JPS62124255A - Production of permanent magnet - Google Patents

Production of permanent magnet

Info

Publication number
JPS62124255A
JPS62124255A JP26153585A JP26153585A JPS62124255A JP S62124255 A JPS62124255 A JP S62124255A JP 26153585 A JP26153585 A JP 26153585A JP 26153585 A JP26153585 A JP 26153585A JP S62124255 A JPS62124255 A JP S62124255A
Authority
JP
Japan
Prior art keywords
temperature
heat treatment
coercive force
sintering
cooling rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26153585A
Other languages
Japanese (ja)
Inventor
Tetsuto Yoneyama
米山 哲人
Shinichi Yamashita
信一 山下
Kazuo Sato
和生 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP26153585A priority Critical patent/JPS62124255A/en
Publication of JPS62124255A publication Critical patent/JPS62124255A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To obtain a permanent magnet having stable coercive force, stable residual magnetic flux density and uniform characteristics by sintering alloy powder contg. a rare earth element, Fe and B as the principal components, heat treating the sintering body at a specified temp. and cooling it an a prescribed cooling rate. CONSTITUTION:Alloy powder consisting of 25-44wt% one or more kinds of rare earth elements including Y, 0.5-5wt% B and the balance Fe with impuri ties is sintered at 900-1,200 deg.C. The sintered body is heated treated at 500-700 deg.C and cooled at 4-<50 deg..C/min cooling rate to obtain the desired magnet. The alloy powder may further contain 0.02-15wt% one or more among Al, Nb, Mn, Ni, Ta, Mo, W, Ge, V, Cr, Co and Bi.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は希土類(R)−鉄一一ロン系焼結永久磁石の製
造方法に関するものである。さらに詳しく述べるならば
、溶解法あるいは還元拡散法によシ所望の組成の合金を
作成し、微粉に加工した後、圧縮成型を行ない、次に9
00℃〜1200℃の温度で焼結して得られる希土類−
鉄−メロンを主成分とする永久磁石の製造方法の改良に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a rare earth (R)-iron-based sintered permanent magnet. In more detail, an alloy with a desired composition is created by a melting method or a reduction diffusion method, processed into a fine powder, and then compression molded.
Rare earths obtained by sintering at temperatures between 00°C and 1200°C.
The present invention relates to an improvement in a method for producing a permanent magnet containing iron-melon as a main component.

〔従来の技術〕[Conventional technology]

Ndを主成分とする希土類元素、鉄およびBからなる永
久磁石はその飽和磁化がSmCo系永久磁石より高く、
資源の面でもNdおよび鉄はSm 、 Coよシ有利で
ある為SmCo系永久磁石に替わる高性能磁石として注
目されている。
Permanent magnets made of rare earth elements mainly composed of Nd, iron, and B have higher saturation magnetization than SmCo-based permanent magnets.
In terms of resources, Nd and iron are more advantageous than Sm and Co, so they are attracting attention as high-performance magnets that can replace SmCo-based permanent magnets.

特開昭59−46008号公報忙号公報−30原子チの
R(但し、Rは希土類元素の少なくとも1種)、2〜2
8原子チのB1及び残部Feからなる磁気異方性焼結体
が提案されている。この公報で公開された発明は液体急
冷法によらず焼結法によって任意の形状の永久磁石体を
製造可能にすることをひとつの意図としている。また、
焼結体成分中のRに関しては、Nd単独、Pr単独、N
dとPrの組合せ、NdとCeの組合せ、SmとPr。
JP-A-59-46008 Publication - 30 atoms of R (wherein R is at least one rare earth element), 2 to 2
A magnetically anisotropic sintered body consisting of 8 atoms of B1 and the remainder Fe has been proposed. One of the intentions of the invention disclosed in this publication is to make it possible to manufacture a permanent magnet body of any shape by a sintering method rather than by a liquid quenching method. Also,
Regarding R in the sintered body components, Nd alone, Pr alone, N
A combination of d and Pr, a combination of Nd and Ce, and a combination of Sm and Pr.

組合せ、PrとYの組合せ、Nd 、 PrとLaの組
合せ、Tb単独、Dy単独、Ho単独、ErとTbの組
合せ等についての焼結体の磁気特性が示されている。
The magnetic properties of the sintered body are shown for combinations, combinations of Pr and Y, Nd, combinations of Pr and La, Tb alone, Dy alone, Ho alone, Er and Tb combinations, etc.

特開昭59−64733号によると、R8〜30at%
(但し、RはYを含む希土類元素の少なくとも1種)、
B2〜28at%、Co50%以下、残部F・よシなる
焼結体永久磁石において、Coはキューリ点を増大させ
また磁気特性(Br )の温度依存性を少なくすること
が示されている。
According to JP-A No. 59-64733, R8 to 30 at%
(However, R is at least one rare earth element including Y),
It has been shown that in a sintered permanent magnet containing 2 to 28 at% B, 50% or less Co, and the balance F, Co increases the Curie point and reduces the temperature dependence of the magnetic properties (Br).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

焼結永久磁石においては、焼結後ある程度の保磁力IH
cが得られるが、永久磁石の組成により定められかつ永
久磁石が持ち得る最大の保磁力IHcを引き出す為に、
焼結後に熱処理を行なう必要がある。この熱処理の温度
の中で最も保磁力iHcを増加させる温度は500〜7
00℃である。熱処理温度と焼結温度との差が大きい為
に、通常は焼結後、室温付近に冷却した後に再び熱処理
温度まで昇温し、30分〜5時間保持する。あるいは焼
結後、熱処理温度まで降温し、次にその温度で30分〜
5時間保持しても同等の効果が得られるが、いずれにし
ても熱処理温度で保持するか、あるいは熱処理温度近傍
で徐冷する必要がある。特に焼結後熱処理温度まで冷却
し次いで保持する方法では、焼結温度と熱処理温度との
間にある保磁力IHc特性に有害な温度範囲徐冷を避け
る必要がある。
In sintered permanent magnets, a certain degree of coercive force IH after sintering
c is obtained, but in order to bring out the maximum coercive force IHc that is determined by the composition of the permanent magnet and that the permanent magnet can have,
It is necessary to perform heat treatment after sintering. Among the temperatures of this heat treatment, the temperature that increases the coercive force iHc the most is 500 to 7
It is 00℃. Since there is a large difference between the heat treatment temperature and the sintering temperature, usually after sintering, the material is cooled to around room temperature, then heated again to the heat treatment temperature, and held for 30 minutes to 5 hours. Alternatively, after sintering, lower the temperature to the heat treatment temperature, then keep it at that temperature for 30 minutes ~
The same effect can be obtained even if the temperature is maintained for 5 hours, but in any case, it is necessary to maintain the temperature at the heat treatment temperature or to slowly cool it near the heat treatment temperature. Particularly in the method of cooling to the post-sintering heat treatment temperature and then holding, it is necessary to avoid slow cooling in a temperature range between the sintering temperature and the heat treatment temperature that is detrimental to the coercive force IHc characteristics.

保磁力1Hcを最大にする熱処理温度は、組成、種々の
添加元素の種類や量、及び工程中から入る不純物元素の
種類や量によって上記温度範囲中で変化する。さらに組
成、添加元素、不純物元素の異なる個々の磁石について
は、その保磁力IHcの最大値が得られる熱処理温度の
幅は狭い。よって、保磁力IHcのバラツキの少ない多
量の磁石を製造する為には、熱処理温度を変化させる要
因となる上記の要素を厳密に一定にするか、あるいは上
記要因に応じて熱処理温度を変化させて最大の保磁力I
Hcを得る温度を選ぶ必要がある。
The heat treatment temperature that maximizes the coercive force 1Hc varies within the above temperature range depending on the composition, the types and amounts of various additive elements, and the types and amounts of impurity elements introduced during the process. Furthermore, for individual magnets with different compositions, additive elements, and impurity elements, the range of heat treatment temperatures at which the maximum value of the coercive force IHc is obtained is narrow. Therefore, in order to manufacture large quantities of magnets with little variation in coercive force IHc, it is necessary to keep the above factors that cause changes in the heat treatment temperature strictly constant, or to vary the heat treatment temperature according to the above factors. maximum coercive force I
It is necessary to select a temperature that will obtain Hc.

保磁力IHcを最大にする熱処理温度は、また焼結後及
び熱処理後の冷却速度によって異なるために、炉内の均
熱条件または磁石内部と表面の冷却スピードの違いが保
磁力IHcのバラツキや不均一の原因となる。
The heat treatment temperature that maximizes the coercive force IHc also differs depending on the cooling rate after sintering and after the heat treatment, so the soaking conditions in the furnace or the difference in cooling speed between the inside and the surface of the magnet may cause variations in the coercive force IHc. Causes uniformity.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、溶解法あるいは還元拡散法等にょシ所望の組
成の合金を作成し、微粉に加工した後圧縮成型を行ない
、次に900〜1200℃の温度で焼結を行なう。ここ
までの工程で、組成および不純物、成型時の粉の配向度
などの要因によって残留磁束密度Br値は決まる。その
後500〜700℃の温度で熱処理を行なうことによっ
て保磁力IHc値のみを向上させる処理を行なう。本発
明は、熱処理温度からの冷却を50℃/ min未満4
4 ℃/n+i n以上の低い速度で行なうことによっ
て安定した保磁力IHcを得る、希土類(R) −Fe
 −B系磁石の製造法に関するものである。急冷を行な
う場合は熱処理温度は、上記500〜700℃の範囲内
で、組成値、不純物量などのほかに焼結後の冷却速度に
よって、最高の保磁力IHcが得られる温度の絶対値が
変化し、さらに時効後の冷却速度が速くなるに従がい、
その温度幅は狭まる。その結果液体N2中あるいは油中
などで急冷を行なった場合、高い保磁力lHcの得られ
る温度幅が非常にせまく、保磁力iHc%性が不安定に
なる。よって、本発明では50℃/mtn未満での徐冷
を行なうことによって安定した保磁力iHcを得る。5
0’C/min未満であっても40℃/minよう遅い
冷却速度では保磁力IHcの絶対値が低くなシ好ましく
ない。
In the present invention, an alloy having a desired composition is prepared by a melting method or a reduction diffusion method, processed into fine powder, compression molded, and then sintered at a temperature of 900 to 1200°C. In the steps up to this point, the residual magnetic flux density Br value is determined by factors such as the composition, impurities, and the degree of orientation of the powder during molding. Thereafter, heat treatment is performed at a temperature of 500 to 700°C to improve only the coercive force IHc value. The present invention allows cooling from the heat treatment temperature to less than 50°C/min4.
Rare earth (R) -Fe obtains a stable coercive force IHc by performing it at a low speed of 4 °C/n + i n or higher.
- This relates to a method of manufacturing a B-based magnet. When performing rapid cooling, the heat treatment temperature is within the above range of 500 to 700°C, and the absolute value of the temperature at which the highest coercive force IHc is obtained varies depending on the composition value, amount of impurities, and the cooling rate after sintering. However, as the cooling rate after aging becomes faster,
The temperature range narrows. As a result, when quenching is performed in liquid N2 or oil, the temperature range in which a high coercive force lHc can be obtained is very narrow, and the coercive force iHc% is unstable. Therefore, in the present invention, a stable coercive force iHc is obtained by performing slow cooling at less than 50° C./mtn. 5
Even if it is less than 0'C/min, a cooling rate as slow as 40C/min is not preferable because the absolute value of the coercive force IHc is low.

永久磁石組成において、Rが25wt%未満テあると保
磁力IHcが5 koe未満であシ、44 wtチを越
えると残留磁束密度Brが9 kG未満とな)高性能磁
束として実用性が無くなるため、本発明ではRの葉を2
5〜44vrtチとした。また、Bが0.5wtチ未満
であると保磁力IHeが5 koe未満であパ5wt%
を越えるとBrが9 kG未満となるため、本発明では
Bの量を0.5〜5 wt%とした。
In the permanent magnet composition, if R is less than 25 wt%, the coercive force IHc is less than 5 koe, and if it exceeds 44 wt%, the residual magnetic flux density Br is less than 9 kG). , in the present invention, the leaves of R are 2
It was set to 5 to 44vrt. Also, if B is less than 0.5 wt%, the coercive force IHe is less than 5 koe and the coercive force IHe is less than 5 wt%.
If the amount exceeds 9 kG, Br becomes less than 9 kG, so in the present invention, the amount of B is set to 0.5 to 5 wt%.

さらに、本発明においては、MとしてA# 、 Nb 
Furthermore, in the present invention, as M, A#, Nb
.

Mn+Ni +Ta+MopW+Ge、V、Ni +C
r r CotBiのうち1種以上の成分を0.02〜
15%含有させることができる。これらの成分は保磁力
iHcの増大や、減磁曲線の角型性の改善などに対して
有効であるが、その含有量が15%を越えるとBr値が
下がシ過ぎて実用的でなくなるため、上限を15%とし
た。含有量が0.02%未満ではMの効果が少ないので
、下限を0.02%とした。これらの成分によ)永久磁
石の保磁力fHeが高められるが、本発明による急冷を
行なうことによって保磁力iHcがさらに高められる。
Mn+Ni +Ta+MopW+Ge, V, Ni +C
r r One or more components of CotBi from 0.02 to
It can be contained in an amount of 15%. These components are effective in increasing the coercive force iHc and improving the squareness of the demagnetization curve, but if their content exceeds 15%, the Br value becomes too low to be practical. Therefore, the upper limit was set at 15%. If the content is less than 0.02%, the effect of M is small, so the lower limit was set at 0.02%. Although the coercive force fHe of the permanent magnet is increased by these components, the coercive force iHc is further increased by performing the rapid cooling according to the present invention.

焼結温度が900℃未満であると密度が十分に得られず
、1200℃を越えると焼結体の変形や融着が顕著にな
るため、本発明では焼結温度を900℃〜1200℃と
した。焼結後は通常の方法で冷却される。焼結体の冷却
終了温度は室温附近もしくは熱処理温度附近の何れでも
よい。また、焼結後に700℃以上焼結温度以下の温度
範囲で徐冷、あるいは温度の保持を行なって、次の熱処
理の効果を高める場合もある。熱処理温度範囲の500
〜700℃は上記組成のR−Fe−B合金の保磁力IH
cを高めるために通常採用されでいる温度である。
If the sintering temperature is less than 900°C, sufficient density cannot be obtained, and if it exceeds 1200°C, deformation and fusion of the sintered body will become noticeable. did. After sintering, it is cooled in the usual manner. The cooling end temperature of the sintered body may be around room temperature or around the heat treatment temperature. Further, after sintering, the effect of the next heat treatment may be enhanced by slowly cooling or maintaining the temperature in a temperature range of 700° C. or higher and lower than the sintering temperature. Heat treatment temperature range of 500
~700℃ is the coercive force IH of the R-Fe-B alloy with the above composition.
This is the temperature normally employed to increase c.

焼結後は50℃/ mtn未満4−Q□ ℃/ mi 
n以上の冷却速度で冷却を行なう。本発明において冷却
速度とは熱処理温度から250℃までの平均冷却速度で
ある。冷却速度が50℃/ min以上であると、保磁
力iHcの冷却速度依存性が極めて高くなう、一方4 
G C/ min未満であると保磁力tHeの絶対値が
低くなる。
After sintering less than 50℃/mtn 4-Q□℃/mi
Cooling is performed at a cooling rate of n or more. In the present invention, the cooling rate is the average cooling rate from the heat treatment temperature to 250°C. When the cooling rate is 50°C/min or more, the dependence of the coercive force iHc on the cooling rate becomes extremely high;
If it is less than GC/min, the absolute value of the coercive force tHe will be low.

組成によシ得られる最大保磁力(iHc )の98%以
上を得ようとする場合の熱処理温度の許容変動は設定値
に対して±15−20℃、熱処理時間の許容変動は設定
値に対して±2時間である。このような変動幅は従来の
永久磁石と比較して大幅に拡大されている。
When trying to obtain 98% or more of the maximum coercive force (iHc) obtained by composition, the permissible variation in heat treatment temperature is ±15-20℃ with respect to the set value, and the permissible variation in heat treatment time is with respect to the set value. The total time is ±2 hours. This range of variation is significantly expanded compared to conventional permanent magnets.

〔作用〕[Effect]

本発明によると、熱処理後の徐冷により永久磁石の保磁
力iHcが著しく安定化する。また焼結までの工程で得
られた残留磁束密度(Br)は徐冷によって低下せずか
つ安定している。
According to the present invention, the coercive force iHc of the permanent magnet is significantly stabilized by slow cooling after heat treatment. Further, the residual magnetic flux density (Br) obtained in the steps up to sintering does not decrease due to slow cooling and remains stable.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例1 31%Nd −1,2%D7−66%Fe−1,0%B
−0,6%Nb −0,2チーAlの合金を高周波溶解
炉を用いて作成し、平均10μmに微粉砕後10 ko
e磁界中で4トン/備2の圧力で圧縮成型した。
Example 1 31%Nd-1,2%D7-66%Fe-1,0%B
An alloy of -0,6% Nb -0,2 Chi Al was created using a high frequency melting furnace, and after pulverization to an average size of 10 μm, 10 ko
Compression molding was carried out at a pressure of 4 tons/2 in a magnetic field.

次に1100℃で焼結し、575〜675℃の各温度で
3時間保持した。その後4,20,50%iユの各冷却
速度で室温まで冷却した。
Next, it was sintered at 1100°C and held at each temperature of 575 to 675°C for 3 hours. Thereafter, the mixture was cooled to room temperature at cooling rates of 4, 20, and 50% i.

磁気的性質、熱処理温度、熱処理後の冷却速度の関係を
第1図に示す。第1図より、熱処理後50℃/ min
以上の冷却速度で冷却すると最適熱処理範囲が著しく狭
まくなることが分かる。これに対して、20℃/ ml
n N 40℃/minの冷却速度の場合は、熱処理温
度の変化に対して保磁力iHeの変化は少ない。
FIG. 1 shows the relationship among magnetic properties, heat treatment temperature, and cooling rate after heat treatment. From Figure 1, 50℃/min after heat treatment
It can be seen that when cooling at a cooling rate above, the optimum heat treatment range becomes significantly narrower. In contrast, 20°C/ml
n N When the cooling rate is 40° C./min, the coercive force iHe changes little with respect to the change in heat treatment temperature.

20℃/ min s 44)−℃/ minの冷却速
度の場合は保磁力iHcは50℃/minのピーク(i
Hc )値よシは低くなっているが、他の磁気特性はそ
ん色がない。
20°C/min s 44) For a cooling rate of -°C/min, the coercive force iHc is at the peak of 50°C/min (i
Although the Hc) value and Hc are low, other magnetic properties are similar.

実施例2 25〜43 %Nd −1,0%T3−残部Feなる組
成の合金を高周波溶解炉を用いて作成し、ボールミルで
有機溶剤中で平均12μmに微粉砕し、乾燥後l Q 
kOe磁界中で4トン/1ytr”の圧力で圧縮成型し
た。次に1040℃〜1180℃で焼結し、550〜6
80℃で1時間保持した後、4,10.50℃、/mi
nの各冷却速度で室温まで冷却した。各冷却速度で冷却
した試料について、最も保磁力iHc値の高がりた熱処
理温度のものを選んで第2図のグラフに示した。
Example 2 An alloy having a composition of 25 to 43% Nd - 1,0% T3 - balance Fe was prepared using a high frequency melting furnace, pulverized to an average size of 12 μm in an organic solvent with a ball mill, and after drying.
It was compression molded in a kOe magnetic field at a pressure of 4 tons/1 ytr". It was then sintered at 1040°C to 1180°C, and
After holding at 80℃ for 1 hour, 4,10.50℃,/mi
It was cooled to room temperature at each cooling rate of n. Among the samples cooled at each cooling rate, the heat treatment temperature at which the coercive force iHc value was the highest was selected and shown in the graph of FIG.

各プロットの熱処理温度は次のとおシであった。The heat treatment temperature for each plot was as follows.

13at%に9wt%)Nd−655℃; l 5 a
t%(≦、3、wt%)Nd−665℃: 17 at
% (37wt%)Nd−670℃:20at%(43
wt% ) Nd −670℃。
13at% to 9wt%) Nd-655°C; l 5 a
t% (≦, 3, wt%) Nd-665°C: 17 at
% (37wt%) Nd-670℃: 20at% (43
wt%) Nd -670°C.

第2図よシ、Nd量が29 wt% (13at% )
以上であると、Nd量にかかわらずほぼ同量保磁力IH
cが高められることが分かる。最大エネルギ積(BH)
maxおよび残留磁束密度Brは冷却速度に依存せず組
成に依存することが分かる。
As shown in Figure 2, the amount of Nd is 29 wt% (13 at%)
If it is above, the coercive force IH is almost the same regardless of the amount of Nd.
It can be seen that c is increased. Maximum energy product (BH)
It can be seen that max and residual magnetic flux density Br do not depend on the cooling rate but depend on the composition.

実施例3 32〜35%Nd、1.1〜1.3チB M(M=Al
、 Nb 。
Example 3 32-35% Nd, 1.1-1.3% B M (M=Al
, Nb.

Ta、Mo、W、Go、V、Ni 、Cr、Co、Bi
 +Mn)残部鉄の合金をアーク溶解を用いて作成し、
婁とう式ゲールミルを用いて有機溶剤中で平均loμm
に微粉砕し、乾燥後10 kOeの磁界中で4 ト:/
/crr?の圧力で圧縮成型した。次に1080℃で2
〜5時間焼結し、500〜700℃の各温度で1時間保
持した後3,5及び20℃/minの2橿の冷却スピー
ドで室温まで冷却した。各冷却速度で、最も保磁力lH
e値の高い熱処理1度のものを選んでその保磁力lHe
値を次表に示した。
Ta, Mo, W, Go, V, Ni, Cr, Co, Bi
+Mn) balance iron alloy is created using arc melting,
average lo μm in organic solvent using a Loutou Gehr mill
After drying, pulverize into 4 pieces in a 10 kOe magnetic field.
/crr? Compression molded at a pressure of Then 2 at 1080℃
After sintering for ~5 hours and holding at each temperature of 500 to 700°C for 1 hour, it was cooled to room temperature at two cooling speeds of 3, 5 and 20°C/min. At each cooling rate, the highest coercive force lH
Select one that has been heat treated once and has a high e value, and calculate its coercive force lHe.
The values are shown in the table below.

以下余白 第1表 牢 表中のlHe X±10%の変化を有する温度範囲
第4表よりM含有の場合でも徐冷によシ保磁力IHcが
得られる温度範囲が広いことが明らかである。
From Table 4, which shows a temperature range with a variation of lHe

〔発明の効果〕〔Effect of the invention〕

熱処理炉の均熱要件が緩和される。永久磁石の製品形状
、寸法等は多様であシ、一方Co量が0の場合はR−F
・−B組成により定まる最高保磁力iHeを得るために
は5℃以下の温度差に保つように製品を均熱しなければ
ならないので、工業生産において全製品に所望の熱処理
を与えるためには、熱処理炉の設計、構造が複雑になる
か、パッチ当シロット数を少なくするか、熟練熱処理作
業者が炉況を絶えず監視しているか、何らかの特別な均
熱対策が必要になる。本発明によるとこのような対策が
不要になるかあるいは緩和される。
Soaking requirements for heat treatment furnaces are relaxed. The product shape, dimensions, etc. of permanent magnets vary, but on the other hand, if the Co content is 0, R-F
・In order to obtain the highest coercive force iHe determined by the -B composition, the product must be soaked to maintain a temperature difference of 5°C or less, so in order to give the desired heat treatment to all products in industrial production, heat treatment is necessary. The design and structure of the furnace will become complicated, the number of patching slots will be reduced, the furnace conditions will be constantly monitored by experienced heat treatment workers, or some special heat equalization measures will be required. According to the present invention, such measures are unnecessary or relaxed.

磁石−個をみたときの部分的な温度や冷却速度の違いが
lHeの違いとなって表われない為に、均一な特性の永
久磁石を得ることが可能である。
Since differences in local temperature and cooling rate when looking at individual magnets do not appear as differences in lHe, it is possible to obtain permanent magnets with uniform characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、31%Nd−1,2%D7−66 %Fe 
−1,0チB−0,6%Nb −0,2%AJなる組成
を有する永久磁石の熱処理温度、磁気特性および冷却速
度の関係を示すグラフ、 第2図は、25〜43%Nd、i、o%B−残部−Fe
なる組成を有する永久磁石のNd量および磁気特性の関
係を示すグラフでおる。
Figure 1 shows 31%Nd-1, 2%D7-66%Fe
-1,0T B-0,6%Nb -0,2%AJ A graph showing the relationship between heat treatment temperature, magnetic properties, and cooling rate of a permanent magnet having a composition of 25 to 43%Nd, i, o%B-balance-Fe
This is a graph showing the relationship between the amount of Nd and the magnetic properties of a permanent magnet having the following composition.

Claims (1)

【特許請求の範囲】 1、重量百分率で、25〜44%のR(但しRはYを含
む希土類元素のうち1種あるいは2種以上)、0.5〜
5%のB、残部Feおよび不純物からなる合金粉900
〜1200℃で焼結した後、500〜700℃の範囲内
の温度で熱処理し、次に50℃/min未満4℃/mi
n以上の冷却速度で冷却することを特徴とする永久磁石
の製造方法。 2、重量百分率で、25〜44%のR(但しRはYを含
む希土類元素のうち1種あるいは2種以上)、0.5〜
5%のB、0.02〜15%のM(但し、MはAl、N
b、Mn、Ni、Ta、Mo、W、Ge、V、Ni、C
r、Co、Biからなる群から選択される1種または2
種以上)、残部Feおよび不純物からなる合金粉を90
0〜1200℃で焼結した後、500〜700℃の範囲
内の温度で熱処理し、次に50℃/min未満4℃/m
in以上の冷却速度で冷却することを特徴とする永久磁
石の製造方法。
[Claims] 1. 25 to 44% R (wherein R is one or more rare earth elements including Y), 0.5 to 44% by weight
Alloy powder 900 consisting of 5% B, balance Fe and impurities
After sintering at ~1200°C, heat treatment at a temperature within the range of 500-700°C, then sintering at a temperature within the range of 50°C/min to 4°C/min.
A method for manufacturing a permanent magnet, characterized by cooling at a cooling rate of n or more. 2. Weight percentage: 25 to 44% R (where R is one or more rare earth elements including Y), 0.5 to 44%
5% B, 0.02-15% M (However, M is Al, N
b, Mn, Ni, Ta, Mo, W, Ge, V, Ni, C
One or two selected from the group consisting of r, Co, and Bi
90% of alloy powder consisting of
After sintering at 0~1200℃, heat treatment at a temperature within the range of 500~700℃, and then sintering at a temperature within the range of 50℃/min to 4℃/m
A method for producing a permanent magnet, characterized by cooling at a cooling rate of in or more.
JP26153585A 1985-11-22 1985-11-22 Production of permanent magnet Pending JPS62124255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26153585A JPS62124255A (en) 1985-11-22 1985-11-22 Production of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26153585A JPS62124255A (en) 1985-11-22 1985-11-22 Production of permanent magnet

Publications (1)

Publication Number Publication Date
JPS62124255A true JPS62124255A (en) 1987-06-05

Family

ID=17363243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26153585A Pending JPS62124255A (en) 1985-11-22 1985-11-22 Production of permanent magnet

Country Status (1)

Country Link
JP (1) JPS62124255A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006767A (en) * 2002-03-29 2004-01-08 Tdk Corp Permanent magnet
JP2011211071A (en) * 2010-03-30 2011-10-20 Tdk Corp Sintered magnet, motor, automobile, and method for producing the sintered magnet
CN102473498A (en) * 2010-03-30 2012-05-23 Tdk株式会社 Sintered magnet, motor, automobile, and method for producing sintered magnet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006767A (en) * 2002-03-29 2004-01-08 Tdk Corp Permanent magnet
JP2011211071A (en) * 2010-03-30 2011-10-20 Tdk Corp Sintered magnet, motor, automobile, and method for producing the sintered magnet
CN102473498A (en) * 2010-03-30 2012-05-23 Tdk株式会社 Sintered magnet, motor, automobile, and method for producing sintered magnet
US9548157B2 (en) 2010-03-30 2017-01-17 Tdk Corporation Sintered magnet, motor, automobile, and method for producing sintered magnet

Similar Documents

Publication Publication Date Title
Nakayama et al. Nd Fe B anisotropic magnet powders produced by the HDDR process
US4135953A (en) Permanent magnet and method of making it
US4497672A (en) Method for the preparation of a rare earth-cobalt based permanent magnet
JPS62198103A (en) Rare earth-iron permanent magnet
KR101878078B1 (en) MAGNETIC SUBSTANCES BASED ON Fe-Mn-Bi, FABRICATION METHOD THEREOF, SINTERED MAGNET BASED ON Fe-Mn-Bi AND ITS FABRICATION METHOD
JPS62124255A (en) Production of permanent magnet
JP3634565B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JPH0146575B2 (en)
JPS5852019B2 (en) Rare earth cobalt permanent magnet alloy
JPS59163803A (en) Permanent magnet
JPH04143221A (en) Production of permanent magnet
JPS62122106A (en) Sintered permanent magnet
CN111755189B (en) Method for producing R-T-B sintered magnet
JPS63234503A (en) Manufacture of permanent magnet
JPS62120457A (en) Manufacture of permanent magnet
JPS6077961A (en) Permanent magnet material and its manufacture
JPS60255941A (en) Manufacture of rare earth element-transition metal element-semimetal alloy magnet
JPH0475303B2 (en)
JPH0328503B2 (en)
JPH0231483B2 (en)
JPS594107A (en) Manufacture of rare earth and cobalt group magnetic material
JPH024942A (en) Permanent magnetic alloy
JPH0328504B2 (en)
JPS5874005A (en) Permanent magnet
JPH04216601A (en) Material of permanent magnet, manufacture thereof and bonded magnet