JPS63119157A - Zinc electrode - Google Patents

Zinc electrode

Info

Publication number
JPS63119157A
JPS63119157A JP26344786A JP26344786A JPS63119157A JP S63119157 A JPS63119157 A JP S63119157A JP 26344786 A JP26344786 A JP 26344786A JP 26344786 A JP26344786 A JP 26344786A JP S63119157 A JPS63119157 A JP S63119157A
Authority
JP
Japan
Prior art keywords
zinc
oxide powder
zinc oxide
electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26344786A
Other languages
Japanese (ja)
Inventor
Sanehiro Furukawa
古川 修弘
Kenji Inoue
健次 井上
Mitsuzo Nogami
光造 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP26344786A priority Critical patent/JPS63119157A/en
Publication of JPS63119157A publication Critical patent/JPS63119157A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture
    • H01M4/12Processes of manufacture of consumable metal or alloy electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids

Abstract

PURPOSE:To improve the highly efficient discharge property of a cell, by using a zinc oxide powder mixing 20 to 80 wt% of the first zinc oxide powder and 80 to 20 wt% of the second zinc oxide powder which have specified particle diameters respectively. CONSTITUTION:A zinc oxide powder is made by mixing 20 to 80 wt% of a zinc oxide powder with the particle diameter 0.1 to 0.5mum, and 80 to 20 wt% of a zinc oxide powder with particle diameter less than 0.1 mum. To the 85 wt% of such a zinc oxide powder, 10 wt% of metallic zinc powder and 5 wt% of cadmium oxide powder are added, and moreover, water and PTFE are added. They are mixed and kneaded to make an active substance paste. The active substance paste is pressed to attach or the like to the both sides of a nickel mesh to produce a zinc electrode. In such a way, the highly efficient discharge property of a cell can be improved.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、ニッケルー亜鉛蓄電池や銀−亜鉛蓄電池な
どのアルカリ亜鉛蓄電池に用いられる亜鉛極に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a zinc electrode used in an alkaline zinc storage battery such as a nickel-zinc storage battery or a silver-zinc storage battery.

〈従来の技術〉 上記亜鉛極で活物質として用いられている亜鉛は、エネ
ルキー密度が高く、安価で且つ無公害である等の特長が
あり、従って、この亜鉛極を陰極とするアルカリ亜鉛蓄
電池は高エネルギー密度電池としての期待が大きい。と
ころが、このアルカリ亜鉛蓄電池は長期のサイクル寿命
が得にくいという欠点があり、サイクル寿命を改善して
実用化を図るために多くの研究がなされている。アルカ
リ亜鉛蓄電池のサイクル寿命がこのように短いのは、陰
極として用いる亜鉛極がアルカリ電解液に可溶な電極で
あることに起因している。即ち、この亜鉛極においては
、放電時に亜鉛がアルカリ電解液中に溶出する一方、こ
の溶出により生じた亜鉛酸イオンが充電時には亜鉛極表
面に樹枝状に電析する。そして、充放電の繰返しによっ
てこの電析亜鉛が生長し、セパレータを貫通して対極に
達して内部短絡を引き起こしてしまい、またこれによっ
て亜鉛極の形状変化が大きくなる結果、早期サイクルで
電池特性が劣化し、実用上満足しうるサイクル寿命が得
られないのである。
<Prior art> Zinc, which is used as an active material in the above zinc electrode, has the characteristics of high energy density, low cost, and non-pollution. Therefore, an alkaline zinc storage battery using this zinc electrode as a cathode is It has high expectations as a high energy density battery. However, this alkaline zinc storage battery has the disadvantage that it is difficult to obtain a long cycle life, and many studies have been conducted to improve the cycle life and put it into practical use. This short cycle life of alkaline zinc storage batteries is due to the fact that the zinc electrode used as the cathode is soluble in an alkaline electrolyte. That is, in this zinc electrode, zinc is eluted into the alkaline electrolyte during discharge, while zincate ions generated by this elution are deposited in a dendritic form on the surface of the zinc electrode during charging. Through repeated charging and discharging, this deposited zinc grows, penetrates the separator, and reaches the counter electrode, causing an internal short circuit. This also causes a large change in the shape of the zinc electrode, resulting in deterioration of battery characteristics in early cycles. This results in deterioration, and a practically satisfactory cycle life cannot be obtained.

この欠点に対処し、アルカリ亜鉛蓄電池のサイクルか命
を少しでも改善するため、電池内のアルカリ電解液量を
実質的に遊離のものがないように規制する技術が従来よ
り提案されている。
In order to address this drawback and improve the cycle life of alkaline zinc storage batteries, techniques have been proposed for regulating the amount of alkaline electrolyte in the battery so that there is virtually no free electrolyte.

このように電解液量を規制することで、上記放電生成物
である亜鉛酸イオンは拡散することなく亜鉛極近傍にと
どまるようになり、次の充電時には電析亜鉛が元の位置
に電着し易くなる。
By regulating the amount of electrolyte in this way, the zincate ions, which are the discharge products mentioned above, do not diffuse and remain near the zinc pole, and the next time the battery is charged, the deposited zinc is deposited at its original position. It becomes easier.

この結果、亜鉛の樹枝状電析の生長が抑えられ、また亜
鉛極の変形が緩和されて亜鉛極並びに電池のサイクル寿
命が改善される。
As a result, the growth of zinc dendritic deposits is suppressed, and the deformation of the zinc electrode is alleviated, thereby improving the cycle life of the zinc electrode and battery.

〈発明が解決しようとする問題点〉 しかしながら、このように電解液量を制限して電池を構
成した場合、電池の高率放電時に十分な極板容量が得ら
れないという問題がある。
<Problems to be Solved by the Invention> However, when a battery is constructed by limiting the amount of electrolyte in this manner, there is a problem that sufficient plate capacity cannot be obtained during high rate discharge of the battery.

これは、電池内の電解液量を上記のように制限した結果
、電池放電時における亜鉛極での電極反応(7n+20
H−→Zn (Of−1>2 +20−)に必要な水酸
イオンOH−の供給が十分法やかになされず、このため
、高率放電時のように極板の電流密度が大きく、極板の
単位面積当りの水酸イオンの必要量が多くなる場合には
上記電極反応が円滑に行なわれなくなってしまうことに
起因している。そして、このような極板容量の低下によ
って高率放電時の特性が大きく劣化し、サイクル寿命の
低下を招いてしまう。
This is due to the electrode reaction (7n+20
The hydroxide ion OH- required for H-→Zn (Of-1>2 +20-) is not supplied properly, and as a result, the current density of the electrode plate is large as in the case of high-rate discharge. This is due to the fact that when the required amount of hydroxide ions per unit area of the electrode plate increases, the electrode reaction cannot be carried out smoothly. Such a decrease in plate capacity significantly deteriorates the characteristics during high rate discharge, leading to a decrease in cycle life.

〈問題点を解決するための手段〉 本発明者は、上記の問題点を解決するように検討した所
、亜鉛極の亜鉛活物質に用いる酸化亜鉛粉末の組成を次
のように規定した時には所期の目的を達成できることを
知得してこの発明を完成した。
<Means for Solving the Problems> The inventor of the present invention has studied how to solve the above problems, and found that when the composition of zinc oxide powder used as the zinc active material of the zinc electrode is specified as follows, This invention was completed after realizing that it was possible to achieve the original purpose of the invention.

即ち、この発明の亜鉛極は、0.1〜0.5μmの粒径
を有する第1の酸化亜鉛粉末20〜80重量%と、0.
1μm以下の粒径を有する第2の酸化亜鉛粉末80〜2
0重量%とを混合してなる酸化亜鉛粉末を用いたことを
要旨とする。
That is, the zinc electrode of the present invention contains 20 to 80% by weight of the first zinc oxide powder having a particle size of 0.1 to 0.5 μm, and 0.1 to 80% by weight of the first zinc oxide powder having a particle size of 0.1 to 0.5 μm.
Second zinc oxide powder 80-2 having a particle size of 1 μm or less
The gist is that a zinc oxide powder mixed with 0% by weight was used.

〈作 用〉 亜鉛極の亜鉛活物質に使用する酸化亜鉛粉末としては、
従来、粒径が0.1〜0.5μmの範囲のものが用いら
れている。本発明では従来用いられていたこの範囲の粒
径の酸化亜鉛粉末に、粒径0.1μm以下の酸化亜鉛粉
末を混合するようにしたものである。そして、このよう
な微小粒子を含有させることで、亜鉛極中の比表面積が
増大し、放電時における極板の電流密度が小さくなる結
果、高率放電特性が改善される。
<Function> Zinc oxide powder used as the zinc active material of zinc electrodes is
Conventionally, particles having a particle size in the range of 0.1 to 0.5 μm have been used. In the present invention, zinc oxide powder having a particle size of 0.1 μm or less is mixed with the conventionally used zinc oxide powder having a particle size within this range. By including such fine particles, the specific surface area of the zinc electrode increases, and the current density of the electrode plate during discharge decreases, resulting in improved high rate discharge characteristics.

〈実施例〉 0.1〜0.5μmの粒径の酸化亜鉛粉末に、粒径が0
.1μm以下の酸化亜鉛粉末を種々な割合で混合して種
々の酸化亜鉛粉末を作った。この酸化亜鉛粉末85重量
%に金属亜鉛粉末10重量%並びに酸化カドミウム粉末
5重量%を加えてなる混合粉末に、水とP丁FEを添加
し混練して活物質ペーストを作り、この活物質ペースト
をニッケルメツシュの両面に圧着するなどして種々の亜
鉛極を作製した。
<Example> Zinc oxide powder with a particle size of 0.1 to 0.5 μm was
.. Various zinc oxide powders were prepared by mixing zinc oxide powders of 1 μm or less in various proportions. A mixed powder made by adding 10% by weight of metal zinc powder and 5% by weight of cadmium oxide powder to 85% by weight of this zinc oxide powder is mixed with water and PTFE to make an active material paste. Various zinc electrodes were made by crimping the nickel mesh onto both sides of a nickel mesh.

このようにして作った亜鉛極を陰極とし、これに公知の
焼結式ニッケル極を陽極として組合せ、種々の密閉型ニ
ッケルー亜鉛蓄電池を構成した。尚、電解液には、酸化
亜鉛を飽和させた30重量%KOH水溶液を用いた。ま
たセパレータには、微孔性フィルムに含液材として不織
布を重ね合わせた多層構造のものを使用した。
The zinc electrode thus produced was used as a cathode, and a known sintered nickel electrode was combined with this as an anode to construct various sealed nickel-zinc storage batteries. Note that a 30% by weight KOH aqueous solution saturated with zinc oxide was used as the electrolytic solution. Furthermore, the separator used had a multilayer structure in which a nonwoven fabric as a liquid-containing material was superimposed on a microporous film.

更に、アルカリ電解液の注液量は、これらセパレータと
陽陰極が均一に濡れ、且つ遊離の電解液が実質的に存在
しない程度とした。
Further, the amount of alkaline electrolyte injected was such that the separator and the anode and cathode were uniformly wetted, and there was substantially no free electrolyte.

これらのニッケルー亜鉛蓄電池について、4時間率の電
流で5時間充電した後に1時間率の電流で電池電圧が1
.3Vになるまで放電するという一連の充放電サイクル
を繰返して各電池のサイクル寿命(回)を測定した。尚
、放電時において1.3Vの電池電圧を42分間維持で
きなくなった時点、つまり電池放電容量が公称容量(初
期容@)の70%以下となったところを電池サイクル寿
命とした。
For these nickel-zinc storage batteries, after 5 hours of charging at a 4-hour rate of current, the battery voltage drops to 1 at a 1-hour rate of current.
.. The cycle life (times) of each battery was measured by repeating a series of charging and discharging cycles in which the battery was discharged to 3V. The battery cycle life was defined as the point at which the battery voltage of 1.3 V could not be maintained for 42 minutes during discharge, that is, the point at which the battery discharge capacity became 70% or less of the nominal capacity (initial capacity).

縦軸にサイクル寿命(回)を、また横軸には粒径が0.
1μm以下の酸化亜鉛の割合(重量%)をとって上記結
果をプロットした所、添付図面に示したようなグラフを
得た。このグラフより、微小粒子からなるこの酸化亜鉛
粉末を20〜8014%混合して用いた場合のザイクル
特性が格段に優れていることがわかる。これにより、亜
鉛極に用いる酸化亜鉛粉末として、0.1〜0.5μm
の粒径の酸化亜鉛粉末20〜80重量%と0.1μm以
下の粒径の酸化亜鉛粉末80〜20重量%との混合粉末
を用いた時に高率放電時におけるザイクル特性の著しい
向上が図れることがわかった。
The vertical axis shows the cycle life (times), and the horizontal axis shows the particle size of 0.
When the above results were plotted based on the ratio (wt%) of zinc oxide having a diameter of 1 μm or less, a graph as shown in the attached drawing was obtained. From this graph, it can be seen that the cycle characteristics are significantly superior when this zinc oxide powder consisting of fine particles is used in a mixture of 20 to 8014%. As a result, zinc oxide powder used for zinc electrodes has a particle size of 0.1 to 0.5 μm.
When using a mixed powder of 20 to 80% by weight of zinc oxide powder with a particle size of I understand.

上記の割合で混合した酸化亜鉛粉末を用いた場合の特性
がよいのは、前述の如く、微小粉末を混合することによ
って亜鉛極の比表面積が増大し、これによって極板の電
流密度が小さくなったことに依る。そして、この微小粉
末の混合量が80重量%より大きくなると特性が低下す
るのは、このような微小粉末は通常凝集状態で極板中に
存在しており、この凝集した粒子間には電解液が浸透し
にくいことから、微小粉末をあまりに多く使用すると酸
化亜鉛粉末における電解液の濡れが悪くなり、この結果
、亜鉛極において活物質の利用率が低下する度合が著し
くなるためと思われる。また、混合量が20重量%より
少ない場合の特性が悪いのは、上記の比表面積の増大に
よる電流密度の減少の程度が不十分であることに依ると
考えられる。
The reason why the zinc oxide powder mixed in the above ratio has good properties is that, as mentioned above, by mixing fine powder, the specific surface area of the zinc electrode increases, which reduces the current density of the electrode plate. It depends. When the amount of this fine powder mixed exceeds 80% by weight, the characteristics deteriorate because such fine powder is usually present in the electrode plate in an agglomerated state, and there is an electrolyte between these agglomerated particles. This is thought to be due to the fact that it is difficult to penetrate the zinc oxide powder, so if too much fine powder is used, the wetting of the electrolyte to the zinc oxide powder becomes poor, and as a result, the degree of decrease in the utilization rate of the active material in the zinc electrode becomes significant. Furthermore, the reason why the properties are poor when the amount of the mixture is less than 20% by weight is considered to be due to the insufficient reduction in current density due to the increase in the specific surface area.

〈発明の効果〉 以上のように構成されるこの発明の亜鉛極によれば、亜
鉛極にお(プる比表面積の増大によって極板の電流密度
が小さくなる結果、この亜鉛極並びにこれを用いた電池
の高率放電特性向上を図ることができる。
<Effects of the Invention> According to the zinc electrode of the present invention constructed as described above, the current density of the electrode plate decreases due to the increase in the specific surface area of the zinc electrode. It is possible to improve the high rate discharge characteristics of a battery that has been used for a long time.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は亜鉛極に用いる粒径が0.1μm以下の酸化
亜鉛粉末の割合と電池ザイクル寿命との関係を示したグ
ラフである。
The attached drawing is a graph showing the relationship between the proportion of zinc oxide powder with a particle size of 0.1 μm or less used in the zinc electrode and battery cycle life.

Claims (1)

【特許請求の範囲】[Claims] 1.0.1〜0.5μmの粒径を有する第1の酸化亜鉛
粉末20〜80重量%と、0.1μm以下の粒径を有す
る第2の酸化亜鉛粉末80〜 20重量%とを混合してなる酸化亜鉛粉末を用いたこと
を特徴とする亜鉛極。
1. Mixing 20-80% by weight of a first zinc oxide powder having a particle size of 0.1-0.5 μm and 80-20% by weight of a second zinc oxide powder having a particle size of 0.1 μm or less. A zinc electrode characterized by using zinc oxide powder made of
JP26344786A 1986-11-05 1986-11-05 Zinc electrode Pending JPS63119157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26344786A JPS63119157A (en) 1986-11-05 1986-11-05 Zinc electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26344786A JPS63119157A (en) 1986-11-05 1986-11-05 Zinc electrode

Publications (1)

Publication Number Publication Date
JPS63119157A true JPS63119157A (en) 1988-05-23

Family

ID=17389636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26344786A Pending JPS63119157A (en) 1986-11-05 1986-11-05 Zinc electrode

Country Status (1)

Country Link
JP (1) JPS63119157A (en)

Similar Documents

Publication Publication Date Title
JPS6012742B2 (en) Anode for alkaline storage batteries containing nickel hydroxide as an active material and method for producing the same
JPH09237630A (en) Active material and positive electrode for alkali storage battery
US3816178A (en) Alkaline storage battery having zinc electrode
JP3788484B2 (en) Nickel electrode for alkaline storage battery
JPS63119157A (en) Zinc electrode
JP3788485B2 (en) Alkaline storage battery
EP0440015B1 (en) Hydrogen-occlusion alloy electrode
JPH06260166A (en) Nickel electrode for alkaline storage battery
JPS6149374A (en) Nickel positive electrode for alkali cell
JP2538303B2 (en) Zinc electrode for alkaline storage battery
JP3249398B2 (en) Non-sintered nickel electrode for alkaline storage batteries
JPH01187768A (en) Nickel electrode for alkali battery
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JP2562669B2 (en) Alkaline storage battery
JPH08321302A (en) Hydrogen storage electrode
JP2530281B2 (en) Alkaline storage battery
JPS63158749A (en) Zinc electrode for alkaline storage battery
JPH1021902A (en) Manufacture of paste type nickel electrode for alkaline secondary battery
JP3063159B2 (en) Nickel electrode for alkaline battery and battery using the same
JPH10172559A (en) Nickel active material for alkaline storage battery and manufacture thereof
JPH09147904A (en) Paste type nickel electrode for alkaline storage battery
JP3233013B2 (en) Nickel electrode for alkaline storage battery
JPH0837022A (en) Alkaline storage battery
JP2846673B2 (en) Method for producing zinc electrode for alkaline storage battery