JPS5896812A - Refining method by decarburization - Google Patents

Refining method by decarburization

Info

Publication number
JPS5896812A
JPS5896812A JP19279781A JP19279781A JPS5896812A JP S5896812 A JPS5896812 A JP S5896812A JP 19279781 A JP19279781 A JP 19279781A JP 19279781 A JP19279781 A JP 19279781A JP S5896812 A JPS5896812 A JP S5896812A
Authority
JP
Japan
Prior art keywords
decarburization
gas
molten steel
furnace
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19279781A
Other languages
Japanese (ja)
Other versions
JPS6214003B2 (en
Inventor
Yasumasa Ikehara
池原 康允
Haruki Ariyoshi
春樹 有吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19279781A priority Critical patent/JPS5896812A/en
Publication of JPS5896812A publication Critical patent/JPS5896812A/en
Publication of JPS6214003B2 publication Critical patent/JPS6214003B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/35Blowing from above and through the bath

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To reduce the partial pressure of CO in a vapor phase part and to improve decarburization efficiency in a dilute decarburization method by blowing the diluting gas of a specific ratio of the content of gaseous oxygen to be blown into molten steel into the vapor phase in a furnace. CONSTITUTION:In the stage of dilute decarburization of steel, a diluting gas such as N2 and Ar or air at >=20% bottom blowing oxygen is blown from a furnace top into a vapor phase part in a decarburization period. Then decarburization efficiency is improved, and the time of the decarburization period and the unit of a reducing agent are decreased. In this method, if the % of Si which is a slag forming element is regulated to <=0.15% to regulate the amt. of the slag to be carried in to <=10kg/t-molten steel, the decarburization efficiency is further improved.

Description

【発明の詳細な説明】 本発明は鋼の希釈脱炭法において、脱炭効率をより一層
向上させるための方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for further improving decarburization efficiency in a steel dilution decarburization method.

一般に溶鋼中〔C〕はその温度、含有(Cr)チが一定
であれば溶鋼中炭素と接触する気相中のCOガス分圧の
低いほど脱炭が進行する。このCOガス分圧(以下PC
Oと略す)を低くするために溶鋼と接触する界面を真空
にしたり、希釈ガスを酸素がスと共に吹込んだりして、
PCOを低下させているのである。
In general, if the temperature and content (Cr) of [C] in molten steel are constant, decarburization progresses as the partial pressure of CO gas in the gas phase that contacts the carbon in molten steel decreases. This CO gas partial pressure (hereinafter referred to as PC)
In order to lower the molten steel (abbreviated as O), the interface in contact with the molten steel is vacuumed, or diluent gas is blown in with oxygen.
This lowers PCO.

希釈脱炭法においては大量の酸素ガスと希釈ガスとが炉
底又は炉底近傍の側壁から溶鋼中に吹込まれるため、希
釈ガスと溶鋼との接触界面は非常に大きくなル、希釈ガ
ス中にCOが移行し、PCOは希釈され膜製が容易に進
行する。しかし前述した如く溶鋼中の温度、[Cr)−
と平衡するpcoが達成されれば膜製は停止する。脱炭
を更に効率よく行うためには希釈ガスを更に大量に吹込
めば理論的には可能であるが、高圧(10〜20111
f乙−)の希釈ガスを大量に炉底から吹込むことは操業
上の問題で不可能である。即ち溶鋼のスグラ、シ。
In the dilution decarburization method, a large amount of oxygen gas and diluent gas are injected into the molten steel from the bottom of the furnace or the side wall near the bottom of the furnace, so the contact interface between the dilution gas and the molten steel is very large. CO migrates to the surface, PCO is diluted, and membrane formation progresses easily. However, as mentioned above, the temperature in molten steel, [Cr)-
When a pco in equilibrium with is achieved, membrane production is stopped. In order to perform decarburization more efficiently, it is theoretically possible to inject a larger amount of diluent gas, but it is possible
Due to operational problems, it is impossible to blow in a large amount of the dilution gas (f) from the bottom of the furnace. In other words, sugura, shi of molten steel.

増大、及びガスによる冷却作用が大きくなりがえって脱
炭には逆効果となる。又スグラッシ、勢の問題を回避し
ようとすれば相対的に酸素の吹込量を低下させることが
必要であり、精錬時間の延長をもたらし、生産性を著し
くl$g書し好ましくない。
This increases the cooling effect of the gas, which has the opposite effect on decarburization. Furthermore, in order to avoid the problem of slush and sludge, it is necessary to relatively reduce the amount of oxygen blown, which leads to an extension of the refining time, which is undesirable as it significantly reduces productivity.

一方、すでに述べたように大量のガスを炉底部より溶鋼
中に吹込むため、溶鋼上面の1おどル”が激しく該溶鋼
上面における気相部と溶鋼との接触界面もあまルがスを
吹込まない真空脱炭よりもかなり大きなものとなること
は容易に推定出来る。
On the other hand, as already mentioned, since a large amount of gas is injected into the molten steel from the bottom of the furnace, the top surface of the molten steel is violently blown, and the contact interface between the gas phase and the molten steel on the top surface of the molten steel is also slightly blown. It can be easily estimated that the decarburization is considerably larger than vacuum decarburization, which does not contain any carbon.

この気相部のPCOを下げてやれば接触界面においてP
COの平衡がくずれるので脱炭の進行が容易になること
が考えられる。しかし旧法ではこの気相部のPco #
i嬉1鋼中から抜は出て来た希釈ガスとCOガスで占め
られているため基本的には界面における希釈ガス中のP
COと同じである。
If the PCO in this gas phase is lowered, P at the contact interface
It is thought that decarburization progresses more easily because the CO equilibrium is disrupted. However, in the old method, Pco # of this gas phase
Since the extraction from iKi1 steel is occupied by the dilution gas and CO gas that came out, basically the P in the dilution gas at the interface
Same as CO.

本発明者はこの気相部のPCOを更に低下させれば接触
界面における酸素の脱炭に費やされる比率すなわち脱炭
酸素効率が上昇するであろうことを推定し気相を雰囲気
(Pco )コントロールする実験を種々行った結果気
相部に雰囲気希釈ガスを吹込むことにより脱炭がよシ一
層進行することを見い出した。
The present inventor estimates that if the PCO in the gas phase is further reduced, the ratio of oxygen spent on decarburization at the contact interface, that is, the decarburization oxygen efficiency will increase, and the gas phase is controlled by the atmosphere (Pco). As a result of conducting various experiments, it was found that decarburization was further promoted by blowing atmospheric dilution gas into the gas phase.

以下本発明を具体的な実施例にそって詳細に説明する。The present invention will be described in detail below with reference to specific examples.

第1図は炉底部@壁に設けた2重管羽口の外管から保S
ガスとしてアルゴンを、内管から酸素ガスと希釈ガスと
してのアルゴンとの混合がスを溶鋼中に吹込むAOD炉
を用いて、脱炭期にAOD炉頂部よシ雰囲気希釈ガスと
してN2とAr又は空気を、圧力3〜10 kt/cs
z”の範囲で炉内気相部に吹込んだ結果を示す、N2と
Arの場合も、空気の場合も底吹酸素量との比率が向上
するにつれて、脱炭酸素効率の改善が見られ、その比率
が20−でほぼ飽和している。
Figure 1 shows the storage of S from the outer pipe of the double pipe tuyere installed on the bottom of the furnace @ wall.
Using an AOD furnace in which argon is injected into the molten steel through an inner pipe, a mixture of oxygen gas and argon as a diluent gas is injected into the molten steel. Air at a pressure of 3 to 10 kt/cs
The results show that the decarburization oxygen efficiency improves as the ratio with the bottom blown oxygen amount improves, both in the case of N2 and Ar and in the case of air. The ratio is almost saturated at 20-.

すなわち本発明の要旨は、2重管羽口の外管から保s、
fスを、内管から希釈ガスと酸素ガスとの混合ガスを溶
鋼中に吹込むことによシ脱炭精錬を行う方法において、
炉内の気相部に雰囲気希釈ガスを溶鋼中に吹込まれる酸
素ガス量の201II以上吹込むことを%黴とする脱炭
精錬方法である。
In other words, the gist of the present invention is to store s from the outer pipe of the double pipe tuyere,
In a method of decarburizing and refining f-sulfur by blowing a mixed gas of dilution gas and oxygen gas into molten steel from an inner tube,
This is a decarburization refining method in which at least 201 II of the amount of oxygen gas to be blown into the molten steel is injected into the gas phase in the furnace to dilute the atmosphere.

本発明において炉内の気相部に吹込む雰囲気希釈ガスと
してはアルゴン等の不活性ガスの他に窒素がス、二酸化
炭素ガス、空気、炭化水素醇Pegを低下可能々ガスで
あれば周知のあらゆるガスが使用可能である。
In the present invention, in addition to inert gases such as argon, the atmosphere diluting gases to be blown into the gas phase in the furnace include nitrogen, carbon dioxide gas, air, and well-known gases capable of lowering the Peg of hydrocarbon liquor. Any gas can be used.

2重管羽口の外管から吹込む保護ガスとしてはアルゴン
等の不活性ガス、炭酸ガス、窒素がス。
Inert gases such as argon, carbon dioxide, and nitrogen are used as protective gases blown into the outer pipe of the double-pipe tuyere.

水蒸気等を、また内管から吹込む希釈ガスとしてはアル
ゴン等の不活性ガス、窒素ガス等周知の他のガスを使用
可能である。また鋼種はステンレス鋼の他に希釈脱炭を
行う他の鋼種にも適用可能である。
Water vapor or the like can be used, and other well-known gases such as inert gas such as argon, nitrogen gas, etc. can be used as the diluent gas blown from the inner tube. In addition to stainless steel, other steel types that undergo dilution decarburization can also be used.

第1図においてN2とArよりも空気の方が効果が大き
いのは空気中の酸素が、発生するCOと反応し、CO,
となることによる発熱の影響が溶鋼温度の低下を防止す
るとともにco−+co2となるととによってもPCO
の低下を促進するため不活性ガスを用いたときよシも効
果が大きいものと推定される。
In Figure 1, air has a greater effect than N2 and Ar because oxygen in the air reacts with the generated CO,
The effect of heat generation caused by
It is estimated that cleaning using an inert gas to promote the reduction of the temperature is also highly effective.

次に具体例を示す* 18 Cr −8N1 (8U8
304)ステンレス鋼を炉底側壁に設置された2重管羽
口の内管から酸素ガスとアルゴンを、外管からアルゴン
を吹込んで希釈脱炭精錬する際に、脱炭期においても底
吹酸素量23 m”/T−溶鋼の20嗟に和尚する5m
り竿溶鋼の空気を炉頂よシ気相部に圧力5〜6 kp/
as”で吹込んだ、その結果をまとめて表−1に示す0
表−1よシ明らかな如く脱炭酸素効率の向上によシ脱炭
期の時間、及び要した還元剤原単位はいずれも92〜9
311Gに低下し、又耐大物の溶損量は時間短縮の効果
により従来の96−に低下した。
Next, a specific example is shown* 18 Cr-8N1 (8U8
304) When diluting and decarburizing stainless steel by blowing oxygen gas and argon from the inner tube of the double-tube tuyere installed on the side wall of the furnace bottom and argon from the outer tube, bottom-blown oxygen is used even during the decarburization stage. Amount 23 m”/T-5m of molten steel for 20 hours
The air from the molten steel is transferred from the top of the furnace to the gas phase at a pressure of 5 to 6 kp/
The results are summarized in Table 1.
As is clear from Table 1, by improving the decarburization oxygen efficiency, the decarburization period time and the required reducing agent consumption rate were both 92 to 9.
311G, and the amount of corrosion damage of large objects was reduced to 96-G compared to the conventional one due to the effect of time reduction.

尚本発明の詳細な説明の中から容易に推定可能な如く気
相部と溶鋼との界面を出来るだけ広くかつ有効に利用す
るために溶鋼上に浮遊するスラグ量が少なければ少ない
ほど効率的である。従って炉内に装入する粗溶鋼中の成
分、特にスラグ形成元素である[81]IGを0.15
16以下に規定し、かつ持込スラグ量を10k)/を一
粗溶鋼以下に規定することは効果をより一層大きくする
As can be easily deduced from the detailed description of the present invention, in order to utilize the interface between the gas phase and the molten steel as widely and effectively as possible, the smaller the amount of slag floating on the molten steel, the more efficient it is. be. Therefore, the ingredients in the crude molten steel charged into the furnace, especially the slag-forming element [81]IG, are 0.15
By specifying the amount of slag to be 16 or less, and specifying the amount of slag brought in to be 10k)/less than one crude molten steel, the effect is further increased.

表−1Table-1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は炉底部側壁に設けた2重管羽口の外管から保護
ガスとしてアルゴンを、内管から酸素ガスと希釈がスと
してのアルゴンとの混合ガスを溶鋼中に吹込むAOD炉
を用いて、脱炭期に炉頂部より雰囲気希釈ガスとしてN
2とAr又は空気を、圧力3〜10 #qI/l−の範
囲で炉内気相部に吹込んだ結果を示す図である。 第1図
Figure 1 shows an AOD furnace in which argon is injected as a protective gas from the outer pipe of a double-tube tuyere installed on the side wall of the furnace bottom, and a mixed gas of oxygen gas and argon as a diluent is injected into molten steel from the inner pipe. N is used as an atmosphere diluent gas from the top of the furnace during the decarburization period.
2 is a diagram showing the results of blowing Ar or air into the gas phase in the furnace at a pressure in the range of 3 to 10 #qI/l. Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)2重管羽口の外管から保睦ガス、を、内管から希
釈ガスと酸素ガスとの混合ガスを溶鋼中に吹込むことに
より脱炭精錬を行う方法において、炉内の気相部に雰囲
気希釈ガスを溶鋼中に吹込まれる酸11gfス量の20
−以上吹込むことを特徴とする腕脚精錬方法。
(1) In a method of decarburization refining by injecting preservation gas from the outer pipe of a double-pipe tuyere and a mixed gas of dilution gas and oxygen gas from the inner pipe into molten steel, the air inside the furnace is 20% of the amount of acid 11gf injected into the molten steel by diluting the atmosphere into the phase.
- A method for refining arms and legs, which is characterized by infusing the above.
(2) !鋼中の(81)をo、t 5 %以下トL、
、yb−ツ持込スラグ量を10kf/T−溶鋼以下とす
る特許請求の範囲第1項記載の脱炭精錬方法。
(2)! (81) in steel is o, t 5% or less,
The decarburization refining method according to claim 1, wherein the amount of slag brought in is 10 kf/T-molten steel or less.
JP19279781A 1981-12-02 1981-12-02 Refining method by decarburization Granted JPS5896812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19279781A JPS5896812A (en) 1981-12-02 1981-12-02 Refining method by decarburization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19279781A JPS5896812A (en) 1981-12-02 1981-12-02 Refining method by decarburization

Publications (2)

Publication Number Publication Date
JPS5896812A true JPS5896812A (en) 1983-06-09
JPS6214003B2 JPS6214003B2 (en) 1987-03-31

Family

ID=16297144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19279781A Granted JPS5896812A (en) 1981-12-02 1981-12-02 Refining method by decarburization

Country Status (1)

Country Link
JP (1) JPS5896812A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690137A3 (en) * 1994-06-06 1997-04-23 Kawasaki Steel Co Method of decarburizing refining molten steel containing Cr
US5901601A (en) * 1997-04-25 1999-05-11 Toyota Jidosha Kabushiki Kaisha Method and apparatus for bending malleable plates
US5953951A (en) * 1997-05-08 1999-09-21 Toyota Jidosha Kabushiki Kaisha Method and apparatus for manufacturing bent products

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3307937A (en) * 1964-04-28 1967-03-07 Nyby Bruk Ab Method when degassing carboncontaining metal melts
JPS55158213A (en) * 1979-05-29 1980-12-09 Daido Steel Co Ltd Pefining method of chromium containing steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3307937A (en) * 1964-04-28 1967-03-07 Nyby Bruk Ab Method when degassing carboncontaining metal melts
JPS55158213A (en) * 1979-05-29 1980-12-09 Daido Steel Co Ltd Pefining method of chromium containing steel
US4272287A (en) * 1979-05-29 1981-06-09 Daido Tokushuko Kabushiki Kaisha Process for refining molten steel containing chromium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690137A3 (en) * 1994-06-06 1997-04-23 Kawasaki Steel Co Method of decarburizing refining molten steel containing Cr
US5743938A (en) * 1994-06-06 1998-04-28 Kawasaki Steel Corporation Method of decarburizing refining molten steel containing Cr
US5901601A (en) * 1997-04-25 1999-05-11 Toyota Jidosha Kabushiki Kaisha Method and apparatus for bending malleable plates
US5953951A (en) * 1997-05-08 1999-09-21 Toyota Jidosha Kabushiki Kaisha Method and apparatus for manufacturing bent products

Also Published As

Publication number Publication date
JPS6214003B2 (en) 1987-03-31

Similar Documents

Publication Publication Date Title
JPS5896812A (en) Refining method by decarburization
EP0520085B2 (en) Method of producing ultra-low-carbon steel
US5221326A (en) Method of producing ultra-low-carbon steel
US4397685A (en) Production of ultra low carbon steel by the basic oxygen process
JPH0124855B2 (en)
JP2001038196A (en) Exchanging method of catalyst
JP3044642B2 (en) Decarburization refining method of chromium-containing molten steel
JPS63143216A (en) Melting method for extremely low carbon and low nitrogen steel
JP2728184B2 (en) Oxygen top-blowing vacuum decarburization of molten steel
JPH07268440A (en) Deoxidizing method of molten steel
JPS5952203B2 (en) Manufacturing method of ultra-low carbon steel
JPS5910974B2 (en) Method for dephosphorizing hot metal
JPS58197211A (en) Production of nitrogen-containing low carbon stainless steel
JPS60194009A (en) Method for refining stainless steel
US3219440A (en) Method of metal purification
US3528802A (en) Deoxidation process
US3982927A (en) Method of blowing to obtain a very low amount of carbon in chrome steels
JPH02221318A (en) Decarburization refining method for cr-containing molten steel
JPH08109410A (en) Finish decarburization refining of stainless steel
JP2005060782A (en) Method for smelting low-carbon high-manganese steel
KR810001678B1 (en) Use of argon to prepare low-carbon steel by the basic oxygen process
JPS6120607B2 (en)
JPH06116625A (en) Method for degassing and decarburizing molten stainless steel
JPH116010A (en) Reduced pressure oxygen-blowing refining method of stainless steel
JPH0254725A (en) Method for preventing foaming of molten slag