JPH07268440A - Deoxidizing method of molten steel - Google Patents

Deoxidizing method of molten steel

Info

Publication number
JPH07268440A
JPH07268440A JP6057795A JP5779594A JPH07268440A JP H07268440 A JPH07268440 A JP H07268440A JP 6057795 A JP6057795 A JP 6057795A JP 5779594 A JP5779594 A JP 5779594A JP H07268440 A JPH07268440 A JP H07268440A
Authority
JP
Japan
Prior art keywords
molten steel
steel
deoxidizing
deoxidation
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6057795A
Other languages
Japanese (ja)
Inventor
Naoki Tokumitsu
直樹 徳光
Kyoji Okumura
恭司 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6057795A priority Critical patent/JPH07268440A/en
Publication of JPH07268440A publication Critical patent/JPH07268440A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To perform deoxidation without causing the formation of large amounts of alumina and to obtain a clean steel reduced in the surface defects of a product by performing preliminary deoxidation to a specific dissolved oxygen quantity with Mg when the quantity of dissolved oxygen is large, in a method for deoxidizing a molten steel of specific composition. CONSTITUTION:A molten steel, having a cast slab composition containing, by weight, <=0.06% C, <=0.05% Si, 0.1-0.4% Mn, and 0.02-0.1% Al, is deoxidized. In this method, after the completion of decarburization of the molten steel in a refining furnace, a metal Mg containing substance is added or blown through a bottom blowing tuyere to reduce the quantity of dissolved oxygen in the molten steel to 200-500ppm. Then, one or more elements among Al, Ti, Zr, V, and Nb are added to this molten steel. The effect of using Mg can be maintained at high level when the quantity of dissolved oxygen is large, and the flowability of slag is reduced when prelimirary deoxidation products are absorbed by the slag. By this method, the flowing-out of ladle slag at the last stage of pouring can be reduced and also the surface flaw of a product can be reduced over the whole of cast slab. As a result, even a cast slab of the last stage can be used for high-grade purposes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は脱炭精錬終了後の溶鋼の
脱酸方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for deoxidizing molten steel after completion of decarburizing and refining.

【0002】[0002]

【従来の技術】鋼組成としてCが高い鋼種やSi、Mn
を許容する鋼種では、Cによる真空脱酸効果を利用した
り、Si、Mnにより予備脱酸することで、酸素濃度を
約100ppm以下にしてからAl等の強力な脱酸剤で
最終的に脱酸して介在物の少ない鋼材を製造している。
しかし、低炭素でSi、Mn濃度が低く、しかもAl濃
度が高い加工用アルミニウムキルド鋼板のような鋼の製
造においては、C、Si、Mnによる予備脱酸が殆どで
きないため、脱炭精錬終了時の鋼中酸素の殆ど全量をA
lまたはTiで脱酸除去していた。このとき、鋼中の介
在物の浮上除去を促進するため、一部のAlまたはTi
を出鋼時に投入して予備脱酸し、最終脱酸は二次精錬時
に行う等の工夫をする場合もある。しかし、Al脱酸で
は、鋼中に多量のアルミナが生成し、その一部が残留し
て製品の表面疵等の欠陥の原因となっていた。また鋼中
から浮上分離したアルミナが取鍋スラグに混入してスラ
グの流動性を増し、取鍋からの注入末期においてスラグ
が多量に溶鋼に混入して溶鋼を汚染し、製品の表面疵等
の欠陥の原因となっていた。
2. Description of the Related Art Steel types having high C as steel composition, Si, Mn
In the case of a steel type that permits C, the oxygen concentration is reduced to about 100 ppm or less by utilizing the vacuum deoxidizing effect of C or pre-deoxidizing with Si or Mn, and finally deoxidizing with a strong deoxidizing agent such as Al. It is acidified to produce steel with few inclusions.
However, in the production of steel such as aluminum-killed steel sheet for working, which has low carbon, low Si and Mn concentrations, and high Al concentration, pre-deoxidation by C, Si and Mn can hardly be performed, and therefore, at the time of completion of decarburization refining. Almost all of the oxygen in the steel
It was deoxidized and removed with 1 or Ti. At this time, in order to promote the floating removal of inclusions in the steel, some Al or Ti
In some cases, it may be devised such that it is added at the time of tapping to perform preliminary deoxidation, and final deoxidation is performed during secondary refining. However, in the deoxidation of Al, a large amount of alumina is generated in the steel, and a part of the alumina remains, causing defects such as surface defects of the product. In addition, the alumina floated and separated from the steel mixes with the ladle slag to increase the fluidity of the slag, and a large amount of slag mixes with the molten steel at the end of the injection from the ladle to contaminate the molten steel, causing surface defects such as product surface defects. It was the cause of the defect.

【0003】溶鋼をMgで脱酸する方法は、従来は鋼中
の介在物組成制御等、既に鋼中酸素濃度が低くなった最
終脱酸過程で用いられていた。しかし、Mgの利用効率
が低いために、大量の酸素を溶鋼から除去する技術とし
ては使用されていなかった。
The method of deoxidizing molten steel with Mg has hitherto been used in the final deoxidation process in which the oxygen concentration in the steel is already low, such as controlling the composition of inclusions in the steel. However, since the utilization efficiency of Mg is low, it has not been used as a technique for removing a large amount of oxygen from molten steel.

【0004】[0004]

【発明が解決しようとする課題】本発明は、多量のアル
ミナを生成することなく溶鋼を脱酸し、製品の表面欠陥
が少ない清浄な鋼を製造するための予備脱酸方法を提供
することを目的とするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a preliminary deoxidation method for deoxidizing molten steel without producing a large amount of alumina and for producing a clean steel with few surface defects of the product. It is intended.

【0005】[0005]

【課題を解決するための手段】本発明者らは、これらの
問題点を解決する方法を種々検討した結果、鋼中酸素濃
度が高いときにはMgの利用効率は高く維持できるこ
と、および予備脱酸生成物がスラグに吸収されるとスラ
グの流動性が低下することを見出し、この知見に基づい
て本発明を完成させたものである。
As a result of various studies on the methods for solving these problems, the present inventors have found that the utilization efficiency of Mg can be maintained high when the oxygen concentration in the steel is high, and the preliminary deoxidation formation. It has been found that the fluidity of slag decreases when an object is absorbed by slag, and the present invention has been completed based on this finding.

【0006】即ち、本発明の要旨とするところは、鋳片
における組成が重量%でC:0.06%以下、Si:
0.05%以下、Mn:0.1〜0.4%、Al:0.
02〜0.1%である溶鋼の脱酸方法において、精錬炉
で溶鋼の脱炭を完了した後、(1)金属Mg含有物を該
溶鋼に添加して溶鋼中の溶存酸素量を500ppm以下
200ppm以上にまで低下させ、次いでAl、Ti、
Zr、V、Nbの1種または2種以上を添加することを
特徴とする溶鋼の脱酸方法、また(2)金属Mg含有物
を溶鋼に添加する代わりに、水素含有ガスを吹込むこと
を特徴とする前記(1)記載の溶鋼の脱酸方法にある。
That is, the gist of the present invention is that the composition of the cast slab is C: 0.06% or less by weight% and Si:
0.05% or less, Mn: 0.1 to 0.4%, Al: 0.
In the deoxidation method of molten steel of 02 to 0.1%, after the decarburization of the molten steel is completed in the refining furnace, (1) the metal Mg-containing material is added to the molten steel to reduce the dissolved oxygen amount in the molten steel to 500 ppm or less. Lower than 200ppm, then Al, Ti,
A method for deoxidizing molten steel, which comprises adding one or more of Zr, V, and Nb, and (2) blowing a hydrogen-containing gas instead of adding the metal Mg-containing material to the molten steel. A method for deoxidizing molten steel according to the above (1) is characterized.

【0007】以下に本発明の詳細を作用とともに説明す
る。
The details of the present invention will be described below together with the operation.

【0008】[0008]

【作用】溶鋼は脱炭精錬終了時には多量の溶存酸素を含
む。その量は精錬法や炭素含有量にもよるが、炭素濃度
0.1%以下の低炭素鋼では400ppmから1000
ppm以上にも達する。鋼組成としてSiやMnを許容
する鋼種ではSi、Mnにより予備脱酸することで、酸
素濃度を約100ppm以下にしてからAl等の強力な
脱酸剤で最終的に脱酸して介在物が少ない鋼材を製造し
ている。しかし、従来の技術では、製品鋼材の組成がC
0.06%以下、Si0.05%以下、Mn0.1〜
0.4%とC、Si、Mnによる予備脱酸が不可能な鋼
種では予備脱酸もAlに頼っていた。Al脱酸鋼の場
合、安定に脱酸効果を発揮するためには、Al量は0.
02%以上は必要であり、また通常は0.1%以下で十
分である。
[Operation] Molten steel contains a large amount of dissolved oxygen at the end of decarburization refining. The amount depends on the refining method and carbon content, but 400 ppm to 1000 for low carbon steel with a carbon concentration of 0.1% or less.
It reaches even more than ppm. In the case of steel types that allow Si and Mn as the steel composition, by pre-deoxidizing with Si and Mn, the oxygen concentration is reduced to about 100 ppm or less, and then finally deoxidizing with a strong deoxidizing agent such as Al to form inclusions. Manufactures less steel. However, in the conventional technology, the composition of the product steel material is C
0.06% or less, Si 0.05% or less, Mn 0.1
0.4%, the steel type which cannot be pre-deoxidized by C, Si, Mn also depended on Al for pre-deoxidation. In the case of Al deoxidized steel, the amount of Al is 0.
02% or more is necessary, and 0.1% or less is usually sufficient.

【0009】Alによる脱酸によりAl2 3 が生成す
る。Al2 3 はCaOに富む取鍋スラグの流動性を増
加する。このため、取鍋スラグに多量のAl2 3 が混
入すると取鍋スラグ中の溶融部の割合が多くなり、注入
末期の取鍋スラグの流出量が多くなる。取鍋スラグは多
量の酸化性成分(FeO、MnO、SiO2 )を含むの
で、溶融部が多くなることにより、一層溶鋼を酸化して
Al2 3 生成量を増加させる。また、流出して溶鋼に
巻き込まれた取鍋スラグは溶鋼と反応して新たなAl2
3 を生成する。これらの巻き込まれたスラグや新たに
生成したAl23 は浮上除去される時間が少ないの
で、溶鋼中に残留しやすく、鋼製品の欠陥になりやす
い。
Deoxidation with Al produces Al 2 O 3 . Al 2 O 3 increases the fluidity of CaO-rich ladle slag. Therefore, if a large amount of Al 2 O 3 is mixed in the ladle slag, the proportion of the molten portion in the ladle slag increases, and the outflow amount of the ladle slag at the final stage of pouring increases. Since the ladle slag contains a large amount of oxidizing components (FeO, MnO, SiO 2 ), the molten portion is increased and the molten steel is further oxidized to increase the amount of Al 2 O 3 produced. Further, the ladle slag that has flown out and is entrained in the molten steel reacts with the molten steel to generate new Al 2
Generates O 3 . Since these slags that have been caught and newly formed Al 2 O 3 are not floated and removed for a short period of time, they are likely to remain in molten steel and cause defects in steel products.

【0010】Mgによる脱酸ではMgOが生成する。M
gOは転炉スラグを起源とする取鍋スラグの流動性を減
少させる。従って、Mgによる予備脱酸により、溶鋼か
ら浮上分離したMgOにより、取鍋スラグの流出は抑制
される。Mgは鋼中に殆ど残留しないので、鋼の組成、
材質に影響を及ぼさない。MgOの生成量を多くしてス
ラグの流動性を十分低下せしめ、しかもAl2 3 の生
成量を十分少なくして、予備脱酸の効果を発揮するため
には、初期酸素量が800ppm以上と高い場合は、M
g添加により溶鋼中の溶存酸素量を500ppm以下に
まで脱酸することが、また初期酸素量が500〜800
ppmと低い場合は、溶鋼中の溶存酸素量を400pp
m以下まで脱酸することが必要である。
Deoxidation with Mg produces MgO. M
gO reduces the fluidity of ladle slag originating from converter slag
Reduce. Therefore, by pre-deoxidation with Mg,
Suppressed outflow of ladle slag by MgO floated and separated from
To be done. Since Mg hardly remains in the steel, the composition of the steel,
Does not affect the material. Increase the amount of MgO produced
It sufficiently reduces the fluidity of the rug, and it is Al2O 3Raw
In order to exert the effect of preliminary deoxidation by sufficiently reducing the amount of composition
If the initial oxygen content is as high as 800 ppm or more, M
Addition of g reduces the amount of dissolved oxygen in molten steel to 500ppm or less
Can be deoxidized to an initial oxygen content of 500-800
When ppm is low, the dissolved oxygen content in molten steel is 400pp
It is necessary to deoxidize to m or less.

【0011】溶鋼の脱酸では鋼の材質特性、表面性状を
良好にするために、溶存酸素濃度を少くとも100pp
m以下にまで低下させる必要がある。しかし、Mg単独
で必要な酸素量まで脱酸しようとすると、低酸度濃度で
はMgの利用効率が急激に低下するために大量のMg添
加を必要とし、コスト増を招く他、溶鋼の温度低下も大
きくなるので、実際上は困難である。従って、Mgによ
る予備脱酸後の溶存酸素量は200ppm以上までとす
るのが実際的である。
In deoxidizing molten steel, the dissolved oxygen concentration is at least 100 pp in order to improve the material properties and surface properties of the steel.
It is necessary to reduce it to m or less. However, if Mg alone is used to deoxidize to a required oxygen amount, the utilization efficiency of Mg sharply decreases at a low acidity concentration, so a large amount of Mg needs to be added, resulting in an increase in cost and a decrease in temperature of molten steel. It will be so large that it is difficult in practice. Therefore, it is practical that the dissolved oxygen amount after preliminary deoxidation with Mg is 200 ppm or more.

【0012】金属Mg含有物としてはMg粉末、Mg粉
末とCaO等の酸化物粉末の混合物、Ni−Mg合金等
のMg含有合金等が使用される。Mgは沸点が溶鋼の温
度よりも低いために極めて気化しやすい。従って、金属
Mg含有物を溶鋼中に添加する方法としては、通常の脱
酸材添加法である炉内に上方から投入する方法、出鋼流
に投入して巻き込ませる方法も適用できるが、溶鋼中に
吹込む方法が効率がよい。吹込む位置は溶鋼深さが確保
される転炉底吹き羽口、またはRHの上昇管下端部直下
に設置した吹込み管を通した溶鋼中への吹込み等が好ま
しい。ここで、上昇管下端部直下とは上昇管下端部から
1m以内の下部と定義する。
As the metal Mg-containing material, Mg powder, a mixture of Mg powder and oxide powder such as CaO, and a Mg-containing alloy such as Ni-Mg alloy are used. Since Mg has a boiling point lower than the temperature of molten steel, it is extremely easily vaporized. Therefore, as a method of adding the metal Mg-containing material to the molten steel, a method of adding it into the furnace from above, which is a normal deoxidizing agent addition method, and a method of adding the metal Mg-containing material to the molten steel and entraining it in the molten steel are also applicable. The method of blowing in is efficient. The blowing position is preferably such that the bottom of the converter bottom where the depth of molten steel is ensured, or the blowing into the molten steel through a blowing pipe installed immediately below the lower end of the rising pipe of the RH. Here, immediately below the lower end of the rising pipe is defined as a lower part within 1 m from the lower end of the rising pipe.

【0013】また、既存の種々の取鍋粉体吹込み設備を
利用してMgを粉体あるいは粒状物として吹込むことも
できる。転炉底吹き羽口を使用する場合は、管内に酸素
があれば、不活性ガスで置換した後、Mgを不活性ガス
をキャリヤガスとして吹込む。RHの上昇管下端部直下
に設置した吹込み管を通して吹込む場合は、同じく不活
性ガスをキャリヤガスとするが、Mgと溶鋼の反応距離
を長くとれ、Mgの利用効率が向上するという利点があ
る。
Further, Mg can be blown as powder or granules using various existing ladle powder blowing equipment. When the converter bottom blowing tuyere is used, if oxygen is present in the tube, it is replaced with an inert gas and then Mg is blown as an inert gas as a carrier gas. When blowing through a blowing pipe installed just below the lower end of the rising pipe of the RH, an inert gas is also used as the carrier gas, but the advantage is that the reaction distance between Mg and molten steel can be lengthened and the utilization efficiency of Mg improves. is there.

【0014】中空ワイヤー中にMgを封入して、ワイヤ
ー添加の技術を適用して取鍋、タンディッシュ中に添加
することもできる。この場合はワイヤー製作費が付加さ
れるという問題がある。これらの方法のいずれかによ
り、溶鋼中の溶存酸素を500ppm以下200ppm
以上にまで予備脱酸する。脱酸生成物は大部分が鋳造ま
でには浮上除去してスラグに吸収され、スラグの流動性
低下に寄与する。少量の脱酸生成物は鋳片に残留する
が、MgOは集積し難く大型介在物となり難いので、製
品の表面疵の原因にはならない。
It is also possible to enclose Mg in the hollow wire and apply the wire addition technique to add Mg to the ladle and tundish. In this case, there is a problem that a wire manufacturing cost is added. Dissolved oxygen in molten steel is 500 ppm or less and 200 ppm or less by any of these methods.
Pre-deoxidize up to the above. Most of the deoxidized products are floated up and removed by casting and absorbed by the slag, which contributes to a decrease in the fluidity of the slag. Although a small amount of the deoxidized product remains in the cast slab, MgO is difficult to accumulate and does not easily form a large inclusion, so that it does not cause a surface flaw of the product.

【0015】Mgによる予備脱酸後はAl、Ti、Z
r、V、Nbの1種または2種以上の脱酸材を添加する
ことにより、最終的な脱酸と成分調整を行う。これらの
脱酸材添加方法には、通常の方法、即ち取鍋内上方添
加、RH真空槽内添加、取鍋内浸漬管吹込み、タンディ
ッシュ内上方添加等が適用される。水素による脱酸では
脱酸生成物は水蒸気であり、溶鋼中に残留しないのはも
とより、スラグ中にも移行しない。この意味では水素は
理想的な脱酸剤である。しかし、水素の脱酸力が弱いた
め、最終脱酸まで、あるいは最終脱酸に近い低溶存酸素
濃度までの脱酸をするためには膨大な量の水素が必要で
あり、実用的ではない。本発明では水素利用効率が高い
高溶存酸素濃度範囲でのみ水素を使用するため、大量の
水素を必要としないという利点がある。吹込む水素の量
は溶鋼トン当たり3Nm3 未満では脱酸の効果が不十分
であり、また溶鋼トン当たり12Nm 3 を超えると水素
の利用効率が低下する。
After preliminary deoxidation with Mg, Al, Ti, Z
Add one or more deoxidizers of r, V, Nb
By doing so, final deoxidation and component adjustment are performed. these
The deoxidizing agent is added by the usual method, that is, by adding it upward in the ladle.
Addition, addition in RH vacuum tank, injection of dipping pipe in ladle, tandy
Upward addition in the ash is applied. Deoxidation with hydrogen
The deoxidation product is water vapor, and it does not remain in the molten steel.
And, it doesn't shift even during slag. In this sense hydrogen is
It is an ideal deoxidizer. However, the deoxidizing power of hydrogen was weak.
Therefore, until the final deoxidation, or low dissolved oxygen close to the final deoxidation
A huge amount of hydrogen is required to deoxidize to the concentration
Yes, not practical. High efficiency of hydrogen utilization in the present invention
Since hydrogen is used only in the high dissolved oxygen concentration range,
It has the advantage of not requiring hydrogen. Amount of hydrogen blown
Is 3 Nm per ton of molten steel3Is less than the effect of deoxidation is insufficient
And 12 Nm per ton of molten steel 3Hydrogen over
The use efficiency of is reduced.

【0016】従来から、転炉の底吹き酸素の冷却剤とし
てプロパンガスや天然ガス等の炭化水素ガスが転炉に吹
込まれていた。しかし、これらの炭化水素ガスは炭素を
含むため、酸素を同時に吹込まないとき、特に低炭素濃
度の溶鋼では鋼中炭素濃度が増加するという難点があっ
て使用できない。本発明の水素としては工業用の水素ガ
ス、天然ガスやプロパンガスの部分酸化改質ガスが使用
される。部分酸化改質ガスは水素とCOを主成分とする
ため、溶鋼中炭素濃度の増加がないという利点がある。
Conventionally, hydrocarbon gas such as propane gas and natural gas has been blown into the converter as a coolant for bottom-blown oxygen in the converter. However, since these hydrocarbon gases contain carbon, they cannot be used when oxygen is not blown in at the same time, especially when the molten steel has a low carbon concentration because the carbon concentration in the steel increases. As the hydrogen of the present invention, industrial hydrogen gas, partially oxidized reformed gas such as natural gas or propane gas is used. Since the partially oxidized reformed gas contains hydrogen and CO as main components, it has an advantage that the carbon concentration in the molten steel does not increase.

【0017】脱炭精錬終了後、底吹き羽口から水素ガス
を吹込む。羽口の流路としては冷却ガス流路、酸素ガス
流路を使用する。冷却ガス流路を使用する場合には、冷
却ガスから水素ガスに切り換えればよい。酸素ガス流路
を使用する場合には、管内の酸素ガスをアルゴン等の不
活性ガスで置換した後、水素ガスに切り換える。未反応
の水素ガスは転炉の排ガス回収装置により回収して燃料
として使用してもよいので、無駄にはならない。転炉内
の水素による脱酸により、スラグ中の酸化鉄濃度も減少
する。従って、転炉スラグの流動性が減少するので、出
鋼時に取鍋に流出するスラグ量が減少し、またスラグの
酸化能も低下しているので、取鍋内での脱酸によっても
溶鋼を汚染することが少ないという利点がある。さら
に、スラグ中酸化鉄の還元により、鉄歩留りが向上する
という利点もある。
After the completion of decarburization refining, hydrogen gas is blown from the bottom blowing tuyere. Cooling gas passages and oxygen gas passages are used as the tuyere passages. When using the cooling gas passage, the cooling gas may be switched to the hydrogen gas. When the oxygen gas flow path is used, the oxygen gas in the tube is replaced with an inert gas such as argon and then switched to hydrogen gas. The unreacted hydrogen gas may be recovered by the exhaust gas recovery device of the converter and used as fuel, so it is not wasted. Deoxidation by hydrogen in the converter also reduces the iron oxide concentration in the slag. Therefore, since the fluidity of the converter slag is reduced, the amount of slag that flows out to the ladle at the time of tapping is reduced, and the oxidizing ability of the slag is also reduced, so molten steel is also removed by deoxidation in the ladle. It has the advantage of being less contaminated. Further, there is also an advantage that the iron yield is improved by reducing the iron oxide in the slag.

【0018】[0018]

【実施例】【Example】

〔実施例1〕加工用冷延鋼板製造のために、C:0.0
4〜0.06%、Si:0.01%、Mn:0.16〜
0.21%でRH処理開始前の初期酸素が約600pp
mの溶鋼をRH脱炭処理後、Mg粉末を溶鋼トン当たり
800〜1000g、ArをキャリヤガスとしてRHの
上昇管下端部から500mm直下に設置した吹込み管を
通して吹込んだ。溶存酸素量はRH脱炭処理後の約60
0ppmから200〜230ppmになった。次いで、
Alを溶鋼トン当たり450〜500g投入し、3分間
環流後、RH処理を終了した(番号1、2)。タンディ
ッシュを通して通常の連続鋳造でスラブを製造し、連続
熱延、連続冷延により加工用冷延Alキルド鋼板を製造
した。比較としてMgを少量吹込んだ場合(番号3)
と、Mgを使用しなかった従来の脱酸法による鋼板(番
号4)も示す。
[Example 1] C: 0.0 for production of cold-rolled steel sheet for processing
4 to 0.06%, Si: 0.01%, Mn: 0.16 to
At 0.21%, the initial oxygen before starting RH treatment is about 600 pp
After the RH decarburization treatment of the molten steel of m, 800 to 1000 g of Mg powder per ton of molten steel and Ar as a carrier gas were blown through a blowing pipe installed immediately 500 mm below the lower end of the rising pipe of the RH. The amount of dissolved oxygen is about 60 after RH decarburization.
It went from 0 ppm to 200-230 ppm. Then
450 to 500 g of Al was added per ton of molten steel, the mixture was refluxed for 3 minutes, and the RH treatment was finished (Nos. 1 and 2). A slab was manufactured by ordinary continuous casting through a tundish, and a cold-rolled Al-killed steel plate for processing was manufactured by continuous hot rolling and continuous cold rolling. As a comparison, when a small amount of Mg was blown (No. 3)
And a steel sheet (No. 4) manufactured by a conventional deoxidizing method that does not use Mg.

【0019】製品冷延コイルの表面疵を目視により検査
し、不合格部分の長さを求めた。製品冷延板の検査成績
を脱酸条件と共に表1に示す。
Surface flaws of the product cold rolled coil were visually inspected to determine the length of the rejected portion. Table 1 shows the inspection results of the product cold rolled sheet together with deoxidizing conditions.

【0020】[0020]

【表1】 [Table 1]

【0021】〔実施例2〕RH終了後の炭素濃度が20
ppm以下、酸素濃度約1000ppmの極低炭素鋼
に、RH脱炭処理後にMg粉末を溶鋼トン当たり100
0〜1200g、ArをキャリヤガスとしてRHの上昇
管下端部から200mm直下に設置した吹込み管を通し
て吹込んだ。次いで、Alを溶鋼トン当たり600〜6
50g、Tiを溶鋼トン当たり530g投入し、3分間
環流後、RH処理を終了した。タンディッシュを通して
連続鋳造でスラブを製造し、連続熱延、連続冷延により
深絞り加工用冷延鋼板を製造した(番号1、2)。比較
として、同鋼種にMgを少量吹込んだ場合(番号3)
と、Mgを使用しなかった従来の脱酸法による鋼板(番
号4)も示す。
Example 2 The carbon concentration after completion of RH was 20.
After the RH decarburization treatment, Mg powder was added to the ultra-low carbon steel of less than 1000 ppm and oxygen concentration of about 1000 ppm at 100 per ton
The carrier was blown with 0 to 1200 g of Ar as a carrier gas through a blower pipe installed 200 mm directly below the lower end of the RH rising pipe. Next, Al is added to 600 to 6 per ton of molten steel.
50 g and 530 g of Ti per ton of molten steel were charged and refluxed for 3 minutes, and then the RH treatment was completed. Slabs were manufactured by continuous casting through a tundish, and cold-rolled steel sheets for deep drawing were manufactured by continuous hot rolling and continuous cold rolling (Nos. 1 and 2). For comparison, when a small amount of Mg was blown into the same steel type (No. 3)
And a steel sheet (No. 4) manufactured by a conventional deoxidizing method that does not use Mg.

【0022】製品冷延コイルの表面疵を目視により検査
し、不合格部分の長さを求めた。製品冷延板の検査成績
を脱酸条件と共に表2に示す。
The surface flaws of the cold rolled product coil were visually inspected to determine the length of the rejected portion. Table 2 shows the inspection results of the product cold rolled sheet together with deoxidizing conditions.

【0023】[0023]

【表2】 [Table 2]

【0024】〔実施例3〕上底吹き転炉で溶銑92%、
スクラップ8%を主原料として、通常の酸素吹錬作業を
行い、吹止め炭素0.05%で脱炭を終了した。その
後、底吹き羽口から天然ガスの改質ガスを5.2〜7.
5Nm3 /t吹込んだ後、出鋼時とRH二次精錬後にA
l脱酸して低炭素Alキルド鋼を製造した(番号1、
2)。改質ガスの組成はH2 :74vol%,CO:2
1vol%,N2 :2vol%であった。比較として、
吹止め後に水素を0.8Nm3 /t吹込んだ試験(番号
3)、および水素を吹込まない従来の操業方法による製
造を行なった(番号4)。溶鋼はスラブに連続鋳造し、
連続熱延、連続冷延および連続焼鈍工程の同一操業条件
を経て冷延コイルとした。製品の冷延コイルの表面疵を
目視により検査し、不合格部分の長さを求めた。製品冷
延板の検査成績を転炉水素ガス吹込み条件と共に表3に
示す。
[Embodiment 3] 92% of hot metal in an upper bottom blowing converter,
Using 8% scrap as the main raw material, a normal oxygen blowing operation was performed, and decarburization was completed when the blowout carbon was 0.05%. After that, the reformed gas of the natural gas is fed from the bottom blown tuyere to 5.2 to 7.
After blowing 5 Nm 3 / t, at the time of tapping and after RH secondary refining, A
1 deoxidized to produce low carbon Al killed steel (No. 1,
2). The composition of the reformed gas is H 2 : 74 vol%, CO: 2
It was 1 vol% and N 2 : 2 vol%. For comparison,
A test was conducted in which hydrogen was blown at 0.8 Nm 3 / t after blowing (No. 3), and production was performed by a conventional operating method in which no hydrogen was blown (No. 4). Molten steel is continuously cast into slabs,
A cold rolled coil was obtained through the same operating conditions of continuous hot rolling, continuous cold rolling and continuous annealing. The surface flaws of the cold rolled coil of the product were visually inspected, and the length of the rejected portion was obtained. Table 3 shows the inspection results of the product cold rolled sheet together with the hydrogen gas blowing conditions of the converter.

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【発明の効果】本発明により、注入末期の取鍋スラグの
流出が減少し、鋳片全体にわたって製品の表面疵が減少
するので末期の鋳片も高級用途に使用でき、製品の歩留
りが向上する。
EFFECTS OF THE INVENTION According to the present invention, the outflow of ladle slag at the final stage of pouring is reduced and the surface flaws of the product are reduced over the entire slab, so that the slab at the final stage can also be used for high-grade applications and the product yield is improved. .

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 鋳片における組成が重量%でC:0.0
6%以下、Si:0.05%以下、Mn:0.1〜0.
4%、Al:0.02〜0.1%である溶鋼の脱酸方法
において、精錬炉で溶鋼の脱炭を完了した後、金属Mg
含有物を該溶鋼に添加して溶鋼中の溶存酸素量を500
ppm以下200ppm以上にまで低下させ、次いでA
l、Ti、Zr、V、Nbの1種または2種以上を添加
することを特徴とする溶鋼の脱酸方法。
1. The composition of the cast slab is C: 0.0% by weight.
6% or less, Si: 0.05% or less, Mn: 0.1 to 0.
4%, Al: 0.02-0.1%, in the deoxidizing method of molten steel, after completion of decarburization of molten steel in a refining furnace, metal Mg
The dissolved oxygen content in the molten steel is adjusted to 500 by adding the inclusions to the molten steel.
ppm to 200 ppm or more, then A
A method for deoxidizing molten steel, which comprises adding one or more of 1, Ti, Zr, V and Nb.
【請求項2】 金属Mg含有物を溶鋼に添加する代わり
に、金属Mg含有物を溶鋼中に吹込むことを特徴とする
請求項1記載の溶鋼の脱酸方法。
2. The deoxidizing method for molten steel according to claim 1, wherein the metallic Mg-containing material is blown into the molten steel instead of adding the metallic Mg-containing material to the molten steel.
【請求項3】 金属Mg含有物を転炉の底吹き羽口を通
して溶鋼中に吹込むことを特徴とする請求項2記載の溶
鋼の脱酸方法。
3. The method for deoxidizing molten steel according to claim 2, wherein the metal Mg-containing material is blown into the molten steel through the bottom blowing tuyere of the converter.
【請求項4】 金属Mg含有物を取鍋内においてRHの
上昇管下端部直下に設置した吹込み管を通して溶鋼中に
吹込むことを特徴とする請求項2記載の溶鋼の脱酸方
法。
4. The method for deoxidizing molten steel according to claim 2, wherein the metal Mg-containing material is blown into the molten steel through a blowing pipe installed just below the lower end of the rising pipe of the RH in the ladle.
【請求項5】 金属Mg含有物を溶鋼に添加する代わり
に、水素含有ガスを脱炭終了後の溶鋼に溶鋼トン当たり
3Nm3 以上12Nm3 以下吹込むことを特徴とする請
求項1記載の溶鋼の脱酸方法。
5. The molten steel according to claim 1, wherein instead of adding the metal Mg-containing material to the molten steel, a hydrogen-containing gas is blown into the molten steel after decarburization at 3 Nm 3 or more and 12 Nm 3 or less per ton of molten steel. Deoxidation method.
JP6057795A 1994-03-28 1994-03-28 Deoxidizing method of molten steel Withdrawn JPH07268440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6057795A JPH07268440A (en) 1994-03-28 1994-03-28 Deoxidizing method of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6057795A JPH07268440A (en) 1994-03-28 1994-03-28 Deoxidizing method of molten steel

Publications (1)

Publication Number Publication Date
JPH07268440A true JPH07268440A (en) 1995-10-17

Family

ID=13065834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6057795A Withdrawn JPH07268440A (en) 1994-03-28 1994-03-28 Deoxidizing method of molten steel

Country Status (1)

Country Link
JP (1) JPH07268440A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879479A (en) * 1996-01-19 1999-03-09 Kawasaki Steel Corporation Method of making ultra low-carbon steel
JP2002256331A (en) * 2001-03-05 2002-09-11 Nippon Steel Corp Method of melting steel plate for thin sheet and cast slab using the method
JP2003119513A (en) * 2001-08-07 2003-04-23 Nippon Steel Corp Extra-low carbon steel sheet, extra-low carbon steel slab and manufacturing method therefor
KR100460663B1 (en) * 2002-12-13 2004-12-09 주식회사 포스코 Method for Deoxidizing Molten Steel in Degassing Process
JP2013166992A (en) * 2012-02-15 2013-08-29 Nippon Steel & Sumitomo Metal Corp Steel material excellent in corrosion resistance
KR20200065998A (en) * 2018-11-30 2020-06-09 주식회사 포스코 Manufacturing method of high nitrogen stainless steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879479A (en) * 1996-01-19 1999-03-09 Kawasaki Steel Corporation Method of making ultra low-carbon steel
JP2002256331A (en) * 2001-03-05 2002-09-11 Nippon Steel Corp Method of melting steel plate for thin sheet and cast slab using the method
JP2003119513A (en) * 2001-08-07 2003-04-23 Nippon Steel Corp Extra-low carbon steel sheet, extra-low carbon steel slab and manufacturing method therefor
KR100460663B1 (en) * 2002-12-13 2004-12-09 주식회사 포스코 Method for Deoxidizing Molten Steel in Degassing Process
JP2013166992A (en) * 2012-02-15 2013-08-29 Nippon Steel & Sumitomo Metal Corp Steel material excellent in corrosion resistance
KR20200065998A (en) * 2018-11-30 2020-06-09 주식회사 포스코 Manufacturing method of high nitrogen stainless steel

Similar Documents

Publication Publication Date Title
JP2575827B2 (en) Manufacturing method of ultra low carbon steel for continuous casting with excellent cleanliness
JP5300860B2 (en) Method for producing ultra-low carbon ferritic stainless steel
JP2009521599A (en) Method for producing ferritic stainless steel with fine solidification structure and ferritic stainless steel produced thereby
JP3896713B2 (en) Melting method of ultra-low carbon steel with excellent cleanability
JP3903580B2 (en) Method of melting high cleanliness steel
JPH07268440A (en) Deoxidizing method of molten steel
JP6526307B1 (en) Ni-Cr-Nb-Fe-based alloy excellent in internal quality and hot workability and method for producing the same
JP3893770B2 (en) Melting method of high clean ultra low carbon steel
KR101258785B1 (en) Manufacturing method of duplex stainless steel
JP3627755B2 (en) Method for producing high cleanliness ultra low carbon steel with extremely low S content
JP2009191290A (en) Method for producing ingot of extra-low carbon steel
JPH10140227A (en) Production of high alloy steel by joining two molten steels
JP5509913B2 (en) Method of melting high Si steel with low S and Ti content
JPH11279631A (en) Method for refining molten stainless steel
KR100429158B1 (en) Method for decarburizing austenite stainless steel
JP7424350B2 (en) Molten steel denitrification method and steel manufacturing method
JP2002030330A (en) Method for heating molten steel in vacuum refining furnace
JP3424163B2 (en) Method for producing ultra low carbon steel with low V content
KR20120066475A (en) Manufacturing method of austenite stainless steel
JP2002371313A (en) Method for smelting molten stainless steel
JPH0356614A (en) Production of low-oxygen dead-soft carbon steel
JPH07316631A (en) Deoxidizing and cleaning method of molten steel
JPH11293329A (en) Production of extra-low carbon silicon-killed steel excellent in cleaning property
JP4312068B2 (en) Method of melting ultra-low carbon steel
JP2002038212A (en) Slag modifier and method for producing high purity ultra-low carbon steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605