JPS5952203B2 - Manufacturing method of ultra-low carbon steel - Google Patents

Manufacturing method of ultra-low carbon steel

Info

Publication number
JPS5952203B2
JPS5952203B2 JP3238079A JP3238079A JPS5952203B2 JP S5952203 B2 JPS5952203 B2 JP S5952203B2 JP 3238079 A JP3238079 A JP 3238079A JP 3238079 A JP3238079 A JP 3238079A JP S5952203 B2 JPS5952203 B2 JP S5952203B2
Authority
JP
Japan
Prior art keywords
steel
gas
oxygen
decarburization
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3238079A
Other languages
Japanese (ja)
Other versions
JPS55125220A (en
Inventor
基夫 服部
薫 眞目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3238079A priority Critical patent/JPS5952203B2/en
Publication of JPS55125220A publication Critical patent/JPS55125220A/en
Publication of JPS5952203B2 publication Critical patent/JPS5952203B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は減圧下で溶鋼表面に酸素ガスを吹付けて脱炭を
行い鋼中〔C〕値が0.01%以下の極低炭素鋼を製造
する方法に関するものである。 近年、極低炭素鋼の吹錬技術の発達は目覚ましく、炭素
鋼は勿論のこと、脱炭が困難であると謂われて来た含ク
ロム鋼についても鋼中〔C〕値を0.01%まで低減せ
しめることが可能となっている。 そ方法を大別すると2つの手段が採られる。即ち (1)鋼浴成分値に応じ、雰囲気COガス分圧を低減さ
せ、常にC−0平衡が成立している条件のもとで、鋼中
に酸素ガスあるいは金属酸化物を吹込み、鋼中の酸素濃
度を高め一時的に〔C〕−
The present invention relates to a method for producing ultra-low carbon steel having a [C] value of 0.01% or less by decarburizing the surface of molten steel by spraying oxygen gas under reduced pressure. In recent years, the development of blowing technology for ultra-low carbon steel has been remarkable, and the [C] value in steel has been reduced to 0.01% not only for carbon steel but also for chromium-containing steel, which has been said to be difficult to decarburize. It is possible to reduce it to Broadly speaking, two methods are adopted. Specifically, (1) depending on the steel bath component values, the atmospheric CO gas partial pressure is reduced and oxygen gas or metal oxides are injected into the steel under the condition that C-0 equilibrium is always established. Temporarily increases the oxygen concentration inside [C]-

〔0〕濃度積を平衡値以上と
することにより脱炭を生せしめる方法。 (2)雰囲気圧力を急激に低下せしめ、雰囲気COガス
分圧を、その溶鋼の成分値でのC−O平衡値による値以
下にまで低下せしめることによりC−O濃度積を過飽和
状態におき脱炭反応を生せしめる方法。 (1)の例としてはVOD法における酸化ニッケルシン
ター吹込、酸素ガスの浸漬吹込法などが知られているが
、メタル成分(Fe、 Mn、 Crなど)の相当量の
酸化を伴い、又(2)の例としてはS、S(Stron
g Stirring) VOD法ニミられる真空カー
ボン脱酸(脱炭)を利用した方法が知られているが、脱
炭に伴い消費される酸素の補給がスラグ側からしか得ら
れないため、脱炭反応が遅く、時間がか・りすぎるとい
う欠点を有する。 本発明はこのうち(2)の方法の改良に係るものである
。 真空カーボン脱酸による脱炭法において低C側で脱炭が
著しく遅延する理由として (1)鋼中(C〕が低下したことにより脱炭反応界面に
対するCの供給(拡散)が遅れ界面でのCC)−Co)
濃度積が低下すること。 (Cの物質移動律速) (2)温度の低下に伴い酸素供給源であるスラグ中の酸
化物(Cr203.Fe01Mn0なト)ノ解離が遅れ
、反応界面での酸素欠乏状態を生ずること。 (酸化物解離の反応律速)(3)溶鋼面が厚いスラグ
層で覆われるため反応に必要な自由表面が著しく減少す
るため反応界面積が減少すること が知られている。 公知のS、S、VOD法などは、これらの欠陥を改良す
べく案出されたものであるが、底吹きポーラスレンガを
通じてのAr大量攪拌はスプラッシュ状の固化スラグの
増大を招き、又スラグ、こんとろ−ルについてもスラグ
中の酸化物量が確実に判定できない場合事実上困難であ
り、さらに温度降下が著しく、反応が停止するというト
ラブルを生ずる点で難点がある。 本発明者らはこの点に関し混合ガスを上吹きすることに
より反応が著しく促進されることを見い出した。 この理由として(1)強力なガスジェットの噴射により
、スラグ−メタル界面での混合が著しく大きくなり、反
応界面積が増大すること。 (2)若干の酸素の添加により吹付点でCrの酸化を生
じ、その反応熱で脱炭に必要な温度が補償されること。 (3)ジェットによりスラグが周囲に押しやられるため
、反応面積を減することなく脱炭が進行すること。 (4)さらに表面での不活性ガスの流れがCOガスの拡
散を助け、気側へのCOガスの拡散が促進されるため、
脱炭反応における気側の実効COガス分圧が大きく低下
すること。 が考えられる。 この場合、酸素ガスと不活性ガスの混合比は脱炭反応に
必要な酸素消費量よりも若干低目の酸素分圧となるよう
にコントロールするのが望ましいが、実際にはその2〜
3倍であっても操業は可能である。 勿論、この場合若干のメタル酸化量増大を生ずる傾向は
あるが、通常の純酸素吹込法ひ比べ問題ないレベルであ
り、少量のSi、Alなどの添加により還元可能な性質
のものである。 またガスジェットの動圧はスラグを周囲に寄せ、さらに
鋼浴表面でのCO拡散層厚みを減少されるに充分なもの
でなくてはならず、酸素供給量を絞った状態でこの目的
を達成するためにはラバールノズル付上吹ランスを用い
ることらが不可欠の要因となる。 このように本発明においては純酸素による吹精後にラバ
ールノズル付ランスを介して酸素と不活性ガスとの混合
ガスをジェット噴射で上吹きすることにより上記ω境膜
層厚を減少せしめて反応界面を維持せしめると同時に溶
鋼を攪拌して炭素と溶存酸素との拡散を増大せしめるこ
とにより脱炭を促進せしめた短時間のうちに極低炭素鋼
を得ることを特徴とするものである。 本発明によるときは脱炭末期において溶鋼成分の酸化、
温度上昇を伴うことなく真空下にて反応及び攪拌を促進
し而も脱炭速度を充分に保つことにより通常法と殆んど
変ることのない脱炭時間で極低炭素鋼を製造することが
できる。 不活性ガスとしてはN2.Arガスなどを用いることが
できるがArガスを稀釈ガスとして使用する場合は同時
に脱窒を行なうこともできる。 次に本発明の特徴を実施の態様を示して説明する。 以下に示す例は5US430及び5US304L系鋼に
おける極低炭素鋼を製造する場合で、添付図面は脱炭量
と処理時間との関係をVOD法、及び前記S、S、vO
D法並びに本発明法とを比較して図示したものである。 又下表に本発明の実施例の操業条件及び溶鋼スラグの成
分並びに音度の推移を示す。 上表より明らかなように、本例においては純酸素ガスに
て吹精しく酸素吹精量は時間経過と共に減少)、溶鋼の
炭素含有量が0.1%付近となったときに不活性ガス(
Ar 十N2又はN2) を50%混合した混合ガスを
上吹吹精し、さらに炭素含有量が0.01%付近をなる
精練末期において不活性ガス:酸素ガス−75: 25
の混合ガスを上吹吹精して成品とするものであるが、吹
止後還元用合金鉄中に含まれる炭素分により若干の復炭
を生じている。 このように、本発明によるときは真空下で酸素並びに混
合ガスを吹精して溶鋼内の攪拌と拡散を促進すると同時
に気側の有効反応界面を拡大して通常法と殆んど変るこ
とのない脱炭速度で極低炭素鋼を製造することのできる
。 これは添付図面からも明らかである。 添付図面はVOD法(−・−)とS、S、vOD脱炭法
(−X−)と本発明方法(−〇−)とを比較図示したも
のであり、VOD法は18Cr−8Ni系オーステナイ
トステンレス鋼、S、S、VOD法は18Cr−IMO
系フエフエライト系ステンレス系ステンレス鋼発明法は
304L鋼、鋼40鋼の両鋼種について行った実験結果
であり、これによると本反明法が短時間にて極低炭素鋼
を得ることが解る。 なお上記説明はステンレス鋼に関し行なわれているけれ
ども本発明は斯るステンレス鋼に限るものでないことは
勿論である。
[0] A method of causing decarburization by increasing the concentration product above the equilibrium value. (2) By rapidly lowering the atmospheric pressure and lowering the atmospheric CO gas partial pressure to below the value determined by the C-O equilibrium value at the composition value of the molten steel, the C-O concentration product is brought into a supersaturated state and removed. A method of causing a charcoal reaction. Examples of (1) include nickel oxide sinter injection in the VOD method and oxygen gas immersion injection, but these involve a considerable amount of oxidation of metal components (Fe, Mn, Cr, etc.), and (2) ) examples are S, S (Stron
A method using vacuum carbon deoxidation (decarburization) similar to the VOD method is known, but since oxygen consumed during decarburization can only be supplied from the slag side, the decarburization reaction is slow. It has the disadvantage that it is slow and takes too much time. The present invention relates to an improvement of method (2). In the decarburization method using vacuum carbon deoxidation, the reasons why decarburization is significantly delayed on the low C side are as follows: (1) As the (C) in the steel decreases, the supply (diffusion) of C to the decarburization reaction interface is delayed, and the decarburization at the interface is delayed. CC)-Co)
The concentration product decreases. (C mass transfer rate limiting) (2) As the temperature decreases, the dissociation of oxides (such as Cr203.Fe01Mn0) in the slag, which is an oxygen supply source, is delayed, resulting in an oxygen-deficient state at the reaction interface. (Reaction rate-determining rate of oxide dissociation) (3) It is known that since the molten steel surface is covered with a thick slag layer, the free surface necessary for the reaction is significantly reduced, resulting in a reduction in the reaction interfacial area. Although the known S, S, and VOD methods were devised to improve these defects, large amounts of Ar stirring through the bottom-blown porous bricks lead to an increase in splash-like solidified slag, and the slag, Regarding the control, it is difficult to determine the amount of oxides in the slag with certainty, and furthermore, there is a problem in that the temperature drop is significant and the reaction is stopped. In this regard, the present inventors have found that the reaction is significantly accelerated by top-blowing the mixed gas. The reasons for this are (1) The injection of a powerful gas jet significantly increases the mixing at the slag-metal interface, increasing the reaction interface area. (2) The addition of a small amount of oxygen causes oxidation of Cr at the spray point, and the heat of reaction compensates for the temperature required for decarburization. (3) Since the slag is pushed to the surrounding area by the jet, decarburization proceeds without reducing the reaction area. (4) Furthermore, the flow of inert gas on the surface helps the diffusion of CO gas, and the diffusion of CO gas to the gas side is promoted.
A significant decrease in the effective CO gas partial pressure on the gas side in the decarburization reaction. is possible. In this case, it is desirable to control the mixing ratio of oxygen gas and inert gas so that the oxygen partial pressure is slightly lower than the oxygen consumption required for the decarburization reaction, but in reality,
Operation is possible even with three times the amount. Of course, in this case, there is a tendency for a slight increase in the amount of metal oxidation, but this is at a level that poses no problem compared to the usual pure oxygen blowing method, and is reducible by adding a small amount of Si, Al, etc. In addition, the dynamic pressure of the gas jet must be sufficient to bring the slag to the surroundings and further reduce the thickness of the CO diffusion layer on the steel bath surface, and this objective can be achieved with a limited oxygen supply. In order to achieve this, it is essential to use a top blowing lance with a Laval nozzle. In this way, in the present invention, after ejaculation with pure oxygen, a mixed gas of oxygen and inert gas is jetted upward through a lance with a Laval nozzle to reduce the thickness of the ω film layer and close the reaction interface. The present invention is characterized in that ultra-low carbon steel can be obtained in a short period of time by promoting decarburization by stirring the molten steel and increasing the diffusion of carbon and dissolved oxygen. According to the present invention, oxidation of molten steel components at the final stage of decarburization,
By promoting the reaction and stirring under vacuum without increasing the temperature and maintaining a sufficient decarburization rate, it is possible to produce ultra-low carbon steel in the same decarburization time as conventional methods. can. As an inert gas, N2. Ar gas or the like can be used, but if Ar gas is used as a diluting gas, denitrification can be performed at the same time. Next, features of the present invention will be explained by showing embodiments. The example shown below is the case of manufacturing ultra-low carbon steel in 5US430 and 5US304L series steel, and the attached drawing shows the relationship between decarburization amount and processing time using the VOD method and the S, S, vO
It is a diagram comparing method D and the method of the present invention. In addition, the table below shows the operating conditions, components of molten steel slag, and changes in sound intensity in Examples of the present invention. As is clear from the table above, in this example, pure oxygen gas is used to blow the liquid, and the amount of oxygen blowing decreases over time), and when the carbon content of the molten steel reaches around 0.1%, (
A mixed gas containing 50% of Ar, N2 or N2) is top blown, and at the final stage of scouring when the carbon content is around 0.01%, inert gas: oxygen gas -75:25
The mixed gas is top-blown to produce a finished product, but some recarburization occurs due to the carbon content in the ferroalloy for reduction after blowing. As described above, according to the present invention, oxygen and mixed gas are blown under vacuum to promote stirring and diffusion in molten steel, and at the same time, the effective reaction interface on the gas side is expanded, which is almost different from the conventional method. It is possible to produce ultra-low carbon steel with a decarburization rate of 100%. This is also clear from the attached drawings. The attached drawing shows a comparison of the VOD method (-・-), the S, S, vOD decarburization method (-X-), and the method of the present invention (-〇-). Stainless steel, S, S, VOD method is 18Cr-IMO
The inventive method for ferrite stainless steel is based on the results of experiments conducted on both steel types, 304L steel and Steel 40 steel. According to the results, it is clear that the present method can produce ultra-low carbon steel in a short period of time. Although the above description has been made regarding stainless steel, it goes without saying that the present invention is not limited to such stainless steel.

【図面の簡単な説明】 添付図面は脱炭量と処理時間との関係をVOD法、S、
S、vOD法及び本発明法に関し比較した図表である。
[Brief explanation of the drawing] The attached drawing shows the relationship between decarburization amount and processing time using the VOD method, S,
This is a chart comparing S, vOD method and the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 減圧雰囲気で酸素吹精により溶鋼の脱炭を行なう製
鋼法において、脱炭末期で炭素含有量が0.10%以下
となった時点において酸素吹精に引続き、窒素、アルゴ
ン、ヘリウムなどの不活性ガスと酸素ガスとの混合ガス
をラバールノズル付ランスを通し鋼浴上から上吹きする
ことを特徴とする極低炭素鋼の製造方法。
1 In the steel manufacturing method in which molten steel is decarburized by oxygen blowing in a reduced pressure atmosphere, at the end of decarburization when the carbon content is 0.10% or less, oxygen blowing is followed by nitrogen, argon, helium, etc. A method for producing ultra-low carbon steel, which comprises blowing a mixed gas of active gas and oxygen gas from above a steel bath through a lance with a Laval nozzle.
JP3238079A 1979-03-22 1979-03-22 Manufacturing method of ultra-low carbon steel Expired JPS5952203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3238079A JPS5952203B2 (en) 1979-03-22 1979-03-22 Manufacturing method of ultra-low carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3238079A JPS5952203B2 (en) 1979-03-22 1979-03-22 Manufacturing method of ultra-low carbon steel

Publications (2)

Publication Number Publication Date
JPS55125220A JPS55125220A (en) 1980-09-26
JPS5952203B2 true JPS5952203B2 (en) 1984-12-18

Family

ID=12357338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3238079A Expired JPS5952203B2 (en) 1979-03-22 1979-03-22 Manufacturing method of ultra-low carbon steel

Country Status (1)

Country Link
JP (1) JPS5952203B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077802U (en) * 1983-11-02 1985-05-30 ソニーマグネスケール株式会社 Piston position detection device
JPS61202702U (en) * 1985-06-11 1986-12-19

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1337846C (en) * 1988-06-21 1996-01-02 Hiroshi Nishikawa Process for vacuum degassing and decarbonization with temperature drop compensating feature
FR2807066B1 (en) 2000-03-29 2002-10-11 Usinor PNEUMATIC BREWING PROCESS FOR POUCHED LIQUID METAL

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077802U (en) * 1983-11-02 1985-05-30 ソニーマグネスケール株式会社 Piston position detection device
JPS61202702U (en) * 1985-06-11 1986-12-19

Also Published As

Publication number Publication date
JPS55125220A (en) 1980-09-26

Similar Documents

Publication Publication Date Title
US4160664A (en) Process for producing ultra-low carbon stainless steel
EP0690137B1 (en) Method of decarburizing refining molten steel containing Cr
JPS5952203B2 (en) Manufacturing method of ultra-low carbon steel
JPS6159376B2 (en)
JP3843589B2 (en) Melting method of high nitrogen stainless steel
EP0591971A1 (en) Method of degassing and decarburizing stainless molten steel
JPS63143216A (en) Melting method for extremely low carbon and low nitrogen steel
JP3044642B2 (en) Decarburization refining method of chromium-containing molten steel
JP2728184B2 (en) Oxygen top-blowing vacuum decarburization of molten steel
JP2778335B2 (en) Decarburization refining method for high Mn steel
JP3269671B2 (en) Degassing and decarburizing of molten stainless steel
JPS6337162B2 (en)
JP3273205B2 (en) Decarburization refining method of chromium-containing molten steel
JP2795597B2 (en) Vacuum degassing and decarburization of molten stainless steel
JPH05287358A (en) Method for melting extremely low carbon steel having high cleanliness
JP7424350B2 (en) Molten steel denitrification method and steel manufacturing method
JP2724035B2 (en) Vacuum decarburization of molten steel
JP3411220B2 (en) Refining method of high nitrogen low oxygen chromium-containing molten steel
JPH05195046A (en) Method for melting high manganese and extremely low carbon steel
JPH08134528A (en) Production of extra low carbon steel
JPH05239537A (en) Method for melting cleanliness and extreme-low carbon steel
JPH0512410B2 (en)
JPH0941028A (en) Production of high purity ultra-low carbon steel
JPH0543930A (en) Method for melting dead soft steel under atmospheric pressure
JPH0125370B2 (en)