JPH0441505B2 - - Google Patents

Info

Publication number
JPH0441505B2
JPH0441505B2 JP59015801A JP1580184A JPH0441505B2 JP H0441505 B2 JPH0441505 B2 JP H0441505B2 JP 59015801 A JP59015801 A JP 59015801A JP 1580184 A JP1580184 A JP 1580184A JP H0441505 B2 JPH0441505 B2 JP H0441505B2
Authority
JP
Japan
Prior art keywords
mos transistor
conductivity type
semiconductor
drain
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59015801A
Other languages
Japanese (ja)
Other versions
JPS60160651A (en
Inventor
Nobuaki Myagawa
Yoshiaki Yazawa
Shoichi Oozeki
Takahide Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Power Semiconductor Device Ltd
Original Assignee
Hitachi Ltd
Hitachi Haramachi Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Haramachi Electronics Ltd filed Critical Hitachi Ltd
Priority to JP59015801A priority Critical patent/JPS60160651A/en
Publication of JPS60160651A publication Critical patent/JPS60160651A/en
Publication of JPH0441505B2 publication Critical patent/JPH0441505B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0928Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising both N- and P- wells in the substrate, e.g. twin-tub

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体装置に係り、特に集積化された
半導体装置の高速化と高集積化が可能な構造に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor device, and more particularly to a structure that allows an integrated semiconductor device to be made faster and more highly integrated.

〔発明の背景〕[Background of the invention]

CMOS(Complementary Metal Oxide Se−
miconductorは消費電力、雑音余裕度の点で優れ
た特性を備えており、LSI(Large Scale
Integration)の分野において重要な位置を占め
ている。しかしCMOS LSIは単チヤネル
nMOSLSIに比較して、nチヤネルMOSとpチヤ
ネルMOSとを分離する必要から、集積度を上げ
ることが困難である。また、pMOSの低いチヤネ
ル移動度により、スイツチング速度も制限されて
いる。
CMOS (Complementary Metal Oxide Se−
The microconductor has excellent characteristics in terms of power consumption and noise tolerance, and is an LSI (Large Scale
It occupies an important position in the field of integration. However, CMOS LSI is single channel
Compared to nMOSLSI, it is difficult to increase the degree of integration because it is necessary to separate the n-channel MOS and p-channel MOS. Switching speed is also limited by the low channel mobility of pMOS.

第1図にCMOSで構成したインバータの断面
模式図Aと等価回路Bを示す。ここで1は半導体
基板、2はnウエル、3はpウエル、4はpMOS
のソース、ドレインとなるp型不純物層、5は
nMOSのソース、ドレインとなるn型不純物層、
6はMOSのゲートとなる導電帯層、7はゲート
酸化膜である。nMOSとpMOSは8で示した厚い
酸化膜により互いに分離されている。pウエル3
は接地電位にあり、nウエル2には電源9の電圧
が印加されている。第1図Bの11はインバータ
の性能を検討するための負荷容量である。
Figure 1 shows a cross-sectional schematic diagram A and an equivalent circuit B of an inverter constructed using CMOS. Here, 1 is a semiconductor substrate, 2 is an n-well, 3 is a p-well, and 4 is a pMOS
The p-type impurity layer 5 becomes the source and drain of
n-type impurity layer that becomes the source and drain of nMOS,
6 is a conductive band layer serving as a gate of the MOS, and 7 is a gate oxide film. The nMOS and pMOS are separated from each other by a thick oxide film shown at 8. p-well 3
is at ground potential, and the voltage of the power supply 9 is applied to the n-well 2. 11 in FIG. 1B is a load capacity for examining the performance of the inverter.

このインバータのスイツチング特性を考察して
みる。インバータ出力の立上がり特性はpMOS1
2が負荷容量CLを充電する速度によつて決まり、
出力の立上がり時定数τpは次のように表わせる。
Let's consider the switching characteristics of this inverter. The rise characteristics of the inverter output are pMOS1
2 is determined by the speed at which the load capacitance C L is charged,
The output rise time constant τ p can be expressed as follows.

τp=CL/β0pW/L(VDD+VTp)……(1) β0p=μpC0x ただし、μp:チヤネル中の正孔移動度、W:
MOSのゲート幅、L:MOSのゲート長、VDD
電源9の電圧、VTp:pMOSのしきい電圧、C0x
ゲート酸化膜厚である。
τ p = C L / β 0p W/L (V DD + V Tp )...(1) β 0p = μ p C 0x , where μ p : hole mobility in the channel, W:
MOS gate width, L: MOS gate length, V DD :
Voltage of power supply 9, V Tp : Threshold voltage of pMOS, C 0x :
This is the gate oxide film thickness.

ここで、CL=1pF,β0p=20μS/V,W/L=
20/3,VDD=5V,VTp=−0.5Vとすると、τp
1.67nsとなる。
Here, C L = 1pF, β 0p = 20μS/V, W/L =
20/3, V DD = 5V, V Tp = -0.5V, τ p =
It becomes 1.67ns.

一方、出力の立上がり特性はnMOS13が負荷
容量CLを放電する速度によつて決まり、出力の
立下がりの時定数τoは次のようになる。
On the other hand, the output rise characteristic is determined by the speed at which the nMOS 13 discharges the load capacitance C L , and the output fall time constant τ o is as follows.

τo=CL/β0oW/L(VDD+VTo)……(2) β0o=μoC0x ここで、μo:チヤネル中の電子移動度、VTo
nMOSのしきい電圧である。β0o=40μS/V,
VTo=0.5Vとし、他の定数は立上がりの場合と同
様とすると、τo=0.83nsとなる。
τ o = C L / β 0o W/L (V DD + V To )...(2) β 0o = μ o C 0x , where μ o : electron mobility in the channel, V To
This is the threshold voltage of nMOS. β 0o = 40μS/V,
Assuming that V To =0.5V and other constants as in the case of rising, τ o =0.83ns.

このように、CMOSで構成されるインバータ
のpMOSとnMOSのW/Lを等しくした場合、正
孔と電子の移動度の差により、立上がり時定数は
立下がり時定数よりも大きくなる。立上がり特性
を向上させるにはpMOSのW/Lを大きくしてτp
を小さくすることが考えられる。しかし、Lは加
工精度の制限から一定の寸法以下にはできないの
で、Wを大きくする必要があり、素子の寸法が増
加し、チツプ面積が広がつてしまう。高速化のた
めに素子寸法を増やすことは素子の高集積化の妨
げになる。
In this way, when the W/L of pMOS and nMOS of an inverter configured with CMOS is made equal, the rise time constant becomes larger than the fall time constant due to the difference in mobility between holes and electrons. To improve the rise characteristics, increase the W/L of pMOS and increase τ p
It is conceivable to make it smaller. However, since L cannot be made less than a certain value due to limitations in processing accuracy, it is necessary to increase W, which increases the dimensions of the element and expands the chip area. Increasing the element size to increase speed impedes higher integration of the element.

そこで、素子の高集積化と高速化を同時に達成
できる素子構造が望まれていた。
Therefore, there has been a desire for an element structure that can simultaneously achieve higher device integration and higher speed.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高速でしかも高集積化が可能
な素子構造を有する半導体装置を提供することで
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device having an element structure capable of high speed and high integration.

〔発明の概要〕[Summary of the invention]

第2図Aに本発明による素子構造の断面図を示
す。本発明は、従来例のpMOSとnMOSを分離し
ている領域に配置された厚い酸化膜8をゲート酸
化膜7と同じまたは同程度の厚さにして、この領
域に導電膜10を形成し、第2図Bに示す素子を
構成したことを特徴とする。すなわち、10をゲ
ートとして、nウエル2をドレイン、pウエル3
中のn型不純物層5をソースとするnMOS14
と、同じく10をゲートとして、pウエル3をド
レイン、nウエル2中のp型不純物層4をソース
とするpMOS15を同様に形成する。本構造の特
徴は、従来素子分離に使つていた領域を新たな素
子に利用するから、素子形成に伴う面積の増加は
わずかですむこと、CMOS構造においては通常
pウエル3は最低電位にnウエル2は最高電位に
接続されているため、それぞれのMOSドレイン
は各電位に固定されており、配線の必要がないこ
とである。
FIG. 2A shows a cross-sectional view of the device structure according to the present invention. In the present invention, the thick oxide film 8 disposed in the region separating the pMOS and nMOS of the conventional example is made to have the same or similar thickness as the gate oxide film 7, and the conductive film 10 is formed in this region, It is characterized by having the element shown in FIG. 2B. In other words, 10 is the gate, n-well 2 is the drain, and p-well 3 is the gate.
nMOS 14 whose source is the n-type impurity layer 5 inside
A pMOS 15 is formed in the same manner, with 10 as the gate, the p-well 3 as the drain, and the p-type impurity layer 4 in the n-well 2 as the source. The feature of this structure is that the area previously used for element isolation is used for the new element, so there is only a slight increase in the area associated with element formation, and in a CMOS structure, the p-well 3 is usually at the lowest potential Since the well 2 is connected to the highest potential, each MOS drain is fixed at each potential, and there is no need for wiring.

〔発明の実施例〕[Embodiments of the invention]

第3図Aは本発明を適用したインバータの断面
模式図である。本構造は第1図に示した従来方式
インバータのpMOS12とnMOS13との分離領
域に第2図に示す本発明の素子を形成したもので
ある。インバータの負荷pMOS12のソースに
nMOS14のドレインを、pMOS12のドレイン
にnMOS14のソースを接続し、駆動nMOS13
のドレインにpMOS15のソースを、nMOS13
のソースにpMOS15のドレインを接続してあ
る。そしてnMOS14とpMOS15の共通なゲー
トに端子Cを設け、端子Aの入力信号と逆位相の
信号を端子Cに印加すれば、第3図に示す回路は
高速インバータとして働く。
FIG. 3A is a schematic cross-sectional view of an inverter to which the present invention is applied. In this structure, the element of the present invention shown in FIG. 2 is formed in the separation region between the pMOS 12 and nMOS 13 of the conventional inverter shown in FIG. Source of inverter load pMOS12
Connect the drain of nMOS14 and the source of nMOS14 to the drain of pMOS12, and drive nMOS13.
The source of pMOS15 is connected to the drain of
The drain of pMOS15 is connected to the source of . If a terminal C is provided at the common gate of the nMOS 14 and pMOS 15, and a signal having the opposite phase to the input signal of the terminal A is applied to the terminal C, the circuit shown in FIG. 3 works as a high-speed inverter.

端子Aの入力がlowで端子Cの入力がhighにな
ると、nMOS13とpMOS15はオフ、pMOS1
2とnMOS14はオンとなり、負荷容量CLが充電
される。端子Aの入力がhighで、端子Bがlowに
なると、nMOS13とpMOS15はオン、pMOS
12とnMOS14はオフとなり、負荷容量CLが放
電される。このようにnMOS14とpMOS15は
それぞれインバータの負荷pMOS12と駆動
nMOS13に同期してオン、オフするため、負荷
容量CLの充放電はより速やかに行われる。特に
充電時には、β0の大きなnMOS14がオンとなる
ので、pMOS12単独で充電する場合に比べて出
力の立上がり時定数の著しい改善が期待できる。
When the input of terminal A is low and the input of terminal C is high, nMOS13 and pMOS15 are turned off, and pMOS1
2 and nMOS14 are turned on, and the load capacitance C L is charged. When the input of terminal A is high and the input of terminal B is low, nMOS13 and pMOS15 are turned on and pMOS
12 and nMOS14 are turned off, and the load capacitance C L is discharged. In this way, nMOS14 and pMOS15 are respectively driven by the inverter load pMOS12.
Since it is turned on and off in synchronization with the nMOS 13, the load capacitance C L is charged and discharged more quickly. Particularly during charging, since the nMOS 14 with a large β 0 is turned on, a significant improvement in the output rise time constant can be expected compared to when charging with the pMOS 12 alone.

また、nMOS14,pMOS15は従来能動素子
を形成できなかつた素子分離領域に形成されてい
る上に、nMOS14のドレインとなるnウエルは
最高電位に固定され、pMOS15のドレインとな
るpウエルは最低電位に固定されているため、こ
の配線は不要であり、配線の領域やコンタクトの
領域をとる必要はない。したがつて面積の大きな
増加なしに高速のインバータを構成することが可
能になる。
In addition, nMOS14 and pMOS15 are formed in an element isolation region where active elements could not be formed in the past, and the n-well, which is the drain of nMOS14, is fixed at the highest potential, and the p-well, which is the drain of pMOS15, is at the lowest potential. Since it is fixed, this wiring is unnecessary, and there is no need to take up a wiring area or a contact area. Therefore, it becomes possible to construct a high-speed inverter without significantly increasing the area.

第3図の回路を実際のICに組み込むためにパ
ターン化したのが第4図である。16の内側がp
ウエルで外側がnウエル、17の内側が素子を形
成できる領域で外側は厚い酸化膜で覆われてい
る。18はMOSのゲートとなる導電帯層、19
は配線20と領域17または配線20と導電帯層
18を接続するコンタクト穴である。nウエル領
域内にはp型不純物を導入してpMOSを形成し、
pウエル領域内にはn型不純物を導入してnMOS
を形成している。端子Cがとり出されている部分
が本発明MOSのゲートとなる導電帯層18であ
る。
Figure 4 shows a pattern for incorporating the circuit in Figure 3 into an actual IC. The inside of 16 is p
The outside of the well is an n-well, and the inside of the well 17 is a region where an element can be formed, and the outside is covered with a thick oxide film. 18 is a conductive band layer which becomes the gate of MOS, 19
is a contact hole connecting the wiring 20 and the region 17 or the wiring 20 and the conductive band layer 18. A p-type impurity is introduced into the n-well region to form a pMOS,
An n-type impurity is introduced into the p-well region to create an nMOS
is formed. The portion from which the terminal C is taken out is the conductive band layer 18 which becomes the gate of the MOS of the present invention.

nMOS14とpMOS15を付加したことによる
インバータ特性の改善の程度を見積つてみる。
nMOS14とpMOS15のW/Lをいずれも10/5
とする。nMOS14単独でCLを充電する時定数
τoaは、β0o=40μS/V,VTo=0.5Vとして(2)式を
用いて求めると、 τoa=2.78ns となる。また、pMOS15単独でCLを放電する時
定数τpaは、β0p=20μS/V,VTp=0.5Vとして(1)
式を用いて求めると、 τpa=5.56ns となる。
Let's estimate the degree of improvement in inverter characteristics due to the addition of nMOS14 and pMOS15.
Both nMOS14 and pMOS15 W/L are 10/5
shall be. The time constant τ oa for charging C L by the nMOS 14 alone is calculated using equation (2) with β 0o =40 μS/V and V To =0.5V, and becomes τ oa =2.78ns. In addition, the time constant τ pa for discharging C L by the pMOS15 alone is given by β 0p = 20μS/V, V Tp = 0.5V (1)
When found using the formula, τ pa =5.56ns.

このτoaと前に求めたpMOS12による出力立
上がり時定数τpから第3図に示す新構造のインバ
ータによる立上がり時定数τpoaを求めると、 1/τpoa=1/τp+1/τoa であるから、 τpoa=1.04ns 同様にして、新構造のインバータによる立下が
りの時定数τopaを求めると、 τopa=0.72ns となる。
From this τ oa and the previously determined output rise time constant τ p of the pMOS12, the rise time constant τ poa of the inverter with the new structure shown in Fig. 3 is determined as 1/τ poa = 1/τ p +1/τ oa . Therefore, τ poa = 1.04 ns Similarly, if we calculate the falling time constant τ opa of the inverter with the new structure, we get τ opa = 0.72 ns.

従来構造のインバータに比べると立上がり特性
において約38%、立下がり特性において約13%改
善されたことがわかる。
It can be seen that the rise characteristics are improved by about 38% and the fall characteristics are improved by about 13% compared to the inverter with the conventional structure.

第5図は新構造のインバータを実際の回路に応
用した例を示す。これは出力部にトーテムポール
に接続したバイポーラNPNトランジスタ26と
27を使用する高速バツフア回路であり、破線2
8で囲んだ部分が本発明のインバータである。
FIG. 5 shows an example of applying the new structure inverter to an actual circuit. This is a high-speed buffer circuit that uses bipolar NPN transistors 26 and 27 connected to a totem pole at the output, with the dashed line 2
The part surrounded by 8 is the inverter of the present invention.

入力端子Fがlowからhighになると、ノードA
はlow、ノードBはhighとなり、MOS12,1
4を介してトランジスタ26のベースには電流が
供給され、トランジスタ26の電流増幅率で決ま
るコレクタ電流Icが流れる。このときMOS23
もオンとなつているため、負荷容量CLはMOS2
3とトランジスタ26を介して充電される。ま
た、MOS25もオンとなつているから、トラン
ジスタ27のベース電流は流れず、ベース・エミ
ツタ間の蓄積電荷も放電されるので、トランジス
タ27は高速にカツトオフされる。
When input terminal F goes from low to high, node A
is low, node B is high, and MOS12,1
A current is supplied to the base of the transistor 26 through the transistor 26, and a collector current Ic determined by the current amplification factor of the transistor 26 flows. At this time, MOS23
is also on, so the load capacitance C L is MOS2
3 and the transistor 26. Furthermore, since the MOS 25 is also on, the base current of the transistor 27 does not flow, and the accumulated charge between the base and emitter is also discharged, so that the transistor 27 is quickly cut off.

次に端子Fがhighからlowになると、ノードA
はhighになるが、MOS13,15がオンとなる
ことからノードBはlowとなつてしまう。そこ
で、MOS23,25とトランジスタ26がオフ
となると同時に、トランジスタ26のベース・エ
ミツタ間の蓄積電荷もMOS13,15を介して
放電される。一方、MOS24がオンとなり、容
量CLからトランジスタ27のベースに電流が流
れ、トランジスタ27の電流増幅率で決まるコレ
クタ電流を流すことができ、容量CLに充電され
ている電荷が高速に放電させる。
Next, when terminal F goes from high to low, node A
becomes high, but since MOS13 and 15 are turned on, node B becomes low. Therefore, at the same time that the MOSs 23 and 25 and the transistor 26 are turned off, the accumulated charge between the base and emitter of the transistor 26 is also discharged via the MOSs 13 and 15. On the other hand, the MOS 24 is turned on, current flows from the capacitor C L to the base of the transistor 27, a collector current determined by the current amplification factor of the transistor 27 can flow, and the charge stored in the capacitor C L is rapidly discharged. .

このような高速バツフア回路の出力立上がり、
立下がり特性の改善は、トランジスタ26,27
のベースへの電流供給能力を向上することが要点
である。本発明によるインバータを用いること
で、従来に比較してバツフア回路の立上がり、立
下がり特性を良くすることができた。
The output rise of such a high-speed buffer circuit,
The improvement in falling characteristics is achieved by transistors 26 and 27.
The key point is to improve the ability to supply current to the base. By using the inverter according to the present invention, the rise and fall characteristics of the buffer circuit can be improved compared to the conventional ones.

さて、第3図に示したインバータの構成におい
て、出力の立下がり特性は、MOS13,15の
コンダクタンスによつてきまるが、通常の
CMOSインバータではMOS13のβ0は比較的大
きいnMOSである。そのため、第1図に示す従来
のインバータ構成において、出力の立下がり時定
数は立上がり時定数に比較して既に小さい。ま
た、第3図の回路において、MOS15はβ0の比
較的小さいpMOSであるため、MOS15を付加
したことによる立下がり特性の改善の度合いは立
上がり特性の場合より小さくなる。先に示した数
値計算による見積りでもnMOS14の付加により
立上がり特性が38%改善されるのに対して、
pMOS15の付加による立下がり特性の改善は13
%にとどまつている。
Now, in the inverter configuration shown in Fig. 3, the output fall characteristics depend on the conductance of MOS13 and MOS15, but the normal
In the CMOS inverter, the β 0 of MOS13 is relatively large nMOS. Therefore, in the conventional inverter configuration shown in FIG. 1, the falling time constant of the output is already smaller than the rising time constant. Furthermore, in the circuit shown in FIG. 3, since the MOS 15 is a pMOS with relatively small β 0 , the degree of improvement in the falling characteristic due to the addition of the MOS 15 is smaller than in the case of the rising characteristic. Although the estimate based on the numerical calculation shown earlier shows that the addition of nMOS14 improves the rise characteristics by 38%,
The improvement in fall characteristics by adding pMOS15 is 13
It remains at %.

そこで、pMOS15を省いて第6図に示した構
造にしても第3図に示した構造に比べて特性の大
きな悪化はなく、少なくとも従来構造よりは優れ
た立上がり特性をもつインバータを得ることがで
きる。なお、29はn型不純物層である。
Therefore, even if the pMOS15 is omitted and the structure shown in FIG. 6 is used, the characteristics will not deteriorate significantly compared to the structure shown in FIG. 3, and at least an inverter with better start-up characteristics than the conventional structure can be obtained. . Note that 29 is an n-type impurity layer.

ここまでは、nウエルとpウエルの両方を形成
するCMOS構造のICあるいはこの構造を一部に
持つICについて説明してきたが、本発明による
素子は、n型基板を用いてpウエルを形成する
CMOS構造あるいはp型基板を用いてnウエル
を形成するCMOS構造を少なくとも一部に有す
るICに対しても容易に応用することができる。
Up to this point, we have described ICs with a CMOS structure that forms both an n-well and a p-well, or ICs that partially have this structure, but the device according to the present invention uses an n-type substrate to form a p-well.
It can also be easily applied to an IC having at least a portion of a CMOS structure or a CMOS structure in which an n-well is formed using a p-type substrate.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来のIC製造プロセスを全
く変更することなく、高速でしかも高集積化が可
能な素子構造を有する半導体装置、より具体的に
はCMOSインバータが得られる。
According to the present invention, it is possible to obtain a semiconductor device, more specifically a CMOS inverter, having an element structure that allows high speed and high integration without changing the conventional IC manufacturing process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のCMOSインバータを示す図、
第2図は本発明による素子構造を示す図、第3図
は本発明による素子をCMOSインバータに適用
した構造を示す図、第4図は第3図のインバータ
回路をIC化したときのパターン図、第5図は本
発明によるインバータを組み込んだバツフア回路
の一例を示す図、第6図は第3図に示した本発明
実施例の変形例を示す図である。 1……半導体基板、2……nウエル、3……p
ウエル、4……p型不純物層、5……n型不純物
層、6……ゲート導電帯層、7……ゲート酸化
膜、8……厚い酸化膜、9……電源、10……導
電膜、11……負荷容量、12……負荷pMOS、
13……駆動nMOS、14……nMOS、15……
pMOS、16……nウエルとpウエルの境界、1
7……素子形成領域とフイールド領域の境界、1
8……導電帯層、19……コンタクト穴、20…
…配線層、21……pMOS、22,23,24,
25……nMOS、26,27……バイポーラ
NPNトランジスタ、28……本発明によるイン
バータ部分、29……n型不純物層、A〜G……
回路中のノード。
Figure 1 shows a conventional CMOS inverter.
Fig. 2 is a diagram showing the structure of an element according to the present invention, Fig. 3 is a diagram showing a structure in which the element according to the invention is applied to a CMOS inverter, and Fig. 4 is a pattern diagram when the inverter circuit of Fig. 3 is integrated into an IC. , FIG. 5 is a diagram showing an example of a buffer circuit incorporating an inverter according to the present invention, and FIG. 6 is a diagram showing a modification of the embodiment of the present invention shown in FIG. 3. 1...Semiconductor substrate, 2...n well, 3...p
well, 4... p-type impurity layer, 5... n-type impurity layer, 6... gate conductive band layer, 7... gate oxide film, 8... thick oxide film, 9... power supply, 10... conductive film , 11...Load capacitance, 12...Load pMOS,
13... Drive nMOS, 14... nMOS, 15...
pMOS, 16...Boundary between n-well and p-well, 1
7... Boundary between element formation region and field region, 1
8... Conductive band layer, 19... Contact hole, 20...
...Wiring layer, 21...pMOS, 22, 23, 24,
25...nMOS, 26,27...Bipolar
NPN transistor, 28... Inverter portion according to the present invention, 29... n-type impurity layer, A to G...
Nodes in a circuit.

Claims (1)

【特許請求の範囲】 1 第1導電型の半導体基板中に第2導電型の半
導体領域と第1導電型の半導体領域とを形成し、
第2導電型の半導体領域内に設けた第1導電型の
半導体層をソースおよびドレインとし前記両半導
体領域上に配置した絶縁膜を介して設けた第導電
膜をゲートとする第1MOSトランジスタと、第1
導電型の半導体領域内に設けた第2導電型の半導
体層をソースおよびドレインとし前記絶縁膜を介
して設けた導電膜をゲートとする第2MOSトラン
ジスタとからなる部分を少なくとも一部に含み集
積化された半導体装置において、上記両半導体領
域の境界上に前記絶縁膜を介して導電膜を設けて
これをゲートとし前記第1導電型の半導体領域と
前記第1導電型の半導体層とをドレインおよびソ
ースとする第3MOSトランジスタと、第3MOSト
ランジスタとゲートを共有し前記第2導電型の半
導体領域と前記第2導電型の半導体層とをドレイ
ンおよびソースとする第4MOSトランジスタとを
形成したことを特徴とする半導体装置。 2 特許請求の範囲第1項において、半導体装置
が第1MOSトランジスタを駆動MOSトランジス
タとし、第2MOSトランジスタを負荷MOSトラ
ンジスタとするインバータ回路であり、第1MOS
トランジスタのソースに第4MOSトランジスタの
ドレインを接続し、第2MOSトランジスタのソー
スに第3MOSトランジスタのドレインを接続する
とともに、第1および第2MOSトランジスタのド
レイン並びに第3および第4MOSトランジスタの
ソースをお互に接続しインバータ回路の出力端子
とする一方、第3および第4MOSトランジスタの
前記共通ゲートには前記駆動および負荷MOSト
ランジスタのゲートに入力する信号と逆位相の信
号を入力することを特徴とする半導体装置。 3 第1導電型の半導体基板中に第2導電型の半
導体領域と第1導電型の半導体領域とを形成し、
第2導電型の半導体領域内に設けた第1導電型の
半導体層をソースおよびドレインとし前記両半導
体領域上に配置した絶縁膜を介して設けた導電膜
をゲートとする第1MOSトランジスタと、第1導
電型の半導体領域内に設けた第2導電型の半導体
層をソースおよびドレインとし前記絶縁膜を介し
て設けた導電膜をゲートとする第2MOSトランジ
スタとからなる部分を少なくとも一部に含み集積
化された半導体装置において、上記両半導体領域
の境界上に前記絶縁膜を介して導電膜を設けてこ
れをゲートとし前記第1導電型の半導体領域と前
記第1導電型の半導体層とをドレインおよびソー
スとする第3MOSトランジスタを形成したことを
特徴とする半導体装置。 4 特許請求の範囲第3項において、第3MOSト
ランジスタのドレインとなる第1導電型の半導体
領域の前記境界に近い表面部分が第1導電型の不
純物層を含むことを特徴とする半導体装置。 5 特許請求の範囲第3項または第4項におい
て、半導体装置が第1MOSトランジスタを駆動
MOSトランジスタとし、第2MOSトランジスタ
を負荷MOSトランジスタとするインバータ回路
であり、第2MOSトランジスタのソースに第
3MOSトランジスタのドレインを接続するととも
に、第1および第2MOSトランジスタのドレイン
と第3MOSトランジスタのソースをお互いに接続
してインバータ回路の出力端子とする一方、第
3MOSトランジスタの前記ゲートには前記駆動お
よび負荷MOSトランジスタのゲートに入力する
信号と逆位相の信号を入力することを特徴とする
半導体装置。
[Claims] 1. A semiconductor region of a second conductivity type and a semiconductor region of a first conductivity type are formed in a semiconductor substrate of a first conductivity type,
a first MOS transistor whose source and drain are a semiconductor layer of a first conductivity type provided in a semiconductor region of a second conductivity type, and whose gate is a first conductive film provided via an insulating film disposed on both the semiconductor regions; 1st
A second conductive type semiconductor layer provided in a conductive type semiconductor region is used as a source and a drain, and a conductive film provided via the insulating film is used as a gate. In the semiconductor device, a conductive film is provided on the boundary between the two semiconductor regions via the insulating film, and the conductive film is used as a gate, and the semiconductor region of the first conductivity type and the semiconductor layer of the first conductivity type are connected as a drain and a conductive film. A third MOS transistor is formed as a source, and a fourth MOS transistor shares a gate with the third MOS transistor and uses the second conductivity type semiconductor region and the second conductivity type semiconductor layer as a drain and a source. semiconductor device. 2. In claim 1, the semiconductor device is an inverter circuit in which the first MOS transistor is a drive MOS transistor and the second MOS transistor is a load MOS transistor;
The drain of the fourth MOS transistor is connected to the source of the transistor, the drain of the third MOS transistor is connected to the source of the second MOS transistor, and the drains of the first and second MOS transistors and the sources of the third and fourth MOS transistors are connected to each other. The semiconductor device is characterized in that the common gates of the third and fourth MOS transistors are connected to each other as output terminals of an inverter circuit, and a signal having an opposite phase to a signal input to the gates of the drive and load MOS transistors is input to the common gates of the third and fourth MOS transistors. . 3 forming a second conductivity type semiconductor region and a first conductivity type semiconductor region in a first conductivity type semiconductor substrate;
a first MOS transistor whose source and drain are a semiconductor layer of a first conductivity type provided in a semiconductor region of a second conductivity type, and whose gate is a conductive film provided via an insulating film disposed on both the semiconductor regions; A second conductive type semiconductor layer provided in a first conductive type semiconductor region is used as a source and a drain, and a conductive film provided through the insulating film is used as a gate. In the semiconductor device, a conductive film is provided on the boundary between the two semiconductor regions via the insulating film, and the conductive film is used as a gate and the semiconductor region of the first conductivity type and the semiconductor layer of the first conductivity type are connected as a drain. and a third MOS transistor serving as a source. 4. The semiconductor device according to claim 3, wherein a surface portion of the semiconductor region of the first conductivity type, which becomes the drain of the third MOS transistor, near the boundary includes an impurity layer of the first conductivity type. 5 In claim 3 or 4, the semiconductor device drives the first MOS transistor.
This is an inverter circuit in which a MOS transistor is used as a load MOS transistor, and a second MOS transistor is used as a load MOS transistor.
The drains of the three MOS transistors are connected, and the drains of the first and second MOS transistors and the source of the third MOS transistor are connected to each other to form the output terminal of the inverter circuit.
A semiconductor device characterized in that a signal having an opposite phase to a signal input to the gates of the drive and load MOS transistors is input to the gate of the 3MOS transistor.
JP59015801A 1984-01-31 1984-01-31 Semiconductor device Granted JPS60160651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59015801A JPS60160651A (en) 1984-01-31 1984-01-31 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59015801A JPS60160651A (en) 1984-01-31 1984-01-31 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS60160651A JPS60160651A (en) 1985-08-22
JPH0441505B2 true JPH0441505B2 (en) 1992-07-08

Family

ID=11898938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59015801A Granted JPS60160651A (en) 1984-01-31 1984-01-31 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS60160651A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6424626A (en) * 1987-07-21 1989-01-26 Nippon Telegraph & Telephone Digital control type variable capacitor device
JPH02168666A (en) * 1988-09-29 1990-06-28 Mitsubishi Electric Corp Complementary semiconductor device and manufacture thereof
US5181094A (en) * 1988-09-29 1993-01-19 Mitsubishi Denki Kabushiki Kaisha Complementary semiconductor device having improved device isolating region
US5021858A (en) * 1990-05-25 1991-06-04 Hall John H Compound modulated integrated transistor structure
JPH0492913U (en) * 1990-12-27 1992-08-12
JP3808116B2 (en) * 1995-04-12 2006-08-09 富士電機デバイステクノロジー株式会社 High voltage IC
EP0738011B1 (en) 1995-04-12 2014-12-10 Fuji Electric Co., Ltd. High voltage integrated circuit, high voltage junction terminating structure, and high voltage MIS transistor

Also Published As

Publication number Publication date
JPS60160651A (en) 1985-08-22

Similar Documents

Publication Publication Date Title
EP0243603B1 (en) Binary logic circuit
JPH0552687B2 (en)
JP2001352077A (en) Soi field effect transistor
JPH10340998A (en) Semiconductor device
US6462585B1 (en) High performance CPL double-gate latch
JP3264622B2 (en) Semiconductor device
JPH0441505B2 (en)
JPH0255950B2 (en)
JP2003142681A (en) Semiconductor device with insulated gate field effect transistor
EP0114382B1 (en) Mos semiconductor device having a fet and a metal wiring layer
JPH0535927B2 (en)
EP0467361B1 (en) BICMOS gate array device
JPH1028045A (en) Mos transistor circuit
JPS626370B2 (en)
JPS5944782B2 (en) semiconductor integrated circuit
JPS5943828B2 (en) Manufacturing method of MOS type integrated circuit
JPS62104313A (en) Semiconductor integrated circuit device
EP0472945A2 (en) Semiconductor integrated circuit
KR100244287B1 (en) Cmosfet
JP2002536820A (en) Method and apparatus for eliminating the effects of parasitic bipolars in complementary oxide semiconductor (CMOS) silicon-on-insulator (SOI) circuits
JP2939275B2 (en) Semiconductor integrated circuit device
JPH05268058A (en) Gate circuit and semiconductor device including the same
JPH04219019A (en) Semiconductor integrated circuit
JPH0586865B2 (en)
JPS6195605A (en) Semiconductor integrated circuit device