
い。この(T、Fe)量に対応する[C]量は第1図か
らみて、約0.07%である。即ち、複合吹錬法によっ
てEC) 0.07%以下の溶鋼を得れはスラグ中(T
、Fe)Fi約12%以上となり、[P]0.018%
以下の低燐鋼が製造できる。
In the present invention, the phosphorus content is approximately 0.0% as a low phosphorus steel.
Our goal is to obtain 0.018% or less, so
As seen from FIG. 3, (T, Fe) may be about 12% or more. The amount of [C] corresponding to this amount of (T, Fe) is about 0.07% as seen in FIG. In other words, it is possible to obtain molten steel with a concentration of 0.07% (EC) or less by the combined blowing method.
, Fe)Fi is about 12% or more, [P] 0.018%
The following low phosphorus steels can be manufactured.

勿論、たとえば[P]が0.010%以下のような低燐
鋼が必要な場合にVi(T、Fe)を増加させるような
吹錬、例えば下吹ガス流量を低減し、またランス−湯面
間距離を通常より大きくするいわゆるソフトプローによ
る等の方法を採ることができるが、かかる操作は全工程
のコスト増大と製品の高品質化との兼ねあいで決定すれ
ばよい。
Of course, if a low phosphorus steel with [P] of 0.010% or less is required, blowing that increases Vi (T, Fe), for example, by reducing the bottom blowing gas flow rate, Although it is possible to adopt a method such as using a so-called soft plow to make the distance between the surfaces larger than usual, such an operation should be decided based on the balance between increasing the cost of the entire process and improving the quality of the product.

上記のように溶製された鋼は、未脱酸で出鋼される。こ
こで未脱酸出鋼とけ、転炉から取鍋への出鋼中、咬いは
出鋼後の取鍋中で実質的に脱酸処理を行わないというこ
とである。ここでの脱酸は大気中であること、溶鋼中(
9)が高いこと、FeOの高いスラグが存在すること等
のため、脱峻剤(A/)の歩留りが極めてわるい。また
A4,0.の大量生成により、製品欠陥や連鋳時のノズ
ル結抄など好ましくない結果をもたらす。更に1ここで
Atl−添加すると、スラグ中の(CaO)sP*Os
が還元されて、溶鋼中[P]が増大するいわゆる復燐が
おこる。ただし、スラグの7オーミング防止を目的上し
て少量のAt411に加することは許される。
The steel produced as described above is tapped without being deoxidized. Here, undeoxidized steel is melted, and during tapping from the converter to the ladle, the deoxidation treatment is not substantially performed in the ladle after tapping. The deoxidation here must be done in the atmosphere, or in the molten steel (
9) and the presence of slag with high FeO content, the yield of the defrosting agent (A/) is extremely poor. Also A4,0. The production of a large amount of silica leads to undesirable results such as product defects and nozzle formation during continuous casting. Furthermore, if Atl- is added here, (CaO)sP*Os in the slag
is reduced, and so-called rephosphorization occurs, in which [P] in the molten steel increases. However, it is permissible to add a small amount of At411 for the purpose of preventing 7 ohms of slag.

本発明方法の第二の工程(ロ)は、前記のように未脱峻
出鋼された溶鋼を、真空脱ガス装置で処理し、脱炭、脱
酸および必要な成分調整を効率よく進行させる工程であ
る。ここでの反応は鋼中の[Clおよび(6)がC+0
→COの反応で系外へ排出されるもので、脱炭と脱酸と
が同時に進行する。真空度および処理時間によって脱炭
、脱酸の程度が規−1されるが、真空処理法として代表
的なもののひとつであるRH法によれば、その通常の運
転条件(250トンの鍋で溶鋼環流量100トン/分程
度、真空度50−150mWg)でに]−0,09%蘭
−0,03%の溶鋼を処理し九場合、(C1−0,06
%に達するのにおよそ10分間を要する。以後脱炭速度
は急激に低下し、[Clを0.04%以下まで下げるの
は、外部からの酸素の供給など、特別の操作を加え危い
と極めて困難になる。
The second step (b) of the method of the present invention is to treat the molten steel that has been de-expanded as described above in a vacuum degassing device to efficiently progress decarburization, deoxidation, and necessary component adjustment. It is a process. The reaction here is that [Cl and (6) in the steel are C+0
→It is discharged from the system due to the reaction of CO, and decarburization and deoxidation proceed simultaneously. The degree of decarburization and deoxidation is determined by the degree of vacuum and processing time, but according to the RH method, which is one of the representative vacuum processing methods, under normal operating conditions (molten steel is heated in a 250-ton pot) When molten steel of -0,09% -0,03% is processed at (C1-0,06
It takes approximately 10 minutes to reach %. Thereafter, the decarburization rate rapidly decreases, and it becomes extremely difficult to reduce Cl to 0.04% or less unless special operations such as external oxygen supply are added.

真空処理装置における長時間の処理は、装置の運転コス
トの増大、装置の耐火物の溶損などの問題だけでなく、
溶鋼温度の低下による鋳造作業の不都合を壕ねき、この
溶鋼温度の低下を見込んで転炉出鋼温度を高くすれば、
転炉の寿命を短縮させる結果となる。
Long-term processing in vacuum processing equipment not only causes problems such as increased equipment operating costs and erosion of the equipment's refractories.
If you eliminate the inconvenience in casting work caused by a drop in molten steel temperature and increase the converter tapping temperature in anticipation of this drop in molten steel temperature,
This results in shortening the life of the converter.

上記のような問題点を除去するには、処理前の[Clを
できるだけ低くしておく必要があるが、従来のLD転炉
による低(Cl溶鋼の吹錬では溶鋼の過峻化に伴う多く
の難点があることは冒頭に説明したとおりである。しか
し本発明方法では、低燐化のため一定量の(T、Fe)
を確保する必要上、転炉吹錬終了時のEC)を0.07
%以下とするものであり、前記のとおり複合吹錬法を採
用することによって、に]を0607%以下と低くして
もFe、Mn等の酸化ロスは、従来のLD法における場
合のようには増大しない。即ち、本発明方法の第1工程
によって製造されたEC)0.07%以下の溶鋼は真空
処理装置中での比較的短時間の処理で所定の低[q坂ま
で脱炭が進行する。九とえばRH法により前記の条件で
に1−0.07%の溶鋼を処理し九場合、約5分間で[
Cl =0.04%となり、同時K(6)も0.02%
まで下る。回が高く、未脱峻の溶鋼を真空処理するとC
十O→COの反応がはげしく、スプラッシュによる操業
上の制約が生じるという点からも、処理前の溶鋼の[C
lはできるだけ低い方がよい。最近、用途の拡大してい
るC0.01%以下のような冷延用極低脚素鋼を製造す
るには転炉出鋼時【qを0.04%以下にしておくのが
真空処理の効率化の上から望ましい。
In order to eliminate the above-mentioned problems, it is necessary to keep the [Cl] as low as possible before treatment. As explained at the beginning, the method of the present invention has the disadvantage of using a certain amount of (T, Fe) to reduce phosphorus.
In order to ensure that the EC) at the end of converter blowing is 0.07
% or less, and by adopting the composite blowing method as described above, even if the ni] is lowered to 0.607% or less, the oxidation loss of Fe, Mn, etc. is still the same as in the conventional LD method. does not increase. That is, the molten steel having an EC of 0.07% or less produced by the first step of the method of the present invention is decarburized to a predetermined low [q slope] in a relatively short time in a vacuum processing apparatus. For example, when 1-0.07% molten steel is treated under the above conditions by the RH method, [
Cl = 0.04%, and simultaneous K(6) is also 0.02%
go down to C
The [C
It is better to keep l as low as possible. In order to produce ultra-low-leg steel for cold rolling, such as C0.01% or less, which has recently been expanded in use, vacuum treatment is required to keep Q at 0.04% or less during converter tapping. This is desirable from the standpoint of efficiency.

次に(ハ)の工程について説明すると、真空処理装置内
で、C+0→COの脱炭反応が進行し、[clが目標値
まで下つ九後、又けC〕が目標値に近くなった時点から
何回かに分けて、AIが添加される。すでに溶鋼中の酸
素10JFiC+0−Coの反応で相当量が除去されて
いるから、脱酸に必要なAt量は真空処理前に比べて少
なくて済む。しかも真空処理装置内での添加であるから
、Atの添加歩留りは大気中での添加に比較して著しく
向上する。RH法でもDH法でも真空容器内にはスラグ
は実質的に入って来ないから、添加されたAtとスラグ
との接触によるAtの酸化ロスも殆んどない。しかし極
低燐銅を製造する場合には真空処理の前にスラグを分離
除去しておくことが復燐の可能性を少しでも小さくする
ために好ましいことである。
Next, to explain the process (c), the decarburization reaction of C+0 → CO progressed in the vacuum processing equipment, and [after cl decreased to the target value, C] became close to the target value. From this point onwards, AI is added in several portions. Since a considerable amount of oxygen in the molten steel has already been removed by the reaction of 10JFiC+0-Co, the amount of At required for deoxidation is smaller than before the vacuum treatment. Furthermore, since the addition is performed in a vacuum processing apparatus, the yield of At addition is significantly improved compared to when the At is added in the atmosphere. In both the RH method and the DH method, since slag does not substantially enter the vacuum vessel, there is almost no oxidation loss of At due to contact between the added At and the slag. However, when producing ultra-low phosphorous copper, it is preferable to separate and remove the slag before vacuum treatment in order to minimize the possibility of rephosphorization.

RH法によって[Cl0.06%、[◇0,04%の溶
鋼を処理する場合、At添加量は0.6〜1.04/)
ンー溶鋼で目は0.002〜0.005%程度Kまで下
げられる。これをLD転炉での溶製−取鍋脱酸という従
来のプロセスにおける必要At添加量(およそ1.6〜
2.0−/トンー溶鋼)と比較すると、A/!Il単位
で約l&F/トンー溶鋼の節減が図れることになる。
When processing molten steel with [Cl0.06% and [◇0.04%] by the RH method, the amount of At added is 0.6 to 1.04/)
With molten steel, the K content can be lowered to about 0.002 to 0.005%. The amount of At added (approximately 1.6~
2.0-/ton-molten steel), A/! Approximately 1&F/ton of molten steel can be saved in units of Il.

以上のように真空処理装置内で脱炭、脱炭および必要に
応じて成分調整の行われた溶鋼は次Kに)の工程に係る
連続鋳造により所定のサイズの鋳片にされる。一般にA
/キルド鯛の連続鋳造では、溶鋼温度が低下するとAl
e’sの析出によるノズル結りの事故が発生しやす馳。
The molten steel that has been decarburized, decarburized and, if necessary, compositionally adjusted, in the vacuum processing apparatus as described above is made into slabs of a predetermined size by continuous casting in step K). Generally A
/In continuous casting of killed sea bream, when the molten steel temperature decreases, Al
Nozzle clogging accidents may occur due to e's precipitation.

しかし本願発明の方決によって製造されたA/キルド鋼
#iA/ 添加量は必要最小限の量に抑えられており、
A/、0.の生成も少ないから、通常のA/キルド鋼の
連続鋳造のようにノズル結りを懸念する必要はない。
However, the amount of A/killed steel #iA/ produced by the method of the present invention is suppressed to the minimum necessary amount,
A/, 0. Since there is little generation of , there is no need to worry about nozzle clogging as in the case of continuous casting of ordinary A/killed steel.

以上詳述した如き本発明によって製造された連続鋳造鋳
片けA/、0.クラスターの生成が少なく従来のA/キ
ルド鋼鋳片に比較して品質面でも極めてすぐれている。
Continuously cast slabs A/, 0.0, manufactured by the present invention as detailed above. It produces fewer clusters and is extremely superior in quality compared to conventional A/killed steel slabs.

第1表は本発明方法の実施例(1)、 (2)と従来法
による場合との夫々について処理条件、鋳造条件。
Table 1 shows the processing conditions and casting conditions for Examples (1) and (2) of the method of the present invention and the conventional method.

スラグ成分及び品質について一覧表にして示したもので
ある。
This is a list of slag components and quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図Fi[c]−(T、Fe)の関係をLD法及び複
合吹錬法の夫々について示すグラフ、第2図は本発明方
法のガス吹込のパターンの1例を示す説明図、第3図は
(T、 F e )  [P]の関係をLD法及び複合
吹fIL決の夫々について示すグラフである。 特 許 出 願 人   住友壷属工業株武会社代理人
 弁理士  河 野 登 夫 [0(”/、) 第 1 圓 (T−Fe)  (’/、)
Fig. 1 is a graph showing the relationship between Fi [c] - (T, Fe) for the LD method and the composite blowing method. Fig. 2 is an explanatory diagram showing an example of the gas injection pattern of the method of the present invention. FIG. 3 is a graph showing the relationship between (T, F e ) [P] for the LD method and the composite blow fIL method. Patent applicant: Sumitomo Tsubo Industries Co., Ltd. Agent, Patent attorney: Noboru Kono [0(”/,) 1st circle (T-Fe) ('/,)

Claims (1)

【特許請求の範囲】 1、(イ)溶銑と所要の副原料とを、酸素上吹さガス下
吹の可能な転炉中で酸素上吹転炉中又は酸素上吹転炉後
の少なくとも一方において、ガス下吹を行って(C)0
.07%以下の鋼を溶製し未脱酸で出鋼する工程、(ロ
)上記〔C〕0.07チ以下の溶w4を真空脱カス処理
して脱酸と脱炭を行う工程、e→上が真空脱ガスグし理
中又dその後真空処理装置内でA/、又汀At々所要の
添加物とを添加する工程、およびに)上ル1真空処理後
の溶鋼を連続鋳造する工程、を含むことを特徴とする低
燐A/ギルド鋼の製造方法。
[Claims] 1. (a) Hot metal and necessary auxiliary materials are heated at least either in an oxygen top-blown converter or after the oxygen top-blowing converter in a converter capable of oxygen top-blowing and gas bottom-blowing. At , blow the gas down to (C)0
.. 0.07% or less steel and tapping it without deoxidizing; (b) the above [C] step of vacuum descaling the molten W4 of 0.07% or less to deoxidize and decarburize; e →The process of vacuum degassing the upper part and then adding necessary additives in the vacuum processing equipment, and 2) the process of continuously casting the molten steel after the vacuum treatment of the upper part 1, A method for producing low phosphorus A/guild steel, the method comprising:
JP6448282A 1982-04-16 1982-04-16 Manufacture of low-phosphorus al-killed steel Pending JPS58181817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6448282A JPS58181817A (en) 1982-04-16 1982-04-16 Manufacture of low-phosphorus al-killed steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6448282A JPS58181817A (en) 1982-04-16 1982-04-16 Manufacture of low-phosphorus al-killed steel

Publications (1)

Publication Number Publication Date
JPS58181817A true JPS58181817A (en) 1983-10-24

Family

ID=13259473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6448282A Pending JPS58181817A (en) 1982-04-16 1982-04-16 Manufacture of low-phosphorus al-killed steel

Country Status (1)

Country Link
JP (1) JPS58181817A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157618A (en) * 1984-12-29 1986-07-17 Daido Steel Co Ltd Production of alloy steel containing cr

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157618A (en) * 1984-12-29 1986-07-17 Daido Steel Co Ltd Production of alloy steel containing cr

Similar Documents

Publication Publication Date Title
JPH0230711A (en) Manufacture of extremely low carbon steel having superior cleanness
JP3176374B2 (en) Method for producing low carbon molten steel by vacuum degassing decarburization
JP5386825B2 (en) Method for melting Mn-containing ultra-low carbon steel
JP2008063610A (en) Method for producing molten steel
JP3627755B2 (en) Method for producing high cleanliness ultra low carbon steel with extremely low S content
JPH0488111A (en) Method for producing dead soft steel
JPS58181817A (en) Manufacture of low-phosphorus al-killed steel
JPS6358203B2 (en)
JPH11279631A (en) Method for refining molten stainless steel
JPH0153329B2 (en)
JP7235070B2 (en) Method for secondary refining of molten steel and method for manufacturing steel
JPH06228626A (en) Method for reforming slag as pretreatment of desulfurization
JP4025751B2 (en) Hot metal refining method
JPH0488114A (en) Method for producing high manganese steel
JPH04110413A (en) Production of high carbon steel wire rod
JPH0841516A (en) Pre-refining method
JPH11131122A (en) Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy
JP2009114491A (en) Method for refining molten steel by rh-vacuum degassing apparatus
JPH06256836A (en) Production of high cleanliness and ultra-low carbon steel
JPH1150122A (en) Dephosphorize-refining of molten iron in converter type refining vessel
JPH0941028A (en) Production of high purity ultra-low carbon steel
JPH01252753A (en) Method for refining of stainless steel mother molten metal, arrangement of tuyere at bottom of reactor for refining and bottom tuyere
KR20010048854A (en) Method of Manufacturing Ultra Low Carbon Steel for Supper Extra Deep Drawing Quality
JPH06256837A (en) Production of high cleanliness steel
JPH11241117A (en) Method for melting highly clean and extra-low carbon steel