JPS62126553A - Manufacture of cathode plate for sealed alkaline storage battery - Google Patents

Manufacture of cathode plate for sealed alkaline storage battery

Info

Publication number
JPS62126553A
JPS62126553A JP60266914A JP26691485A JPS62126553A JP S62126553 A JPS62126553 A JP S62126553A JP 60266914 A JP60266914 A JP 60266914A JP 26691485 A JP26691485 A JP 26691485A JP S62126553 A JPS62126553 A JP S62126553A
Authority
JP
Japan
Prior art keywords
substrate
nickel
active material
sintered
cathode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60266914A
Other languages
Japanese (ja)
Inventor
Masami Nishimura
西村 正美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP60266914A priority Critical patent/JPS62126553A/en
Publication of JPS62126553A publication Critical patent/JPS62126553A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • H01M4/28Precipitating active material on the carrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To make quick charge possible by impregnating nickel oxide serving as active material in a sintered nickel substrate, immersing in an acidic solution to dissolve a part of active material and to expose a part of sintered substrate, then using as a cathode plate. CONSTITUTION:A sintered nickel substrate is immersed in nickel nitrate solution, an electrolytically reduce in potassium hydroxide solution to deposit nickel hydroxide. After impregnating a specified amount of active material, the substrate is immersed in sulfuric acid to dissolve 5-10% of active material and to expose a part of the sintered substrate. After that, formation is applied to the substrate in sodium hydroxide solution to form a cathode plate for sealed alkaline storage battery. The exposed part of the substrate evolves a small amount of oxygen gas from the initial stage of charge, and oxygen gas absorbing reaction in an anode plate is advanced and temperature within a battery is increased. Thereby, quick charge can be performed without operation of a safety vent.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は密閉形アルカリ蓄電池法1こニッケルカドミウ
ム蓄電池(以下rN i −Od電池」という)用陽極
板の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing an anode plate for a nickel-cadmium storage battery (hereinafter referred to as rN i -Od battery) using a sealed alkaline storage battery method.

従来の技術 一般に、Ni−Cd電池用陽極板は、ニッケル焼結基板
を硝酸ニッケル水溶液に浸漬し、次いで同基板を水酸化
カリウム水溶液中に電解還元しながら浸漬して水酸化ニ
ッケルを析出させるサイクルを3〜4回繰り返した後、
水酸化ナトリウム水溶液中での化成、次いで水洗、乾燥
を経て得られるものである。この陽極板と通常の製造法
による陰極板を用いたNi −Cd電池では、o、 t
〜0.2 crnA程度の充電電流がm一般的でちり、
陰極板の酸素ガス吸収性能もそれに見合ったものであっ
た。
Conventional technology In general, anode plates for Ni-Cd batteries are manufactured using a cycle in which a sintered nickel substrate is immersed in an aqueous nickel nitrate solution, and then the same substrate is immersed in an aqueous potassium hydroxide solution while being electrolytically reduced to precipitate nickel hydroxide. After repeating 3 to 4 times,
It is obtained through chemical conversion in an aqueous sodium hydroxide solution, followed by washing with water and drying. In a Ni-Cd battery using this anode plate and a cathode plate made by the normal manufacturing method, o, t
A charging current of ~0.2 crnA is common and dusty.
The oxygen gas absorption performance of the cathode plate was also commensurate with this.

発明が解決しようとする問題点 上記陽極板と通常の製造法による陰極板を用いたNi−
0d@池を1〜1.5 nn Nで急速充電した場合、
充電末期に陽極板から発生する酸素ガスが陰極板に吸収
しきれず電池内に蓄積され内圧の上昇をきたし、安全弁
の作動を引き起こす。更に陰極板においでも安全弁の作
動により放出された酸素ガスの分だけ充電か進行し完全
充電状態となるため水素ガスが発生し、内圧の上昇によ
り安全弁か作動する。このように安全弁が作動し°C酸
素および水素ガスが電池外へ繰り返し放出されると、や
がでは電解液の減少により寿命が尽きることとなる。
Problems to be Solved by the Invention Ni-
0d@When the battery is quickly charged at 1 to 1.5 nn N,
At the end of charging, oxygen gas generated from the anode plate is not completely absorbed by the cathode plate and accumulates inside the battery, causing an increase in internal pressure and causing the safety valve to operate. Further, the charging of the cathode plate progresses by the amount of oxygen gas released by the activation of the safety valve, and as it reaches a fully charged state, hydrogen gas is generated, and the safety valve is activated due to the increase in internal pressure. If the safety valve operates in this way and °C oxygen and hydrogen gas are repeatedly released to the outside of the battery, the life of the battery will eventually come to an end due to a decrease in the amount of electrolyte.

本発明は上記のことに鑑み、急速充電時にも安全弁が作
動することなく、従来のNi−Cd電池よりも長寿命と
するべく新規な陽1極板を得することを目的としている
In view of the above, an object of the present invention is to obtain a novel positive one-electrode plate that does not operate the safety valve even during rapid charging and has a longer lifespan than conventional Ni-Cd batteries.

問題点を解決するための手段 上記目的を達成するために、本発明はニッケル焼結基板
に活物質としてニッケル酸化物を充填した陽極板を酸性
水溶液に浸漬して極板表面の前記活物質を溶解しニッケ
ル焼結基板を露出させることを特徴とするものである。
Means for Solving the Problems In order to achieve the above object, the present invention involves immersing an anode plate in which a nickel sintered substrate is filled with nickel oxide as an active material in an acidic aqueous solution to remove the active material on the surface of the electrode plate. The feature is that the nickel sintered substrate is exposed by melting.

作用 陽極板表面に露出したニッケル焼結基板は充電初期から
少量の酸素ガスを発生し、陰極板での酸素ガス吸収反応
を進行させ、これが発熱反応であることから電池内温度
を上昇させる。よって、充電末期に陽極板が完全充電状
態となっ°C酸素ガスが大量に発生する時点で、既に電
池内温度が上昇しているため、陰極板での酸素ガス吸収
反応が進行し易い状況にあり、従ってより急速な充電が
可能となる。
The sintered nickel substrate exposed on the surface of the working anode plate generates a small amount of oxygen gas from the beginning of charging, which advances the oxygen gas absorption reaction at the cathode plate, and since this is an exothermic reaction, it increases the temperature inside the battery. Therefore, by the time the anode plate is fully charged at the end of charging and a large amount of °C oxygen gas is generated, the internal temperature of the battery has already risen, making it easy for the oxygen gas absorption reaction to proceed on the cathode plate. Therefore, faster charging is possible.

実施例 次に本発明の一実施例を説明する。Example Next, one embodiment of the present invention will be described.

メチルセルロースの粘結剤溶液と焼結用金属粉末のカー
ボニルニッケルからなるスラリーを多孔性金属板に塗着
したのち水素還元雰囲気中で焼結する。この焼結基板を
硝酸ニッケル水溶液にッケル濃度lO〜204、温度6
0−70“C)中に浸漬し、次いで水酸化カリウム水溶
液(濃度lO〜15冬、温度40〜50°C)中に浸漬
しつつ、5〜LOA/dイの電流Iこて電解還元して水
酸化ニッケルを析出させるサイクルを操り返し所定量の
活物質を確保させる。この基板を1〜2規定の硫酸にバ
ブリングし、γがろto−15分間浸漬し、活物質の5
〜10壬を溶解させて焼結基板を露出させたのら、水酸
化ナトリウム水溶液(濃度20〜’30%、温度10〜
15°C)中で化成をし水洗、乾燥を経゛C陽極板とす
る。
A slurry consisting of a methylcellulose binder solution and carbonyl nickel sintering metal powder is applied to a porous metal plate and then sintered in a hydrogen reducing atmosphere. This sintered substrate was placed in a nickel nitrate aqueous solution at a nickel concentration of 1O~204 and a temperature of 6.
0-70 "C)" and then immersed in an aqueous potassium hydroxide solution (concentration 10 to 15 winter, temperature 40 to 50 °C) while electrolytically reducing the current I with a trowel of 5 to LOA/d. The cycle of precipitating nickel hydroxide is repeated to secure a predetermined amount of active material.This substrate is bubbled in 1-2 N sulfuric acid and immersed in gamma for 15 minutes to deposit 50% of the active material.
After dissolving ~10 μm and exposing the sintered substrate, add a sodium hydroxide aqueous solution (concentration 20~30%, temperature 10 ~
After chemical conversion at 15°C, washing with water and drying, the anode plate was made into an anode plate.

以上の方法によっ゛ζ作製した陽極板を合成繊維不織布
からなるセパレータを介し°C通常の方法により作成し
た陰極板と共に極板群とし°C組み立てた電池をJIS
規格に几−8C形(公称容fi 1.2 A h )を
例にし′C本発明品と従来品の急速充電性能の比較を第
1図に示t0 試験条件は放電状態からのl crnA (20°C)
充電である。本発明品は従来品に比べ〔約3分の1の電
池内圧であり、急速充電性能、即ち酸素ガス吸収性能に
優れ°Cいるといえる。
The anode plate prepared by the above method was put through a separator made of synthetic fiber non-woven fabric and used as an electrode plate group together with the cathode plate prepared by a normal method.
Figure 1 shows a comparison of the quick charging performance of the inventive product and the conventional product using the standard model 几-8C (nominal capacity fi 1.2 Ah) as an example. 20°C)
It is charging. The product of the present invention has a battery internal pressure that is about one-third lower than that of conventional products, and can be said to have excellent rapid charging performance, that is, excellent oxygen gas absorption performance.

また、寿命試験結果につい“C@2図に示す。In addition, the life test results are shown in Figure C@2.

試験条件は周囲温度20”Cでl cm A X 1.
5 h充電の後、l cm Aで終止電圧1.Ovまで
放電するサイクルを繰り返すものである。本発明品は従
来品に比べて寿命性能に・ついても優れていることがわ
かる。
The test conditions were 1 cm A x 1 at an ambient temperature of 20"C.
After 5 h charging, the final voltage 1.1 cm at l cm A. The cycle of discharging up to Ov is repeated. It can be seen that the product of the present invention is superior to the conventional product in terms of life performance.

発明の効果 上述のように、本発明によれば、陽極板表面の活物質を
溶解し、ニッケル焼結基板を露出させることにより、電
池とした場合に従来のものに比べて、より急速な充電が
可能となる点極めて工業的価値大なるものである。
Effects of the Invention As described above, according to the present invention, by dissolving the active material on the surface of the anode plate and exposing the nickel sintered substrate, a battery can be charged more rapidly than conventional batteries. The fact that this makes it possible is of great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

!@1図は本発明品と従来品の急速充電性能を示す比較
曲線図、第2図は同じく寿命試験結果を示す比較特性図
である。
! Figure 1 is a comparative curve diagram showing the quick charging performance of the product of the present invention and the conventional product, and Figure 2 is a comparative characteristic diagram showing the life test results.

Claims (1)

【特許請求の範囲】[Claims] ニッケル焼結基板に活物質としてニッケル酸化物を充填
した陽極板を酸性水溶液に浸漬して極板表面の前記活物
質を溶解することを特徴とする密閉形アルカリ蓄電池用
陽極板の製造法。
1. A method for manufacturing an anode plate for a sealed alkaline storage battery, which comprises immersing an anode plate in which a nickel sintered substrate is filled with nickel oxide as an active material in an acidic aqueous solution to dissolve the active material on the surface of the electrode plate.
JP60266914A 1985-11-27 1985-11-27 Manufacture of cathode plate for sealed alkaline storage battery Pending JPS62126553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60266914A JPS62126553A (en) 1985-11-27 1985-11-27 Manufacture of cathode plate for sealed alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60266914A JPS62126553A (en) 1985-11-27 1985-11-27 Manufacture of cathode plate for sealed alkaline storage battery

Publications (1)

Publication Number Publication Date
JPS62126553A true JPS62126553A (en) 1987-06-08

Family

ID=17437420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60266914A Pending JPS62126553A (en) 1985-11-27 1985-11-27 Manufacture of cathode plate for sealed alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS62126553A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827236A (en) * 1971-08-13 1973-04-10
JPS5097837A (en) * 1973-12-28 1975-08-04

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827236A (en) * 1971-08-13 1973-04-10
JPS5097837A (en) * 1973-12-28 1975-08-04

Similar Documents

Publication Publication Date Title
WO2017000219A1 (en) Doped conductive oxide and improved electrochemical energy storage device polar plate based on same
JPS62287568A (en) Manufacture of alkaline storage battery
JPS62139255A (en) Manufacture of hydrogen absorbing electrode
JPS62126553A (en) Manufacture of cathode plate for sealed alkaline storage battery
JPS59872A (en) Manufacture of enclosed nickel-cadmium storage battery
JP2797440B2 (en) Alkaline secondary battery
JPS62126552A (en) Manufacture of nickel cathode plate for sealed alkaline storage battery
JPH028419B2 (en)
JP2861057B2 (en) Alkaline secondary battery
JPH0232750B2 (en)
JPS635866B2 (en)
JPH05159799A (en) Hydrogen storage alloy electrode and alkaline secondary cell using it
JP3596148B2 (en) Method for producing sintered positive electrode plate for alkaline storage battery
JPS63164162A (en) Cadmium negative electrode for alkaline storage battery
JPS5833664B2 (en) Method for manufacturing electrode plates for alkaline storage batteries
JP2002260645A (en) Manufacturing method of hydrogen storage alloy electrode, and the hydrogen storage alloy electrode
JP2000285913A (en) Hydrogen storage alloy, and hydrogen storage alloy electrode using the same
JP2005183339A (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JPS58115762A (en) Manufacture of negative electrode plate for sealed nickel-cadmium storage battery
JPS603859A (en) Manufacture of cadmium electrode for secondary battery
JPH041992B2 (en)
JPH05242884A (en) Hydrogen storage alloy electrode and alkaline secondary battery using the same
JPS6220258A (en) Sealed nickel-cadmium storage battery
JPH0665067B2 (en) Nickel zinc battery
JPS62184764A (en) Cadmium negative electrode for alkaline storage battery