JPH0719602B2 - Zinc pole - Google Patents

Zinc pole

Info

Publication number
JPH0719602B2
JPH0719602B2 JP61173192A JP17319286A JPH0719602B2 JP H0719602 B2 JPH0719602 B2 JP H0719602B2 JP 61173192 A JP61173192 A JP 61173192A JP 17319286 A JP17319286 A JP 17319286A JP H0719602 B2 JPH0719602 B2 JP H0719602B2
Authority
JP
Japan
Prior art keywords
zinc
oxide powder
zinc oxide
particle size
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61173192A
Other languages
Japanese (ja)
Other versions
JPS6329447A (en
Inventor
修弘 古川
健次 井上
光造 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61173192A priority Critical patent/JPH0719602B2/en
Publication of JPS6329447A publication Critical patent/JPS6329447A/en
Publication of JPH0719602B2 publication Critical patent/JPH0719602B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、ニッケル−亜鉛蓄電池や銀−亜鉛蓄電池な
どのアルカリ亜鉛蓄電池に用いられる亜鉛極に関するも
のである。
TECHNICAL FIELD The present invention relates to a zinc electrode used in an alkaline zinc storage battery such as a nickel-zinc storage battery or a silver-zinc storage battery.

〈従来の技術〉 上記亜鉛極で活物質として用いられている亜鉛は、エネ
ルギー密度が高く、安価で且つ無公害であり、このよう
な亜鉛極を陰極とするアルカリ亜鉛蓄電池は高エネルギ
ー密度等の特長ある電池としての期待が大きいものの、
この種のアルカリ亜鉛蓄電池は長期のサイクル寿命が得
にくいという欠点があり、サイクル寿命を改善して実用
化を図るために多くの研究がなされている。アルカリ亜
鉛蓄電池のサイクル寿命がこのように短いのは、陰極と
して用いる亜鉛極がアルカリ電解液に可溶な電極である
ことに起因している。即ち、亜鉛極においては放電時に
亜鉛がアルカリ電解液中に溶出する。そして、この溶出
により生じた亜鉛酸イオンが充電時には亜鉛極表面に樹
枝状に電析し、充放電の繰返しによってこの電析亜鉛が
生長し、セパレータを貫通して対極に達して内部短絡を
引き起こしてしまい、またこれによって亜鉛極の形状変
化が大きくなる結果、早期サイクルで電池特性が劣化
し、実用上満足しうるサイクル寿命が得られないのであ
る。
<Prior Art> Zinc used as an active material in the above-mentioned zinc electrode has a high energy density, is inexpensive and is non-polluting, and an alkaline zinc storage battery using such a zinc electrode as a cathode has high energy density and the like. Although there are great expectations as a battery with features,
This type of alkaline zinc storage battery has a drawback that it is difficult to obtain a long cycle life, and many studies have been made to improve the cycle life and put it into practical use. The short cycle life of the alkaline zinc storage battery is due to the fact that the zinc electrode used as the cathode is an electrode soluble in the alkaline electrolyte. That is, at the zinc electrode, zinc is eluted into the alkaline electrolyte during discharge. Then, the zincate ions generated by this elution are dendriticly deposited on the surface of the zinc electrode during charging, and the deposited zinc grows by repeated charging and discharging, penetrating the separator and reaching the counter electrode, causing an internal short circuit. As a result, the shape change of the zinc electrode becomes large, and as a result, the battery characteristics deteriorate in an early cycle and a practically satisfactory cycle life cannot be obtained.

この欠点に対処し、アルカリ亜鉛蓄電池のサイクル寿命
を少しでも改善するため、電池内のアルカリ電解液量を
実質的に遊離のものがないように規制して亜鉛酸イオン
の拡散を防止する技術が従来より提案されている。この
ように電解液量を規制することで、上記放電生成物であ
る亜鉛酸イオンは拡散することなく亜鉛極近傍にとどま
るようになるので、次の充電時には電析亜鉛が元の位置
に電着し易くなり、亜鉛の樹枝状電析が抑えられ、また
亜鉛極の変形が緩和される結果、亜鉛極のサイクル寿命
が抑制されて電池のサイクル寿命が改善される。
In order to deal with this drawback and improve the cycle life of the alkaline zinc storage battery as much as possible, there is a technology to prevent the diffusion of zincate ions by controlling the amount of alkaline electrolyte in the battery so that there is substantially no free electrolyte. It has been proposed in the past. By controlling the amount of electrolyte in this way, the zincate ions, which are the above-mentioned discharge products, will stay in the vicinity of the zinc electrode without diffusing, and the electrodeposited zinc will be electrodeposited at the original position during the next charging. As a result, the dendritic electrodeposition of zinc is suppressed, and the deformation of the zinc electrode is alleviated. As a result, the cycle life of the zinc electrode is suppressed and the cycle life of the battery is improved.

〈発明が解決しようとする問題点〉 しかしながら、このようにアルカリ電解液量を制限して
電池を構成した場合、低温における電池特性がかなり悪
くなってしまうという問題がある。これは、アルカリ亜
鉛蓄電池の場合、亜鉛活物質の自然溶解を防ぐために電
解液中に酸化亜鉛を飽和させており、このために電解液
の粘度が大きく、電解液の電導度がもともとあまり高く
ないことに加え、上記のように電解液を制限したことで
電導度が一層低くなってしまい、低温使用時には実用上
十分な電導度が得られないことに起因している。そし
て、このような電解液の電導度の低下によって電極の不
活性化が起こり易くなり、活物質の利用率が著しく小さ
くなってしまうので、必要な放電特性が得られず、サイ
クル寿命が短くなってしまう。
<Problems to be Solved by the Invention> However, when the battery is constructed by limiting the amount of the alkaline electrolyte in this way, there is a problem that the battery characteristics at a low temperature are considerably deteriorated. This is because in the case of alkaline zinc storage batteries, zinc oxide is saturated in the electrolytic solution in order to prevent spontaneous dissolution of the zinc active material, and therefore the viscosity of the electrolytic solution is large and the conductivity of the electrolytic solution is not so high originally. In addition, due to the limitation of the electrolytic solution as described above, the electric conductivity is further lowered, and it is not possible to obtain a practically sufficient electric conductivity when used at a low temperature. Then, such a decrease in the conductivity of the electrolytic solution easily causes the inactivation of the electrodes, and the utilization rate of the active material is significantly reduced, so that the necessary discharge characteristics cannot be obtained and the cycle life is shortened. Will end up.

〈問題点を解決するための手段〉 本発明者は、上記問題点を解消するように検討した所、
亜鉛極の亜鉛活物質として用いる酸化亜鉛粉末の粒径を
次のように規制した時には所期の目的を達成できた。
<Means for Solving Problems> The present inventor has studied to solve the above problems,
When the particle size of the zinc oxide powder used as the zinc active material of the zinc electrode was regulated as follows, the intended purpose could be achieved.

即ち、本発明の亜鉛極は、0.1〜0.5μmの範囲に粒径の
ピークを有する第1の酸化亜鉛粉末20〜80重量%と、0.
5μmを越えて10μm以下の範囲に粒径のピークを有す
る第2の酸化亜鉛粉末80〜20重量%とを混合してなる酸
化亜鉛粉末を用いたことを特徴とするものである。
That is, the zinc electrode of the present invention comprises 20 to 80% by weight of the first zinc oxide powder having a particle size peak in the range of 0.1 to 0.5 μm, and
The present invention is characterized in that a zinc oxide powder formed by mixing with 80 to 20% by weight of a second zinc oxide powder having a particle size peak in a range of more than 5 μm and 10 μm or less is used.

〈作 用〉 亜鉛活物質として使用する酸化亜鉛粉末としては、従
来、粒径が0.1〜0.5μmの範囲のものが用いられてい
る。本発明では従来用いられていたこの範囲の粒径を有
する第1の酸化亜鉛粉末に、0.5μmを越えて10μm以
下の範囲に粒径のピークを有する第2の酸化亜鉛粉末を
混合するようにしたものである。そして、第2の酸化亜
鉛粉末を上記割合で混合させることで、亜鉛極中におけ
るアルカリ電解液の通路が適度な大きさとなり、亜鉛極
の細孔中を通るイオンの電導度が高められる結果、低温
による電導度の低下が相当緩和されて低温特性が大幅に
改善される。
<Working> As the zinc oxide powder used as the zinc active material, those having a particle size in the range of 0.1 to 0.5 μm have been conventionally used. In the present invention, the first zinc oxide powder having a particle size in this range conventionally used is mixed with the second zinc oxide powder having a particle size peak in a range of more than 0.5 μm and 10 μm or less. It was done. Then, by mixing the second zinc oxide powder in the above proportion, the passage of the alkaline electrolyte in the zinc electrode has an appropriate size, and as a result, the conductivity of the ions passing through the pores of the zinc electrode is increased, The decrease in electrical conductivity due to low temperature is considerably alleviated, and the low temperature characteristics are greatly improved.

〈実施例〉 実施例1. 0.1〜0.5μmの粒径の第1の酸化亜鉛粉末50重量%に、
0.5μmより大きい所にそれぞれピークをもつ種々の粒
径の第2の酸化亜鉛粉末50重量%を加えて種々の酸化亜
鉛粉末を作った。この酸化亜鉛粉末85重量%に金属亜鉛
粉末10重量%並びに酸化カドミウム粉末5重量%を加え
てなる混合粉末に、水とPTFEを添加し混練して活物質ペ
ーストを作り、この活物質ペーストをニッケルメッシュ
の両面に圧着するなどして種々の亜鉛極を作製した。
<Example> Example 1. In 50% by weight of the first zinc oxide powder having a particle size of 0.1 to 0.5 μm,
Various zinc oxide powders were made by adding 50% by weight of a second zinc oxide powder of various particle sizes, each having a peak above 0.5 μm. 85% by weight of this zinc oxide powder, 10% by weight of metallic zinc powder and 5% by weight of cadmium oxide powder are added to a mixed powder, and water and PTFE are added and kneaded to make an active material paste. Various zinc electrodes were produced by pressing on both sides of the mesh.

このようにして作った亜鉛極を陰極とし、これに公知の
焼結式ニッケル極を陽極として組合せ、種々の密閉型ニ
ッケル−亜鉛蓄電池を構成した。尚、電解液には、酸化
亜鉛を飽和させた30重量%KOH水溶液を用いた。またセ
パレータには、微孔性フィルムと含液材である不織布と
を多層にして配したものを使用した。更に、アルカリ電
解液の注液量は、これらセパレータと陽極両極が均一に
濡れ、且つ遊離の電解液が実質的に存在しない程度とし
た。
The zinc electrode thus produced was used as a cathode, and a known sintered nickel electrode was combined as an anode to construct various sealed nickel-zinc storage batteries. As the electrolytic solution, a 30 wt% KOH aqueous solution saturated with zinc oxide was used. As the separator, a multi-layered structure of a microporous film and a liquid-containing non-woven fabric was used. Further, the amount of the alkaline electrolyte injected was such that the separator and both anodes were uniformly wet and there was substantially no free electrolyte.

以上のニッケル−亜鉛蓄電池について、0℃の環境温度
で、4時間率の電流で5時間充電した後に同じく4時間
率の電流で電池電圧が1.3Vになるまで放電するという一
連の充放電サイクルを繰返して各電池のサイクル寿命
(回)を測定した。ここで、放電時において1.3Vの電池
電圧を3時間維持できなくなった時点、つまり電池放電
容量が公称容量(初期容量)の75%以下となったところ
を電池サイクル寿命とした。結果は第1図に示した通り
である。この図において点線は、亜鉛極中に用いる酸化
亜鉛粉末として、0.1〜0.5μmの粒径のものが100重量
%である酸化亜鉛粉末を使用した他は同様なニッケル−
亜鉛蓄電池のサイクル寿命である。同図より、上記のよ
うに粒径の大きな酸化亜鉛粉末を混合して用いることで
低温時における電池のサイクル寿命が改善されることは
明らかである。この理由は、粒径の大きな酸化亜鉛粉末
の混合により亜鉛極におけるイオンの経路が太くなり、
これによって低温時の電導度の低下の度合が緩和される
ためと考えられる。また、上記で混合する酸化亜鉛粉末
の粒径を10μmより大きくした場合には低温特性の向上
はあまり見られなくなる。これは粒径が大きくなりすぎ
るとその粒径の大きな酸化亜鉛粉末の内部が活物質とし
て有効に利用されなくなり、亜鉛極における活物質の利
用率の低下を招くようになることが原因と考えられる。
よって、上記混合する酸化亜鉛粉末としては、0.5μm
を越えて10μm以下の範囲に粒径のピークを有するもの
がよい。
Regarding the above nickel-zinc storage battery, a series of charge and discharge cycles of charging at a temperature of 0 ° C for 5 hours at a current of 4 hours and then discharging at a current of 4 hours until the battery voltage becomes 1.3V. The cycle life (times) of each battery was measured repeatedly. Here, the battery cycle life was defined as the time when the battery voltage of 1.3 V could not be maintained for 3 hours during discharging, that is, the battery discharge capacity was 75% or less of the nominal capacity (initial capacity). The result is as shown in FIG. In this figure, the dotted line is similar to nickel-based zinc oxide powder used in the zinc electrode except that zinc oxide powder having a particle size of 0.1 to 0.5 μm is 100% by weight.
It is the cycle life of a zinc storage battery. From the figure, it is clear that the cycle life of the battery at low temperature is improved by mixing and using the zinc oxide powder having a large particle size as described above. The reason for this is that by mixing zinc oxide powder with a large particle size, the ion path at the zinc electrode becomes thicker,
It is considered that this reduces the degree of decrease in conductivity at low temperatures. Further, when the particle diameter of the zinc oxide powder mixed in the above is made larger than 10 μm, the improvement of the low temperature characteristics is hardly seen. It is considered that this is because when the particle size becomes too large, the inside of the zinc oxide powder having a large particle size is not effectively used as an active material, which leads to a decrease in the utilization rate of the active material at the zinc electrode. .
Therefore, the zinc oxide powder to be mixed is 0.5 μm
It is preferable that the particle size has a peak of particle size in the range of 10 μm or less.

実施例2. 次に、上記第1,第2の酸化亜鉛粉末の好適な混合割合に
ついての検討をするため、第1の酸化亜鉛粉末(粒径0.
1〜0.5μm)に、0.5μmを越えて10μm以下の範囲に
ブロードなピークをもつ第2の酸化亜鉛粉末を種々な割
合で混合した亜鉛極を種々作り、これらの亜鉛極を用い
て実施例1と同様にニッケル−亜鉛蓄電池を構成して、
上記実施例1と同様なサイクル条件で環境温度0℃にお
けるサイクル寿命をそれぞれ調べた。結果は第2図の通
りで、この実験結果より、第2の酸化亜鉛粉末を20〜80
重量%混合して用いた場合のサイクル特性が格段に優れ
ていることがわかり、亜鉛極に用いる酸化亜鉛粉末とし
て0.1〜0.5μmの範囲に粒径のピークを有する第1の酸
化亜鉛粉末20〜80重量%と、0.5μmを越えて10μm以
下の範囲に粒径のピークを有する第2の酸化亜鉛粉末80
〜20重量%との混合粉末を用いた時に低温特性の著しい
向上が図れることがわかった。
Example 2. Next, in order to examine a suitable mixing ratio of the first and second zinc oxide powders, the first zinc oxide powder (particle size: 0.
1 to 0.5 μm), various zinc electrodes were prepared by mixing the second zinc oxide powder having a broad peak in the range of more than 0.5 μm and 10 μm or less at various ratios, and the zinc electrodes were used in Examples. A nickel-zinc storage battery is constructed in the same manner as 1.
The cycle life at an environmental temperature of 0 ° C. was examined under the same cycle conditions as in Example 1 above. The results are shown in Fig. 2. From this experimental result, the second zinc oxide powder was
It was found that the cycle characteristics when used as a mixture by weight% were remarkably excellent, and the first zinc oxide powder having a particle size peak in the range of 0.1 to 0.5 μm as the zinc oxide powder used for the zinc electrode 20 to 80% by weight, and a second zinc oxide powder having a particle size peak in the range of more than 0.5 μm and 10 μm or less 80
It was found that the low temperature characteristics can be remarkably improved when a mixed powder with up to 20% by weight is used.

第2の酸化亜鉛粉末の混合量が80重量%より大きくなる
と低温特性が低下するのは、粒径の大きな粉末はその内
部が充放電反応に有効利用されにくく、粒径の大きな粉
末の割合が大きすぎると亜鉛極における活物質利用率の
低下が著しくなるためと思われる。また、混合量が20重
量%より少ないと、亜鉛極中における電解液の通路の大
きさが差程大きくならず、イオン電導度の向上の効果の
度合が小さくなることに依ると考えられる。
When the mixing amount of the second zinc oxide powder is more than 80% by weight, the low temperature characteristics are deteriorated because it is difficult to effectively use the inside of a powder having a large particle size for charge / discharge reaction and the ratio of the powder having a large particle size is If it is too large, it is considered that the utilization factor of the active material in the zinc electrode is significantly reduced. If the mixing amount is less than 20% by weight, it is considered that the size of the electrolyte passage in the zinc electrode does not become so large that the effect of improving the ionic conductivity becomes small.

〈発明の効果〉 以上のように構成されるこの発明の亜鉛極によれば、亜
鉛極中におけるイオン電導度が高められ低温使用時にお
ける電導度の低下が緩和される結果、この亜鉛極を用い
た電池の低温特性向上を図ることができる。
<Effects of the Invention> According to the zinc electrode of the present invention configured as described above, as a result of increasing the ionic conductivity in the zinc electrode and alleviating the decrease in conductivity at low temperature use, this zinc electrode is used. It is possible to improve the low temperature characteristics of the existing battery.

【図面の簡単な説明】[Brief description of drawings]

第1図は亜鉛極に用いる第2の酸化亜鉛粉末のピーク粒
径と電池のサイクル寿命との関係を示したグラフ、第2
図は亜鉛極に用いる第2の酸化亜鉛粉末の混合量と電池
サイクル寿命との関係を示したグラフである。
FIG. 1 is a graph showing the relationship between the peak particle size of the second zinc oxide powder used for the zinc electrode and the cycle life of the battery.
The figure is a graph showing the relationship between the mixing amount of the second zinc oxide powder used for the zinc electrode and the battery cycle life.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】0.1〜0.5μmの範囲に粒径のピークを有す
る第1の酸化亜鉛粉末20〜80重量%と、0.5μmを越え
て10μm以下の範囲に粒径のピークを有する第2の酸化
亜鉛粉末80〜20重量%とを混合してなる酸化亜鉛粉末を
用いたことを特徴とする亜鉛極。
1. A first zinc oxide powder having a particle size peak in the range of 0.1 to 0.5 μm, 20 to 80% by weight, and a second zinc oxide powder having a particle size peak in the range of more than 0.5 μm and 10 μm or less. A zinc electrode characterized by using zinc oxide powder formed by mixing 80 to 20% by weight of zinc oxide powder.
JP61173192A 1986-07-23 1986-07-23 Zinc pole Expired - Lifetime JPH0719602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61173192A JPH0719602B2 (en) 1986-07-23 1986-07-23 Zinc pole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61173192A JPH0719602B2 (en) 1986-07-23 1986-07-23 Zinc pole

Publications (2)

Publication Number Publication Date
JPS6329447A JPS6329447A (en) 1988-02-08
JPH0719602B2 true JPH0719602B2 (en) 1995-03-06

Family

ID=15955798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61173192A Expired - Lifetime JPH0719602B2 (en) 1986-07-23 1986-07-23 Zinc pole

Country Status (1)

Country Link
JP (1) JPH0719602B2 (en)

Also Published As

Publication number Publication date
JPS6329447A (en) 1988-02-08

Similar Documents

Publication Publication Date Title
JP2925604B2 (en) Processing method of hydrogen storage alloy for alkaline secondary battery
JP3411365B2 (en) Negative electrode active material containing Ga as main component and secondary battery using the same
JP3788484B2 (en) Nickel electrode for alkaline storage battery
JPH0719602B2 (en) Zinc pole
JP3788485B2 (en) Alkaline storage battery
JPS5931177B2 (en) Zinc electrode for alkaline storage battery
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
US3600226A (en) Method for making cadmium electrodes for nickel-cadmium cells
JPS63126164A (en) Alkali zinc storage battery
JPS63158749A (en) Zinc electrode for alkaline storage battery
JP2762730B2 (en) Nickel-cadmium storage battery
JPH079807B2 (en) Zinc electrode for alkaline storage battery
JP2589750B2 (en) Nickel cadmium storage battery
JPS5971265A (en) Alkali zinc lead storage battery
JP2846673B2 (en) Method for producing zinc electrode for alkaline storage battery
JP2568967B2 (en) Manufacturing method of sealed nickel-hydrogen secondary battery
JPH071695B2 (en) Alkaline zinc storage battery
JPS63124367A (en) Alkaline zinc storage battery
JPH0665067B2 (en) Nickel zinc battery
JPS63119157A (en) Zinc electrode
JPS617566A (en) Manufacture of paste type cadmium negative electrode
JPH0544142B2 (en)
JPS58137966A (en) Zinc electrode
JPH0719617B2 (en) Alkaline zinc storage battery
JPS6326957A (en) Alkaline zinc storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term