JPS61283158A - Complementary mos transistor circuit - Google Patents

Complementary mos transistor circuit

Info

Publication number
JPS61283158A
JPS61283158A JP60125408A JP12540885A JPS61283158A JP S61283158 A JPS61283158 A JP S61283158A JP 60125408 A JP60125408 A JP 60125408A JP 12540885 A JP12540885 A JP 12540885A JP S61283158 A JPS61283158 A JP S61283158A
Authority
JP
Japan
Prior art keywords
region
semiconductor substrate
well
type
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60125408A
Other languages
Japanese (ja)
Inventor
Hideo Takahashi
秀雄 高橋
Kiyonobu Hinooka
日野岡 清伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60125408A priority Critical patent/JPS61283158A/en
Publication of JPS61283158A publication Critical patent/JPS61283158A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent a latchup from occurring by forming a well for preventing the latchup between a plurality of separated and insulated wells, and applying the lowest or highest potential therebetween. CONSTITUTION:A P-well region 20 for preventing a latchup separated from P-well regions 2, 13 is connected through a P<+> type region 19 with a negative power source VSS. Thus, when the energizing order of the power sources is GND, VSS, VDD, the GND is first connected and then the power source VSS is connected. Then, an N-type semiconductor substrate 1 is reduced to a negative potential by the junction capacity between the region 2 and an N-type semiconductor substrate 1. Thus, a forward voltage is applied to the region 13 and the substrate 1, and holes generated from the region 13 pass the substrate 1. Since a P-type well region 20 connected with the power source VSS is presented, the holes are implanted to the region 20 to remarkably reduce the holes which arrive at the region 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、相補型MOSトランジスタ回路に関し、特に
ラッチアップ防止用領域を有する相補型MO8トランジ
スタ回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a complementary MOS transistor circuit, and more particularly to a complementary MO8 transistor circuit having a latch-up prevention region.

〔従来の技術〕[Conventional technology]

相補型MOSトランジスタ回路(以下0M08回路とい
う)は、例えばN型半導体基板上にPチャネルMO8ト
ランジスタと、島状に形成されたPウェル領域上に設け
られたNチャネルMOSトランジスタを使用し構成され
ている。こうした0M08回路により構成された半導体
装置は細形式の回路を使用した半導体装置に比べて、消
費電力の点で特に優れており広い分野で使用されている
。また、近年、アナログ回路またはアナログ・デジタル
混在回路においても次第に0MO8i用いた回路化が進
み、複数電源で使用される場合も多くなってきた。
A complementary MOS transistor circuit (hereinafter referred to as 0M08 circuit) is constructed using, for example, a P-channel MO8 transistor on an N-type semiconductor substrate and an N-channel MOS transistor provided on a P-well region formed in an island shape. There is. Semiconductor devices constructed using such 0M08 circuits are particularly superior in terms of power consumption compared to semiconductor devices using thin circuits, and are used in a wide range of fields. Furthermore, in recent years, analog circuits or analog/digital mixed circuits are increasingly using 0MO8i, and are increasingly being used with multiple power supplies.

従来の複数電源0M08回路、特に3電源の場合は第2
図に示す構造となっている。
Conventional multiple power supply 0M08 circuit, especially in the case of 3 power supplies, the second
The structure is shown in the figure.

第2図において13は例えばN型半導体基板1上に形成
されたPウェル領域であり、その領域上に9をN生型ソ
ース領域、11をゲート電極、12t−N+型ドレイン
領域とする第1のNチャネルMOSトランジスタが設け
られている。8はPウェル領域13を接地するためのP
十型領域である。
In FIG. 2, 13 is, for example, a P well region formed on the N type semiconductor substrate 1, and on this region there is a first well region with 9 as an N source region, 11 as a gate electrode, and 12t-N+ type drain region. N-channel MOS transistors are provided. 8 is a P well region 13 for grounding.
This is the 10-type area.

また、N型半導体基板1上に14.17をそれぞれP生
型のドレイン、ソース領域、16をゲート電極と、する
第1のPチャネルMO8トランジスタが設けられている
。18はN型半導体基板1に電源VDDを与えるための
N中型領域である。この第10PチャネルMO8トラン
ジスタのP中型ソース領域17を正電源VDDに接続し
、ゲート電極16とP+ドレイン領域14を第2のNチ
ャネhMO8トtンジスタのゲート電極11とN+ドレ
イン領域12にそれぞれ接続する。N中型ソース領域9
t−接地しているので、第1のPチャネルMO8トラン
ジスタと第1ONチャネルMO8トランジスタからなる
この回路はVIN 1を入力とし、VOUTI  t−
出力とする単純なインバータとなる。
Further, a first P-channel MO8 transistor is provided on the N-type semiconductor substrate 1, with 14 and 17 serving as P-type drain and source regions, and 16 serving as a gate electrode. Reference numeral 18 denotes an N medium-sized region for applying a power supply VDD to the N-type semiconductor substrate 1. The P medium source region 17 of this tenth P-channel MO8 transistor is connected to the positive power supply VDD, and the gate electrode 16 and P+ drain region 14 are respectively connected to the gate electrode 11 and N+ drain region 12 of the second N-channel MO8 transistor. do. N medium source region 9
Since t- is grounded, this circuit consisting of a first P-channel MO8 transistor and a first ON-channel MO8 transistor takes VIN 1 as an input and VOUTI t-
It becomes a simple inverter with output.

また、2はPウェル領域13とは互いに分離絶縁された
他のPウェル領域であり、その領域上に4t−N+型ノ
ース領域とし負電源vBsに接続し、6をゲート電極、
7をN十型ドレイン領域とする第2のNチャネルMOS
トランジスタが設けられている。3はP十型領域であシ
、負電源VSSに接続されPウェル2にVBBを与えて
いる。この第2ONチャネルMO8トランジスタのゲー
ト電極6は入力となりVIN2に接続され、N中型ドレ
イン領域7は出力votr〒2に接続されている。尚第
2図において5,10.15はゲート酸化膜である。
Further, 2 is another P well region which is isolated and insulated from the P well region 13, and a 4t-N+ type north region is formed on the region and connected to the negative power supply vBs, and 6 is a gate electrode;
a second N-channel MOS with 7 as an N-type drain region;
A transistor is provided. 3 is a P-type region, which is connected to the negative power supply VSS and applies VBB to the P well 2. The gate electrode 6 of this second ON channel MO8 transistor becomes an input and is connected to VIN2, and the N medium drain region 7 is connected to the output votr2. In FIG. 2, numerals 5, 10, and 15 are gate oxide films.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の3電源CMO8回路は、電源投入の順序
によってう、チア、プが起こる場合がある。
In the above-mentioned conventional three-power CMO8 circuit, a chip, a chip, or a drop may occur depending on the order in which the power is turned on.

第2図において、Pウェル領域13とN型半導体基板1
とPウェル領域2f:、それぞれ、エミッタ。
In FIG. 2, a P well region 13 and an N type semiconductor substrate 1 are shown.
and P-well region 2f:, respectively, emitter.

ベース、コレクタとする寄生PNPトランジスタTrl
とm2のNチャネルMOSトランジスタのN十型ソース
領域4とPフェル領域2とN型半導体基板1をそれぞれ
エミ、り、ベース、コレクタとする寄生NPN トラン
ジスタTr2が形成されるが、電源投入順序をGND 
、 VBB、VDDにするとこれら寄生トランジスタに
よりう、チアツブが発生し易いという欠点がある。第3
図は第2図における寄生トランジスタ接続の等価回路で
あるが、これを交えて説明する。
Parasitic PNP transistor Trl as base and collector
A parasitic NPN transistor Tr2 is formed with the N0-type source region 4, P-fel region 2, and N-type semiconductor substrate 1 of the N-channel MOS transistor Tr2 as the emitter, base, and collector, respectively. GND
, VBB, and VDD, these parasitic transistors tend to cause chirps, which is a drawback. Third
The diagram shows an equivalent circuit of the parasitic transistor connection in FIG. 2, and will be explained using this diagram.

まず、GNDt−投入し、次に負電源VS8を投入する
と、Pウェル2の電位は負電位V8gとなり、Pウェル
2とN型半導体基板1との間の接合容量によりN型半導
体基板1は負電位に下がる。するとPウェル13とN型
半導体基板1に順方向電圧が加わり、Pウェル13から
発生したホールはN型半導体基板1を通りPウェル2に
入り、負電源VSSに注入される。
First, when GNDt- is applied, and then the negative power supply VS8 is applied, the potential of the P well 2 becomes a negative potential V8g, and the junction capacitance between the P well 2 and the N type semiconductor substrate 1 causes the N type semiconductor substrate 1 to become negative. The potential drops. Then, a forward voltage is applied to the P-well 13 and the N-type semiconductor substrate 1, and holes generated from the P-well 13 pass through the N-type semiconductor substrate 1 and enter the P-well 2, and are injected into the negative power supply VSS.

すなわち、寄生PNPトランジスタTr1のベース電位
が、下がり、スレ、シ冒ルド電圧を超えTriはオンし
始め抵抗分割点21の電位はしだいに上がってくる。抵
抗分割点21はを生抵抗R6を通して、寄生NPNトラ
ンジスタTr2のベースに接続されているので、スレッ
シッルド電圧を超えるとTr2はオンし始める。寄生ト
ランジスタTri、Tr2は、正帰還ループになってい
るので、寄生PNP)7ンジスタTriを流れる電流は
しだいに大きくなりついには熱的に破壊されてしまう欠
点がある。
That is, the base potential of the parasitic PNP transistor Tr1 decreases and exceeds the threshold voltage, and Tri begins to turn on and the potential at the resistance dividing point 21 gradually rises. Since the resistance dividing point 21 is connected to the base of the parasitic NPN transistor Tr2 through the raw resistance R6, Tr2 starts to turn on when the threshold voltage is exceeded. Since the parasitic transistors Tri and Tr2 form a positive feedback loop, the current flowing through the parasitic PNP transistor Tri gradually increases, and the disadvantage is that it is eventually thermally destroyed.

本発明の目的は、上記欠点を除去し、ラッチア、プの生
じない信頼性の向上した相補型MOSトランジスタ回路
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and provide a complementary MOS transistor circuit with improved reliability and no latch or pull-up.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の相補型MOSトランジスタ回路は、第1導電型
半導体基板上に形成された第2導電型チャネルを有する
MOSトランジスタと島状に設けられた互いに電位の異
なる第2導電型ウェル領域上に設けられた第1導電型チ
ャネルを有するMOSトランジスタからなる0M08回
路であって、複数の第2導電型ウェル領域の間にう、テ
アツブ防止用の第2導電捜ウェル領域を設は最低電位源
又は最高電位源に接続する構造としたものである。
A complementary MOS transistor circuit of the present invention includes a MOS transistor having a second conductivity type channel formed on a first conductivity type semiconductor substrate and a second conductivity type well region provided in an island shape and having a different potential from each other. A 0M08 circuit consisting of a MOS transistor having a channel of a first conductivity type, in which a second conductivity search well region for preventing teardown is provided between a plurality of well regions of a second conductivity type, and a second conductivity search well region is provided between the lowest potential source or the highest potential source. The structure is such that it is connected to a potential source.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の断面図である。第1図にお
いて、1はN型半導体基板、13は、N型半導体基板1
上に形成されたPウェル領域であり、その領域上に9,
11.12をそれぞれN生型ソース領域、ゲート電極、
N生型ドレイン領域とする第1のNチャネルMO8トラ
ンジスタが設けられている。8はPウェルを接地するた
めのP生型領域である。また、N型半導体基板1上には
14゜16.17’tそれぞれp−1−23ドレイン領
域、ゲート電極、P生型ソース領域とする第10Pチャ
ネルMOSトランジスタが設けられている。18はN型
半導体基板1に電源VDDを与えるためのN中型領域で
ある。
FIG. 1 is a sectional view of an embodiment of the present invention. In FIG. 1, 1 is an N-type semiconductor substrate, 13 is an N-type semiconductor substrate 1
A P-well region is formed on top of the P-well region, and 9,
11.12 are N-type source region, gate electrode,
A first N-channel MO8 transistor with an N-type drain region is provided. 8 is a P-type region for grounding the P-well. Further, on the N-type semiconductor substrate 1, a tenth P-channel MOS transistor is provided, each having a p-1-23 drain region, a gate electrode, and a P-type source region at 14°16.17't. Reference numeral 18 denotes an N medium-sized region for applying a power supply VDD to the N-type semiconductor substrate 1.

この第10PチャネルMO8トランジスタのP+型ンソ
ー領域17を正電源VDDに接続し、ゲート電極16と
P中型ドレイン領域14とを第1のNチャネルMO8ト
ランジスタのゲート電極11とN中型ドレイン領域12
にそれぞれ接続しN中型ソース領域9を接地しているの
でこの回路は■rN1を入力としs Votrrlt−
出力とする単純なインバータとなる。
The P+ type source region 17 of the tenth P channel MO8 transistor is connected to the positive power supply VDD, and the gate electrode 16 and the P medium drain region 14 are connected to the gate electrode 11 and the N medium drain region 12 of the first N channel MO8 transistor.
Since the N medium-sized source region 9 is grounded, this circuit inputs ■rN1 and sVotrrlt-
It becomes a simple inverter with output.

また、2はPウェル領域13とは互いに分離絶縁された
他のPウェル領域であり、その領域上に4 、6 、7
t−それぞれN生型ソース領域、ゲート電極、N生型ド
レイン領域とし、N十型ソース領域4を負・電源VSS
に接続した第2のNチャネルMO8トランジスタが設ら
れている。3はP生型領域であり、負電源vssK接続
されPウェル領域2にVss t−与えている。
Further, 2 is another P-well region which is isolated and insulated from the P-well region 13, and 4, 6, 7 are placed on that region.
t-N-type source region, gate electrode, and N-type drain region, respectively, and the N0-type source region 4 is connected to the negative power source VSS.
A second N-channel MO8 transistor is provided. 3 is a P type region, which is connected to a negative power supply vssK and is applied to the P well region 2 at Vss t-.

20は、2.13のPウェル領域とは分離されたラッチ
アップ防止用のPウェル領域であり、19のヒ型領域を
通して、VSS接続されている。このため電源の投入順
序がGND、vss、VDDの場合、まずGNDt−投
入し、次に負電源vssとすると、Pウェル領域2とN
型半導体基板1との間の接合容量により、N型半導体基
板1は負電位に下がる。
20 is a P-well region for preventing latch-up, which is separated from the P-well region 2.13, and is connected to VSS through the H-type region 19. Therefore, if the power supply order is GND, vss, and VDD, first GNDt- is turned on, and then the negative power supply is turned on vss, P well region 2 and N
Due to the junction capacitance between the N-type semiconductor substrate 1 and the N-type semiconductor substrate 1, the potential of the N-type semiconductor substrate 1 is lowered to a negative potential.

するとPウェル領域13とN型半導体基板1に順方向電
圧が加わりPウェル領域13から発生したホールは、N
型半導体基板1を通過する。≠4しかし負電位V88に
落とされ九Pウェル領域20が存在するため、ホールは
Pウェル領域20に注入されPウェル領域2に到達する
ホールは著しく減少することになる。
Then, a forward voltage is applied to the P-well region 13 and the N-type semiconductor substrate 1, and the holes generated from the P-well region 13 become N-type semiconductor substrate 1.
type semiconductor substrate 1 . ≠4 However, since the negative potential V88 exists and there is a 9P well region 20, holes are injected into the P well region 20, and the number of holes reaching the P well region 2 is significantly reduced.

すなわち第3図の寄生PNPトランジスタTr1のエミ
ッタ接地の電流増幅率が等測的に低くなり例え寄生PN
PトランジスタTrlがオンしてもVSSはほぼTrl
のエミッタコレクタ間に加わり、従って抵抗分割点21
の電位は高くならず、Tr2はオンしない。よってGN
D 、 Vss間の電流、つまりTriのエミッタ、コ
レクタ間に流れる電流は大きくならず熱的な破壊は起こ
ることはなくなる。
In other words, the current amplification factor of the common emitter of the parasitic PNP transistor Tr1 in FIG.
Even if P transistor Trl is turned on, VSS is almost Trl
is applied between the emitter and collector of
The potential of Tr2 does not become high, and Tr2 does not turn on. Therefore, GN
The current between D and Vss, that is, the current flowing between the emitter and collector of Tri, does not increase, and no thermal breakdown occurs.

上記実施例においてはN型半導体基板を用いた場合につ
いて説明したが、P型半導体基板を用いてもよい。この
場合はう、チアツブ防止用のNウェル領域に最高電位全
印加することになる。
Although the above embodiments have been described using an N-type semiconductor substrate, a P-type semiconductor substrate may also be used. In this case, the highest potential is fully applied to the N-well region for preventing chipping.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば分離絶縁された複数
のウェル領域間にラッチアップ防止用のフェル領域を設
けて最低電位または最高電位を印加することにより、ラ
ッチアップの生じるのを防止した高信頼性を有する相補
型MOSトランジスタ回路が得られるのでその効果は大
きい。
As explained above, according to the present invention, a latch-up prevention fell region is provided between a plurality of isolated and insulated well regions, and a minimum potential or a maximum potential is applied, thereby preventing latch-up from occurring. The effect is great because a reliable complementary MOS transistor circuit can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第2図は従来
の相補型MO8トランジスタ回路の断面図、第3図は第
2図における寄生トランジスタ、寄生抵抗、寄生容量に
よる等価回路図である。 1・・・・・・N型半導体基板、2,13,20・・・
・・・Pウェル領域、3,8,19・・・・・・P生型
領域、4,9・・・・・・N中型ソース領域、5,10
,15・・・・・・ゲート酸化膜、6,11,16・・
・・・・ゲート電極、7,12・・・・・・N生型ドレ
イン領域、14・・・・・・P中型ドレイン領域、17
・・・・・・P十型ソース領域、18・・・・・・N+
型領領域几1 * J e R8t R4t R’5 
*几、、R1・・・・・・寄生抵抗、C・・・・・・寄
生容量、Tri・・・・・・寄生PNPトランジスタ、
Tr2・・・・・・寄生NPNトランジスタ、VINI
、VIN2 、、、、、、入力、VOUTI e VO
UT 2−・・・出力、VDD・・・・・・正電源、V
SS・・・・−・負電源、GND第1図 第2図 、、−GND 第3図
Fig. 1 is a cross-sectional view showing an embodiment of the present invention, Fig. 2 is a cross-sectional view of a conventional complementary MO8 transistor circuit, and Fig. 3 is an equivalent circuit diagram of a parasitic transistor, parasitic resistance, and parasitic capacitance in Fig. 2. It is. 1... N-type semiconductor substrate, 2, 13, 20...
...P well region, 3,8,19...P raw type region, 4,9...N medium source region, 5,10
, 15... Gate oxide film, 6, 11, 16...
...Gate electrode, 7, 12...N raw drain region, 14...P medium drain region, 17
......P ten-type source region, 18...N+
Type area 几1 * J e R8t R4t R'5
*R1...parasitic resistance, C...parasitic capacitance, Tri...parasitic PNP transistor,
Tr2... Parasitic NPN transistor, VINI
, VIN2 , , , , input, VOUTI e VO
UT 2-...Output, VDD...Positive power supply, V
SS・・・・・・Negative power supply, GND Fig. 1 Fig. 2, -GND Fig. 3

Claims (1)

【特許請求の範囲】[Claims] 第1導電型半導体基板上に形成された第2導電型チャネ
ルを有するMOSトランジスタと、島状に設けられた互
いに電位の異なる複数の第2導電型ウェル領域上に設け
られた第1導電型チャネルを有するMOSトランジスタ
からなる相補型MOSトランジスタ回路において、前記
複数の第2導電型ウェル領域の間に最低電位源または最
高電位源に接続されるラッチアツプ防止用の第2導電型
ウェル領域を設けたことを特徴とする相補型MOSトラ
ンジスタ回路。
A MOS transistor having a second conductivity type channel formed on a first conductivity type semiconductor substrate, and a first conductivity type channel provided on a plurality of second conductivity type well regions provided in an island shape and having mutually different potentials. In a complementary MOS transistor circuit comprising MOS transistors having a MOS transistor, a second conductivity type well region for latch-up prevention connected to a lowest potential source or a highest potential source is provided between the plurality of second conductivity type well regions. A complementary MOS transistor circuit characterized by:
JP60125408A 1985-06-10 1985-06-10 Complementary mos transistor circuit Pending JPS61283158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60125408A JPS61283158A (en) 1985-06-10 1985-06-10 Complementary mos transistor circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60125408A JPS61283158A (en) 1985-06-10 1985-06-10 Complementary mos transistor circuit

Publications (1)

Publication Number Publication Date
JPS61283158A true JPS61283158A (en) 1986-12-13

Family

ID=14909371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60125408A Pending JPS61283158A (en) 1985-06-10 1985-06-10 Complementary mos transistor circuit

Country Status (1)

Country Link
JP (1) JPS61283158A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63287053A (en) * 1987-05-19 1988-11-24 Nec Corp Semiconductor integrated circuit device
JPS63318767A (en) * 1987-06-22 1988-12-27 Nec Corp Complementary semiconductor integrated circuit
US5153699A (en) * 1988-02-15 1992-10-06 Kabushiki Kaisha Toshiba Semiconductor device
US5726478A (en) * 1994-07-06 1998-03-10 Siemens Aktiengesellschaft Integrated power semiconductor component having a substrate with a protective structure in the substrate
JP2007081009A (en) * 2005-09-13 2007-03-29 Matsushita Electric Ind Co Ltd Drive circuit and data line driver

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650555A (en) * 1979-10-01 1981-05-07 Hitachi Ltd Switching circuit formed in semiconductor integrated circuit device and multilevel voltage generation circuit using the same
JPS5848960A (en) * 1982-09-03 1983-03-23 Hitachi Ltd Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650555A (en) * 1979-10-01 1981-05-07 Hitachi Ltd Switching circuit formed in semiconductor integrated circuit device and multilevel voltage generation circuit using the same
JPS5848960A (en) * 1982-09-03 1983-03-23 Hitachi Ltd Semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63287053A (en) * 1987-05-19 1988-11-24 Nec Corp Semiconductor integrated circuit device
JPS63318767A (en) * 1987-06-22 1988-12-27 Nec Corp Complementary semiconductor integrated circuit
US5153699A (en) * 1988-02-15 1992-10-06 Kabushiki Kaisha Toshiba Semiconductor device
US5726478A (en) * 1994-07-06 1998-03-10 Siemens Aktiengesellschaft Integrated power semiconductor component having a substrate with a protective structure in the substrate
JP2007081009A (en) * 2005-09-13 2007-03-29 Matsushita Electric Ind Co Ltd Drive circuit and data line driver

Similar Documents

Publication Publication Date Title
US4327368A (en) CMOS Transistor pair with reverse biased substrate to prevent latch-up
US5376816A (en) Bi-cmos integrated circuit device having buried region use in common for bipolar and mos transistors
JP3246807B2 (en) Semiconductor integrated circuit device
KR950007573B1 (en) Semiconductor device
JP2959528B2 (en) Protection circuit
JP3120447B2 (en) Circuits for dynamic separation of integrated circuits
JPH0697684B2 (en) Push-pull output buffer
KR100243496B1 (en) Semiconductor device
JPS63279491A (en) Semiconductor dynamic ram
JPS61283158A (en) Complementary mos transistor circuit
JP3499578B2 (en) Semiconductor integrated circuit
JPS58130557A (en) C-mos device
JP2661318B2 (en) Semiconductor device
JPH09199607A (en) Cmos semiconductor device
JP3547906B2 (en) Semiconductor integrated circuit device
JPH0494161A (en) Input-output protection device for integrated circuit
JPS5944782B2 (en) semiconductor integrated circuit
JPH0313754B2 (en)
JPS6085623A (en) Cmos integrated circuit device
US6275095B1 (en) Semiconductor amplifier circuit
JP3274561B2 (en) Semiconductor integrated circuit
JPH0532908B2 (en)
JPH05206387A (en) Semiconductor integrated circuit
KR950007575B1 (en) Semiconductor device
JPS61187361A (en) Monolithic integrated circuit