JPH0665067B2 - Nickel zinc battery - Google Patents

Nickel zinc battery

Info

Publication number
JPH0665067B2
JPH0665067B2 JP61145466A JP14546686A JPH0665067B2 JP H0665067 B2 JPH0665067 B2 JP H0665067B2 JP 61145466 A JP61145466 A JP 61145466A JP 14546686 A JP14546686 A JP 14546686A JP H0665067 B2 JPH0665067 B2 JP H0665067B2
Authority
JP
Japan
Prior art keywords
sodium hydroxide
battery
electrolytic solution
weight
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61145466A
Other languages
Japanese (ja)
Other versions
JPS632266A (en
Inventor
修弘 古川
健次 井上
光造 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61145466A priority Critical patent/JPH0665067B2/en
Publication of JPS632266A publication Critical patent/JPS632266A/en
Publication of JPH0665067B2 publication Critical patent/JPH0665067B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/26Selection of materials as electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、陽極にニッケル極を、また陰極には亜鉛極
を用いてなるニッケル亜鉛蓄電池に関するものである。
TECHNICAL FIELD The present invention relates to a nickel-zinc storage battery having a nickel electrode as an anode and a zinc electrode as a cathode.

〈従来の技術〉 ニッケル亜鉛蓄電池は、高エネルギー密度で出力密度が
高く、しかも低温特性がよい等という特長のある電池で
ある。この種のニッケル亜鉛蓄電池では、従来より、電
解液としてはイオン伝導度が大きくそれ故電気抵抗の小
さい水酸化カリウム水溶液が用いられている。
<Prior Art> A nickel-zinc storage battery is a battery having high energy density, high output density, and good low-temperature characteristics. In this type of nickel-zinc storage battery, an aqueous solution of potassium hydroxide having a high ionic conductivity and therefore a low electric resistance has been used as an electrolytic solution.

〈発明が解決しようとする問題点〉 しかしながら、このニッケル亜鉛蓄電池は、45℃以上
の高温環境下で使用した場合には、ニッケル極での酸素
過電圧が低下して酸素ガスが発生し易くなるので、陽極
の充電高率が悪くなるばかりか、発生した酸素ガスの亜
鉛極での吸収・消費量が増大して陰極の劣化の度合が大
きく、このためサイクル寿命が短くなるという問題があ
る。
<Problems to be Solved by the Invention> However, when this nickel-zinc storage battery is used in a high temperature environment of 45 ° C. or higher, the oxygen overvoltage at the nickel electrode is lowered and oxygen gas is easily generated. However, there is a problem that not only the high charging rate of the anode is deteriorated, but also the generated oxygen gas is absorbed and consumed by the zinc electrode and the degree of deterioration of the cathode is large, which shortens the cycle life.

このため、電解液として水酸化カリウム水溶液に代えて
水酸化ナトリウム水溶液を用いることが提案されてい
る。このように水酸化ナトリウムを電解質として用いる
ことで、ニッケル極での酸素過電圧が上昇し、高温使用
時における陽極での充電効率の低下が緩和され、またサ
イクル寿命がかなり改善される。とことが、この水酸化
ナトリウム水溶液は15℃以下の低温でのイオン伝導度
が小さく、このため水酸化ナトリウム水溶液を電解液と
して電池を構成した場合には電池の低温特性が著しく低
下するという欠点がある。
Therefore, it has been proposed to use a sodium hydroxide aqueous solution as the electrolytic solution instead of the potassium hydroxide aqueous solution. By using sodium hydroxide as an electrolyte in this way, the oxygen overvoltage at the nickel electrode rises, the decrease in charging efficiency at the anode during high temperature use is alleviated, and the cycle life is considerably improved. However, this sodium hydroxide aqueous solution has a low ionic conductivity at a low temperature of 15 ° C. or lower, and therefore, when a battery is constructed using the sodium hydroxide aqueous solution as an electrolytic solution, the low temperature characteristics of the battery are significantly deteriorated. There is.

〈問題点を解決するための手段〉 この発明のニッケル亜鉛蓄電池は、水酸化ナトリウムの
濃度が3〜15重量%であると共に、水酸化ナトリウム
と水酸化カリウムとの総和の濃度が25〜40重量%で
あり、且つ酸化亜鉛を飽和させてなる水溶液を電解液と
して用いたことを要旨とする。
<Means for Solving Problems> The nickel-zinc storage battery of the present invention has a sodium hydroxide concentration of 3 to 15% by weight and a total concentration of sodium hydroxide and potassium hydroxide of 25 to 40% by weight. %, And an aqueous solution obtained by saturating zinc oxide is used as an electrolytic solution.

〈作用〉 上記手段を用いることで、低温での特性を損うことなく
高温使用時での陽極の充放電効率が高められるので、広
い温度範囲にわたって特性の良好なニッケル亜鉛蓄電池
を構成することができる。
<Operation> By using the above means, since the charge and discharge efficiency of the anode at the time of high temperature use can be enhanced without impairing the characteristics at low temperatures, it is possible to configure a nickel-zinc storage battery having good characteristics over a wide temperature range. it can.

〈実施例〉 酸化水銀を5重量%添加したペースト式亜鉛極を作製
し、この亜鉛極を公知の焼結式ニッケル極と組合せ、セ
パレータを介して巻き取って電池缶に収納し、電解液を
注入して公称容量500mAHの密閉型円筒ニッケル亜鉛蓄電
池を種々作製した。即ち、電解液は第1表に示したA〜
Kの11種の組成のものを使用し、これらの組成の電解
液を用いた電池(電池A〜K)を夫々15セルずつ作製
した。表中の各濃度(重量%)はすべて電解液重量に対
する値である。また、A〜Kの電解液ではすべて酸化亜
鉛を飽和させてある。
<Example> A paste type zinc electrode added with 5% by weight of mercury oxide was prepared, and this zinc electrode was combined with a known sintered nickel electrode, wound up through a separator and housed in a battery can. By injection, various sealed cylindrical nickel-zinc batteries with a nominal capacity of 500 mAH were prepared. That is, the electrolytic solution is A to A shown in Table 1.
Using 11 kinds of compositions of K, 15 cells each of batteries (batteries A to K) using the electrolytic solution of these compositions were produced. All the concentrations (% by weight) in the table are values relative to the weight of the electrolytic solution. Further, all of the electrolytic solutions A to K are saturated with zinc oxide.

次に、これらの電池A〜Kについて環境温度0℃.25
℃.50℃において、それぞれ5セルずつ用いて、充放
電サイクル試験を行なった。この試験では4時間率の電
流値で満充電した後、同じく4時間率の電流値で端子電
圧が1.3Vになるまで放電するという条件を用いた。そ
して、電池容量が初期の60%(300mAH)を切ったとこ
ろを電池のサイクル寿命とし、電池A〜Kについてそれ
ぞれ5セルずつの平均値で各環境温度でのサイクル寿命
を求めた。
Next, the environmental temperature of these batteries A to K was 0 ° C. 25
° C. At 50 ° C., a charge / discharge cycle test was performed using 5 cells each. In this test, a condition was used in which, after being fully charged at a current value of 4 hour rate, it was discharged at a current value of 4 hour rate until the terminal voltage became 1.3V. Then, when the battery capacity fell below 60% (300 mAH) in the initial stage, the cycle life of the battery was determined, and the cycle life at each environmental temperature was obtained by averaging 5 cells for each of the batteries A to K.

第1図に、電解液中の水酸化ナトリウム濃度と水酸化カ
リウム濃度との総和を30重量%とした電池A〜Fにつ
いての、各環境温度(℃)におけるサイクル寿命をグラ
フ化して示した。同図より、使用する電解液中の水酸化
ナトリウムの濃度が低すぎる場合(電池A,B)には低
温特性はよいものの高温特性は悪い。逆に電解液中の水
酸化ナトリウムの濃度が高すぎると低温特性は悪いが高
温特性がよくなっている(電池F)。そして、電解液中
の水酸化ナトリウムの濃度を3〜15重量%の範囲とし
た電池C〜Dでは、すべての環境温度で200サイクル以
上の特性が得られることがわかり、この範囲の組成が環
境温度0〜50℃で充分な電池特性が得られる領域と判
断できる。
FIG. 1 is a graph showing the cycle life at each environmental temperature (° C.) of the batteries A to F in which the total concentration of sodium hydroxide and potassium hydroxide in the electrolytic solution was 30% by weight. From the figure, when the concentration of sodium hydroxide in the electrolyte used is too low (Batteries A and B), the low temperature characteristics are good, but the high temperature characteristics are poor. On the contrary, when the concentration of sodium hydroxide in the electrolytic solution is too high, the low temperature characteristics are poor, but the high temperature characteristics are good (Battery F). Then, in batteries C to D in which the concentration of sodium hydroxide in the electrolytic solution was in the range of 3 to 15% by weight, it was found that characteristics of 200 cycles or more were obtained at all environmental temperatures, and the composition in this range was It can be judged that a region where sufficient battery characteristics are obtained at a temperature of 0 to 50 ° C.

一方、電解液中の水酸化ナトリウムの濃度をすべて9重
量%とした電池G〜K及び電池Dについての、各環境温
度(℃)におけるサイクル寿命(回)を第2図にグラフ
化して示した。同図より、電解液中の水酸化ナトリウム
と水酸化カリウムとの総和の濃度が22重量%と低い電
池Gは低温特性が悪い。この理由としては、低濃度の電
解液を用いたことによるイオン伝導度の低下が原因であ
ると考えられる。また、この総和の濃度が45重量%と
高い電解液を用いた電池Kの場合には特性が各環境温度
で低下している。これは、高濃度化により電解液の粘度
が大きくなりすぎて充放電反応が円滑に行なわれなくな
るためか、あるいは高濃度化によって電解液の酸化亜鉛
の溶解度が増大して亜鉛極からの活物質溶解が起こり易
くなる結果劣化が加速されてしまうためと思われる。そ
して、水酸化ナトリウムと水酸化カリウムとの総和の濃
度を25〜40重量%とした電池H〜J及び電池Dで
は、0〜50℃の環境温度で200サイクル以上のサイク
ル寿命を持つことがわかり、良好な特性が得られる総和
の濃度はこの範囲であると判断できる。
On the other hand, FIG. 2 graphically shows the cycle life (times) at each environmental temperature (° C.) for batteries G to K and battery D in which the concentration of sodium hydroxide in the electrolytic solution was all 9% by weight. . From the figure, the low temperature characteristics of the battery G in which the total concentration of sodium hydroxide and potassium hydroxide in the electrolytic solution is as low as 22% by weight have poor low temperature characteristics. The reason for this is considered to be a decrease in ionic conductivity due to the use of a low-concentration electrolytic solution. Further, in the case of the battery K using the electrolytic solution having a high total concentration of 45% by weight, the characteristics are lowered at each environmental temperature. This is because the viscosity of the electrolytic solution becomes too high due to the high concentration and the charge / discharge reaction cannot be carried out smoothly, or the higher concentration increases the solubility of zinc oxide in the electrolytic solution and increases the active material from the zinc electrode. It is thought that dissolution is likely to occur and deterioration is accelerated as a result. Then, it was found that the batteries H to J and the battery D in which the total concentration of sodium hydroxide and potassium hydroxide was 25 to 40% by weight have a cycle life of 200 cycles or more at an environmental temperature of 0 to 50 ° C. It can be judged that the total concentration for which good characteristics are obtained is in this range.

〈発明の効果〉 以上のように構成されるこの発明のニッケル亜鉛蓄電池
によれば、広い温度範囲で良好で充分な電池特性が得ら
れるという効果を奏する。
<Effects of the Invention> According to the nickel-zinc storage battery of the present invention configured as described above, it is possible to obtain good and sufficient battery characteristics in a wide temperature range.

【図面の簡単な説明】[Brief description of drawings]

第1図は、電解液中の水酸化ナトリウムと水酸化カリウ
ムとの総和を30重量%とした時の、水酸化ナトリウム
濃度と各環境温度での電池サイクル寿命との関係を示し
たグラフ、第2図は、電解液中の水酸化ナトリウム濃度
を9重量%とした時の、水酸化ナトリウムと水酸化カリ
ウムとの総和の濃度と、各環境温度での電池サイクル寿
命との関係を示したグラフである。
FIG. 1 is a graph showing the relationship between the sodium hydroxide concentration and the battery cycle life at each environmental temperature when the total amount of sodium hydroxide and potassium hydroxide in the electrolytic solution is 30% by weight. Fig. 2 is a graph showing the relationship between the total concentration of sodium hydroxide and potassium hydroxide and the battery cycle life at each environmental temperature when the concentration of sodium hydroxide in the electrolytic solution is 9% by weight. Is.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】水酸化ナトリウムの濃度が3〜15重量%
であると共に、水酸化ナトリウムと水酸化カリウムとの
総和の濃度が25〜40重量%であり、且つ酸化亜鉛を
飽和させてなる水溶液を電解液として用いたことを特徴
とするニッケル亜鉛蓄電池。
1. The concentration of sodium hydroxide is 3 to 15% by weight.
And a total concentration of sodium hydroxide and potassium hydroxide is 25 to 40% by weight, and an aqueous solution obtained by saturating zinc oxide is used as an electrolytic solution.
JP61145466A 1986-06-20 1986-06-20 Nickel zinc battery Expired - Lifetime JPH0665067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61145466A JPH0665067B2 (en) 1986-06-20 1986-06-20 Nickel zinc battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61145466A JPH0665067B2 (en) 1986-06-20 1986-06-20 Nickel zinc battery

Publications (2)

Publication Number Publication Date
JPS632266A JPS632266A (en) 1988-01-07
JPH0665067B2 true JPH0665067B2 (en) 1994-08-22

Family

ID=15385890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61145466A Expired - Lifetime JPH0665067B2 (en) 1986-06-20 1986-06-20 Nickel zinc battery

Country Status (1)

Country Link
JP (1) JPH0665067B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019040733A (en) * 2017-08-24 2019-03-14 Fdk株式会社 Battery pack

Also Published As

Publication number Publication date
JPS632266A (en) 1988-01-07

Similar Documents

Publication Publication Date Title
JP3019326B2 (en) Lithium secondary battery
JP3788484B2 (en) Nickel electrode for alkaline storage battery
JP4356321B2 (en) Lead acid battery
JPH0665067B2 (en) Nickel zinc battery
JP4411860B2 (en) Storage battery
JPS60198066A (en) Alkaline storage battery
US3457111A (en) Alkaline storage battery with be(oh)2 in the electrolyte
JP2596273B2 (en) Anode plate for lead-acid battery
JP4221963B2 (en) Control valve type lead acid battery
JPH0467302B2 (en)
JPS62216178A (en) Nickel-zinc storage battery
JPH0232750B2 (en)
JPH09147906A (en) Alkaline storage battery
JP2762730B2 (en) Nickel-cadmium storage battery
JPH079806B2 (en) Zinc electrode for alkaline storage battery
JPH079807B2 (en) Zinc electrode for alkaline storage battery
JPH028419B2 (en)
JPH10208746A (en) Sealed lead-acid battery
JP2553598B2 (en) Sealed lead acid battery
JPH09219214A (en) Alkaline storage battery
JPH01117279A (en) Lead-acid battery
JPS61193378A (en) Nickel-cadmium alkaline cell
JPH0719602B2 (en) Zinc pole
JPH04363862A (en) Lithium secondary battery
JPH0654661B2 (en) Sealed lead acid battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term