JPS62122262A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS62122262A
JPS62122262A JP60261165A JP26116585A JPS62122262A JP S62122262 A JPS62122262 A JP S62122262A JP 60261165 A JP60261165 A JP 60261165A JP 26116585 A JP26116585 A JP 26116585A JP S62122262 A JPS62122262 A JP S62122262A
Authority
JP
Japan
Prior art keywords
integrated circuit
semiconductor integrated
circuit
circuit device
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60261165A
Other languages
Japanese (ja)
Inventor
▲はい▼島 幹雄
Mikio Haijima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60261165A priority Critical patent/JPS62122262A/en
Publication of JPS62122262A publication Critical patent/JPS62122262A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0925Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising an N-well only in the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Logic Circuits (AREA)

Abstract

PURPOSE:To facilitate improvement in operation speed, integration density and power consumption of an integrated circuit, by forming two integrated circuit parts on a semiconductor substrate in an electrically isolated state, and differentiating the operating power-source voltages of the circuit parts. CONSTITUTION:Circuit parts 1 and 2 are electrically isolated by a p-type silicon semiconductor substrate 10 and a p-type isolating diffused layer 2 in a constitution wherein an n-type epitaxial layer 11 is surrounded. In the circuit part 2, which is operated with a high power-source voltage Vcc, CMOS transistors M1 and M2, whose withstanding voltage is high, are formed. Meanwhile, in the circuit part 1, which is operated by a lower power-source voltage Vdd (Vdd<Vcc), CMOS transistors M3 and M4, whose withstanding voltage is low but which are machined minutely, are formed at a high density. An interface 3 is formed so as to perform level exchange of signals between the two circuit parts 1 and 2. The interface is formed by using the CMOS transistors M1 and M2 on the side of the peripheral circuit part 2. The level of the logic signal, which is amplified close to the high power-source voltage Vcc, and the level of the logic signal, which is amplified at less than the low voltage Vdd, are converted.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、半導体集積回路装置技術さらには多数の論
理回路が高密度に集積形成されるLSI(大規模半導体
集積回路装置)に適用して特に有効な技術に関するもの
で、例えば多数のCMOS論理回路が高密度に集積形成
される半導体集積回路装置に利用して有効な技術に関す
るものである。
[Detailed Description of the Invention] [Technical Field] The present invention is particularly effective when applied to semiconductor integrated circuit device technology and to LSI (Large-Scale Semiconductor Integrated Circuit Device) in which a large number of logic circuits are integrated at high density. The present invention relates to technology, and is effective for use in semiconductor integrated circuit devices in which a large number of CMOS logic circuits are integrated at high density, for example.

〔背景技術〕[Background technology]

例えば、日経マグロウヒル社刊行「日経エレクトロニク
ス 1982年6月21日号1111〜230頁に記載
のように、半導体集積回路装置では、その動作速度、集
積度、および消費電力の3項目の特性が非常に重要であ
る。このために、半導体集積回路装置内に集積形成され
る回路素子のサイズを微細加工によって小型化すること
が行われてきた。
For example, as described in "Nikkei Electronics, June 21, 1982 issue, pages 1111-230," published by Nikkei McGraw-Hill, semiconductor integrated circuit devices have three characteristics that are extremely important: operating speed, degree of integration, and power consumption. This is important. For this reason, efforts have been made to reduce the size of circuit elements integrated within a semiconductor integrated circuit device by microfabrication.

例えば、多数のCMOS論理回路が高密度に集積形成さ
れた半導体集積回路装置では、そこに形成される能動素
子すなわちCMOSトランジスタのゲート長などの素子
サイズを小さくすることが上記3項目の特性を改善する
上で非常に有効であるとされている。
For example, in a semiconductor integrated circuit device in which a large number of CMOS logic circuits are densely integrated, the characteristics of the above three items can be improved by reducing the element size such as the gate length of the active element formed there, that is, the CMOS transistor. It is said to be very effective in doing so.

しかしながら、素子サイズを小さくして行くと、その素
子の耐圧が低くなって、他の半導体集積回路装置との互
換性を有する電源電圧では安全に動作させることが困難
になってくる、という問題点を生じるようになることが
本発明者らによって明らかとされた。
However, as the element size decreases, the withstand voltage of the element decreases, making it difficult to operate safely at a power supply voltage that is compatible with other semiconductor integrated circuit devices. The present inventors have clarified that this occurs.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、半導体集積回路装置の動作速度、集
積度、および消費電力の3項目の特性の改善を、他の半
導体集積回路装置との互換性を有する電源電圧でも安全
に動作させられる条件を保ちつつ、達成できるようにし
た半導体集積回路装置技術を提供することにある。
The purpose of this invention is to improve the three characteristics of a semiconductor integrated circuit device: operating speed, degree of integration, and power consumption, under conditions that allow it to operate safely even at a power supply voltage that is compatible with other semiconductor integrated circuit devices. It is an object of the present invention to provide a semiconductor integrated circuit device technology that can achieve this while maintaining the following.

この発明の前記ならびにそのほかの目的と新規な特徴に
ついては、本明細書の記述および添付図面から明らかに
なるであろう。
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

〔発明の概要〕[Summary of the invention]

本願において開示される発明のうち代表的なものを簡単
に説明すれば、下記のとおりである。
A brief description of typical inventions disclosed in this application is as follows.

すなわち、半導体集積回路装置の半導体基板に2つの集
積回路部を互いに電気的に分離した状態で形成するとと
もに、各回路部の動作電源電圧を互いに異ならせて、高
い方の電源電圧で動作させられる回路部には、サイズは
大きいが耐圧の高い回路素子を形成する一方、低い方の
電源電圧で動作させられる回路部には、耐圧は低いが小
サイズに微細加工された回路素子を形成する構成によシ
、その半導体集積回路装置の動作速度、集積度、および
消費電力の3項目の特性の改善を、他の半導体集積回路
装置との互換性を有する電源電圧でも安全に動作させら
れる条件を保ちつつ、達成できるようにする、という目
的を達成するものである。
That is, two integrated circuit sections are formed on a semiconductor substrate of a semiconductor integrated circuit device in a state where they are electrically separated from each other, and the operating power supply voltages of each circuit section are made different from each other so that the circuit sections are operated at the higher power supply voltage. In the circuit section, a circuit element that is large in size but has a high withstand voltage is formed, while in a circuit section that can be operated at a lower power supply voltage, a circuit element that is microfabricated into a small size and has a low withstand voltage is formed. In order to improve the three characteristics of the semiconductor integrated circuit device: operating speed, degree of integration, and power consumption, we will also develop conditions that allow it to operate safely at a power supply voltage that is compatible with other semiconductor integrated circuit devices. The goal is to maintain and achieve the goals.

〔実施例〕〔Example〕

以下、この発明の代表的な実施例を図面を参照しながら
説明する。
Hereinafter, typical embodiments of the present invention will be described with reference to the drawings.

なお、図面において同一符号は同一あるいは相当部分を
示す。
In the drawings, the same reference numerals indicate the same or corresponding parts.

第1図および第2図はこの発明による半導体集積回路装
置の一実施例を示す。
FIGS. 1 and 2 show an embodiment of a semiconductor integrated circuit device according to the present invention.

同図に示す半導体集積回路装置100は、多数のCMO
S論理回路が高密度に集積形成されたLSIであって、
その半導体集積回路装置の半導体基板には、第1図およ
び第2図に示すように、2つの集積回路部1,2が互い
に電気的に分離された状態で形成されている。これとと
もに、各回路部1,2の動作電源電圧VCCとVddが
互いに異ならせられている。
A semiconductor integrated circuit device 100 shown in the figure includes a large number of CMOs.
An LSI in which S logic circuits are densely integrated,
As shown in FIGS. 1 and 2, two integrated circuit sections 1 and 2 are formed on a semiconductor substrate of the semiconductor integrated circuit device in a state where they are electrically isolated from each other. Along with this, the operating power supply voltages VCC and Vdd of each circuit section 1 and 2 are made different from each other.

各回路部1,2の電気的分離は、第2図に示すように、
p−型シリコン半導体基板10とp型分離拡散層12と
によってn−型エピタキシャル層11を取り囲む構成に
よって行われている。この場合、高い方の電源電圧Vc
c(約5V)で動作させられる回路部2には、サイズは
比較的大きいが耐圧の高いCMOSトランジスタMl 
、M2が形成されている。一方、低い方の電源電圧■d
d(vdd(Vcc)で動作させられる回路部1には、
耐圧は低いが小サイズに微細加工されたCMOSトラン
ジスタM3.M4が高密度に形成されている。
The electrical separation of each circuit section 1 and 2 is as shown in FIG.
This is achieved by a structure in which an n-type epitaxial layer 11 is surrounded by a p-type silicon semiconductor substrate 10 and a p-type isolation diffusion layer 12. In this case, the higher power supply voltage Vc
The circuit section 2, which is operated at voltage c (approximately 5 V), includes a CMOS transistor Ml that is relatively large in size but has a high breakdown voltage.
, M2 are formed. On the other hand, the lower power supply voltage ■d
The circuit section 1 operated at d(vdd(Vcc)) includes:
CMOS transistor M3. has a low breakdown voltage but is microfabricated into a small size. M4 is formed with high density.

なお、第2図において、pチャンネルMOSトランジス
タMl、M3はそれぞれ、n−型エピタキシャル層11
中に部分拡散されたp十研ソース・ドレイン拡散層13
、基板接続用のn十型拡散層14、およびゲート電極1
5などによって形成されている。また、nチャンネルM
O8)ランジスタM2.M4はそれぞれ、p型ウェル拡
散層16中に部分拡散されたn十型ソース・ドレイン拡
散層17、基板接続用のp十型拡散層18、およびゲー
ト電極15などによって形成されている。そのほか、1
9はアルミニウムなどによる電極、20は表面酸化膜を
それぞれ示す。
In addition, in FIG. 2, p-channel MOS transistors M1 and M3 each have an n-type epitaxial layer 11
p-juken source/drain diffusion layer 13 partially diffused inside
, an n-type diffusion layer 14 for substrate connection, and a gate electrode 1
5, etc. Also, n channel M
O8) Transistor M2. Each M4 is formed by an n+ type source/drain diffusion layer 17 partially diffused into the p type well diffusion layer 16, a p+ type diffusion layer 18 for substrate connection, a gate electrode 15, and the like. In addition, 1
Reference numeral 9 indicates an electrode made of aluminum or the like, and reference numeral 20 indicates a surface oxide film.

また、この実施例では、第1図に示すよpに、高い方の
電源電圧VCCで動作させられる回路部2によって半導
体集積回路装置100の周辺回路部が形成される一方、
低い方の電源電圧Vddで動作させられる回路部1によ
って半導体集積回路装置100の内部回路部が形成され
ている。
Further, in this embodiment, as shown in FIG. 1, the peripheral circuit section of the semiconductor integrated circuit device 100 is formed by the circuit section 2 operated at the higher power supply voltage VCC, while
The internal circuit section of the semiconductor integrated circuit device 100 is formed by the circuit section 1 operated at the lower power supply voltage Vdd.

さらに、第1図に示すように、上記2つの回路部1,2
の間には、信号のレベル変換を行うインターフェイス部
3が形成されている。このインターフェイス部3は周辺
回路部2側のMOS)ランジスタMl、M2(第2図)
を用いて構成され、高電源電圧VCC近くまで振幅する
論理信号と低電圧Vdd以下で振幅する論理信号との間
のレベル変換動作を行う。
Furthermore, as shown in FIG.
An interface section 3 for converting signal levels is formed between them. This interface section 3 is a MOS transistor on the peripheral circuit section 2 side (Fig. 2).
It performs a level conversion operation between a logic signal that swings close to the high power supply voltage VCC and a logic signal that swings below the low voltage Vdd.

以上のようにして、内部回路部1の素子を高度に微細化
することにより、その半導体集積回路装fillloO
の全体的な集積密度が向上させられるとともに、その微
細化によって動作速度も向上させられるようになる。さ
らに、内部回路部1の動作電源電圧■ddだけを分離し
て低く設定できるので、他の半導体集積回路装置との互
換性を保ちつつ、その消費電力の大幅な低減化が可能に
なる。
As described above, by highly miniaturizing the elements of the internal circuit section 1, the semiconductor integrated circuit device filloO
As well as increasing the overall integration density of the device, its miniaturization also increases the operating speed. Furthermore, since only the operating power supply voltage dd of the internal circuit section 1 can be isolated and set low, it is possible to significantly reduce the power consumption while maintaining compatibility with other semiconductor integrated circuit devices.

〔効果〕〔effect〕

(1)半導体集積回路装置の半導体基板に2つの集積回
路部を互いに電気的に分離した状態で形成するとともに
、各回路部の動作電源電圧を互いに異ならせて、高い方
の電源電圧で動作させられる回路部には、サイズは大き
いが耐圧の高い回路素子を形成する一方、低い方の電源
電圧で動作させられる回路部には、耐圧は低いが小サイ
ズに微細加工された回路素子を形成する構成により、そ
の半導体集積回路装置の動作速度、集積度、および消費
電力の3項目の特性の改善を、他の半導体集積回路装置
との互換性を有する電源電圧でも安全に動作させられる
条件を保ちつつ、達成できるようになる、という効果が
得られる。
(1) Two integrated circuit parts are formed on a semiconductor substrate of a semiconductor integrated circuit device in a state where they are electrically separated from each other, and the operating power supply voltages of each circuit part are made to be different from each other, so that the circuit parts are operated at the higher power supply voltage. In the circuit section that is operated by a lower power supply voltage, we form a circuit element that is large in size but has a high withstand voltage, while in the circuit section that is operated at a lower power supply voltage, we form a circuit element that has a low withstand voltage but is microfabricated into a small size. The configuration improves the three characteristics of the semiconductor integrated circuit device: operating speed, degree of integration, and power consumption, while maintaining conditions that allow it to operate safely even at a power supply voltage that is compatible with other semiconductor integrated circuit devices. The effect is that you will be able to achieve your goals while also achieving your goal.

以上本発明者によってなされた発明を実施例に基づき具
体的に説明したが、この発明は上記実施  例に限定さ
れるものではなく、その要旨を逸脱しない範囲で種々変
更可能であることはいうまでもない。例えば、上記CM
OS論理回路は、CMOSトランジスタとバイポーラ・
トランジスタとが論理回路内にて複合化されたBi−0
MO8型の論理回路あってもよい。
Although the invention made by the present inventor has been specifically explained above based on Examples, it goes without saying that this invention is not limited to the above Examples and can be modified in various ways without departing from the gist thereof. Nor. For example, the above CM
The OS logic circuit uses CMOS transistors and bipolar
Bi-0 that is combined with a transistor in a logic circuit
An MO8 type logic circuit may also be provided.

〔利用分野〕[Application field]

以上、本発明者によってなされた発明をその背景となっ
た利用分野である論理用半導体集積回路装置の技術に適
用した場合について説明したが、それに限定されるもの
ではなく、例えばバイポーラ・トランジスタによるリニ
ア回路とCMOSによる論理回路とが共存して形成され
るアナログ/デジタル型半導体集積回路装置の技術など
にも適用できる。
The above description has been made of the case where the invention made by the present inventor is applied to the technology of logic semiconductor integrated circuit devices, which is the background field of application, but the invention is not limited thereto. The present invention can also be applied to technology for analog/digital semiconductor integrated circuit devices formed by coexisting circuits and CMOS logic circuits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による半導体集積回路装置の全体的な
構成の一実施例を示す図、 第2図は第1図に示した半導体集積回路装置の要部にお
ける素子構造を示す断面図である。 1・・・高度に微細化されて低電源電圧で動作させられ
る低耐圧の回路部、2・・・比較的大サイズに形成され
て高電源電圧で動作させられる高耐圧の回路部、3・・
・半導体集積回路装置内のインターフェイス部、100
・・・半導体集積回路装置、Ml、M3・・・回路素子
(pチャンネルMOSトランジスタ)、M2.M4・・
・回路素子(nチャンネルMOSトランジスタ)。
FIG. 1 is a diagram showing an embodiment of the overall configuration of a semiconductor integrated circuit device according to the present invention, and FIG. 2 is a cross-sectional view showing the element structure of the main part of the semiconductor integrated circuit device shown in FIG. 1. . 1... A low breakdown voltage circuit section that is highly miniaturized and can be operated at a low power supply voltage, 2... A high breakdown voltage circuit section that is formed in a relatively large size and operated at a high supply voltage, 3.・
・Interface part in semiconductor integrated circuit device, 100
. . . Semiconductor integrated circuit device, Ml, M3 . . . Circuit element (p channel MOS transistor), M2. M4...
-Circuit element (n-channel MOS transistor).

Claims (1)

【特許請求の範囲】 1、多数の論理回路が高密度に集積形成されている半導
体集積回路装置であって、この半導体集積回路装置の半
導体基板に2つの集積回路部が互いに電気的に分離され
た状態で形成されるとともに、各回路部の動作電源電圧
が互いに異ならせられ、高い方の電源電圧で動作させら
れる回路部には、サイズは大きいが耐圧の高い回路素子
が形成される一方、低い方の電源電圧で動作させられる
回路部には、耐圧は低いが小サイズに微細加工された回
路素子が高密度に形成されていることを特徴とする半導
体集積回路装置。 2、高い方の電源電圧で動作させられる回路部によって
半導体集積回路装置の周辺回路部が形成される一方、低
い方の電源電圧で動作させられる回路部によって半導体
集積回路装置の内部回路部が形成されていることを特徴
とする特許請求の範囲第1項記載の半導体集積回路装置
。 3、上記2つの回路部の間に信号のレベル変換を行うイ
ンターフェイス部が形成されていることを特徴とする特
許請求の範囲第1項または第2項記載の半導体集積回路
装置。 4、上記低い方の電源電圧で動作させられる回路部にC
MOS論理回路が形成されていることを特徴とする特許
請求の範囲第1項から第3項までのいずれかに記載の半
導体集積回路装置。
[Scope of Claims] 1. A semiconductor integrated circuit device in which a large number of logic circuits are densely integrated, and two integrated circuit parts are electrically separated from each other on a semiconductor substrate of the semiconductor integrated circuit device. At the same time, the operating power supply voltages of each circuit section are made to be different from each other, and a circuit element that is large in size but has a high breakdown voltage is formed in the circuit section that is operated at a higher power supply voltage. A semiconductor integrated circuit device characterized in that, in a circuit section operated at a lower power supply voltage, circuit elements having a low breakdown voltage but microfabricated into small sizes are formed at high density. 2. The peripheral circuit section of the semiconductor integrated circuit device is formed by the circuit section operated at the higher power supply voltage, while the internal circuit section of the semiconductor integrated circuit device is formed by the circuit section operated at the lower power supply voltage. A semiconductor integrated circuit device according to claim 1, characterized in that: 3. The semiconductor integrated circuit device according to claim 1 or 2, wherein an interface section for performing signal level conversion is formed between the two circuit sections. 4.C in the circuit section that is operated with the lower power supply voltage mentioned above.
A semiconductor integrated circuit device according to any one of claims 1 to 3, characterized in that a MOS logic circuit is formed.
JP60261165A 1985-11-22 1985-11-22 Semiconductor integrated circuit device Pending JPS62122262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60261165A JPS62122262A (en) 1985-11-22 1985-11-22 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60261165A JPS62122262A (en) 1985-11-22 1985-11-22 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS62122262A true JPS62122262A (en) 1987-06-03

Family

ID=17358018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60261165A Pending JPS62122262A (en) 1985-11-22 1985-11-22 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS62122262A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63255939A (en) * 1987-04-13 1988-10-24 Nippon Denso Co Ltd Linear array
JPS6432647A (en) * 1987-07-29 1989-02-02 Hitachi Ltd Semiconductor integrated circuit device
EP0545604A2 (en) * 1991-11-29 1993-06-09 Fuji Electric Co. Ltd. High-withstand voltage integrated circuit
US5517049A (en) * 1994-09-30 1996-05-14 Vlsi Technology, Inc. CMOS output buffer with enhanced ESD resistance

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63255939A (en) * 1987-04-13 1988-10-24 Nippon Denso Co Ltd Linear array
JPS6432647A (en) * 1987-07-29 1989-02-02 Hitachi Ltd Semiconductor integrated circuit device
EP0545604A2 (en) * 1991-11-29 1993-06-09 Fuji Electric Co. Ltd. High-withstand voltage integrated circuit
EP0545604A3 (en) * 1991-11-29 1995-11-22 Fuji Electric Co. Ltd. High-withstand voltage integrated circuit
US5517049A (en) * 1994-09-30 1996-05-14 Vlsi Technology, Inc. CMOS output buffer with enhanced ESD resistance
US5618740A (en) * 1994-09-30 1997-04-08 Vlsi Technology, Inc. Method of making CMOS output buffer with enhanced ESD resistance

Similar Documents

Publication Publication Date Title
US4701642A (en) BICMOS binary logic circuits
JP3019805B2 (en) CMOS logic circuit
JP2953482B2 (en) CMOS integrated circuit
US6946892B2 (en) Level transforming circuit
JPH1032259A (en) Semiconductor device
JPS6325714B2 (en)
JPS62122262A (en) Semiconductor integrated circuit device
JPH0441505B2 (en)
JPH05121664A (en) Semiconductor device
JPH06326593A (en) Semiconductor integrated circuit device
JPS5937858B2 (en) Semiconductor device and its manufacturing method
JPS5944782B2 (en) semiconductor integrated circuit
EP0114061A2 (en) Semiconductor device having CMOS structures
JP3272272B2 (en) Manufacturing method of semiconductor integrated circuit
JPS6085623A (en) Cmos integrated circuit device
JPS61283158A (en) Complementary mos transistor circuit
JPH07235608A (en) Semiconductor integrated circuit device
JP3316425B2 (en) Semiconductor integrated circuit and manufacturing method thereof
JPS6323349A (en) Cmos semiconductor integrated circuit
JPH11176950A (en) Semiconductor integrated circuit device
JPH0532908B2 (en)
JP2671808B2 (en) Interface circuit
KR100298187B1 (en) Silicon Double Membrane Device with Low Threshold Voltage and Low Leakage Current
JPS62214655A (en) Semiconductor integrated circuit
JP2002536820A (en) Method and apparatus for eliminating the effects of parasitic bipolars in complementary oxide semiconductor (CMOS) silicon-on-insulator (SOI) circuits