JPS62122077A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery

Info

Publication number
JPS62122077A
JPS62122077A JP60262039A JP26203985A JPS62122077A JP S62122077 A JPS62122077 A JP S62122077A JP 60262039 A JP60262039 A JP 60262039A JP 26203985 A JP26203985 A JP 26203985A JP S62122077 A JPS62122077 A JP S62122077A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
negative
plate
increased
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60262039A
Other languages
Japanese (ja)
Inventor
Toshihiko Saito
俊彦 齋藤
Yasuaki Nakane
育朗 中根
Sanehiro Furukawa
古川 修弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60262039A priority Critical patent/JPS62122077A/en
Publication of JPS62122077A publication Critical patent/JPS62122077A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To increase cycle performance of using a clad plate of a metal plate which is alloyed with lithium and a metal plate for negative case as a negative can, and locating the metal plate which is alloyed with lithium inside the case. CONSTITUTION:A positive electrode 2 is pressed against the inner bottom of a positive case 1 made of a 0.33mm thick stainless steel plate through a positive current collector 3. A negative can also serving as a negative electrode is made of a clad plate of a 0.1mm thick aluminum plate 5 acting as negative electrode and a 0.2mm thick stainless steel plate 6 serving as negative can, and the aluminum plate 5 locates inside the can. By using the negative can combined with the negative electrode, its thickness is increased to 0.3mm and mechanical strength in sealing part is increased. Thereby, the effective volume within a battery is increased and the volume of electrolyte is also increased and the cycle performance is improved.

Description

【発明の詳細な説明】 U)産業上の利用分野 本発明は正負極缶とこれらt′−気絶縁する絶縁バッキ
ングとt備えると共にリチウムを負極活物質とする非水
系二次電池に関するものである。
[Detailed Description of the Invention] U) Industrial Field of Application The present invention relates to a non-aqueous secondary battery that includes positive and negative electrode cans, an insulating backing that insulates them from each other, and uses lithium as the negative electrode active material. .

(ロ)従来の技術 この徨二次電池は放電時に負極油物質であるリチウムが
イオンとなって負極から浴出し、光電時にその逆m応で
負惜上に金鵜リチウムとして電析する反応であるが、′
1析リチウムに樹板状に成長する傾向力5あり最終的に
正極に達して内部短絡全引起すという問題がある。
(B) Conventional technology This secondary battery uses a reaction in which lithium, which is a negative electrode oil substance, becomes ions and comes out of the negative electrode during discharge, and is deposited as lithium on the negative electrode by the reverse m reaction during photovoltage. There is, but'
There is a problem that lithium oxide tends to grow in a tree-like shape and eventually reaches the positive electrode, causing an internal short circuit.

このよ5な不都合に対処するため、例えば特開昭52−
5425号公報に開示されているリチウム−アルミニウ
ム合金のようにリチウム会金七負極に用いることが提案
されている。リチウムと合金を形成する金属としてはア
ルミニウムの他に亜鉛、インジウム、シリコン、スズ、
鉛などが挙げられる。リチウム合金の利点は仄述の如く
である。
In order to deal with these five inconveniences, for example,
It has been proposed to use a lithium-aluminum alloy as a lithium-aluminum alloy disclosed in Japanese Patent No. 5425 for a negative electrode. In addition to aluminum, metals that form alloys with lithium include zinc, indium, silicon, tin,
Examples include lead. The advantages of lithium alloys are as described above.

即ち、リチウム単独の場合にはリチウムがイオンとなっ
て溶出すると負極表面が凹凸状となり、その仮の光電の
際、リチウムが凸部に集中的に電析して樹枝状に成長す
るのに対し、リチウム−アルミニウム合金の場合には光
′rjLVfICリチウムが負極の基体となるアルミニ
ウムと合金全形成するように復元するtめリチウムの樹
枝状成長が抑制される九めである。
In other words, in the case of lithium alone, when the lithium is eluted as ions, the negative electrode surface becomes uneven, and during the temporary photovoltage, lithium is deposited intensively on the protrusions and grows in a dendritic shape. In the case of a lithium-aluminum alloy, the dendritic growth of lithium is suppressed because lithium is restored to form an alloy with aluminum, which is the base of the negative electrode.

しかしながらリチウム合金を用いる。嚇合ic’a人述
の問題がある。即ち、リチウム合金粉末の成型体を用い
る場合には機械的頻度に難点があるため結S刑の使用が
必要であり、負惜の製造が煩雑になると共に結着剤の礒
加により篭a性能の劣化に否めない。又リチウム合金板
を用いる場合にに負極と負mtfsとの良好な電気接続
状態を得難い。例えば負極としてのリチウム−アルミニ
ウム合金板と負他山としてのステンレス板とはスポット
溶接が回磁であり1両省?IOE債するのみでに艮好な
電気接続状態が得られない。
However, a lithium alloy is used. There is a problem with people telling each other. In other words, when using a molded body of lithium alloy powder, there is a problem with mechanical frequency, so it is necessary to use a binder, which makes the manufacture of the binder complicated, and the addition of a binder reduces the performance of the binder. It is undeniable that the deterioration of Furthermore, when using a lithium alloy plate, it is difficult to obtain a good electrical connection between the negative electrode and the negative mtfs. For example, for a lithium-aluminum alloy plate as a negative electrode and a stainless steel plate as a negative electrode, spot welding is done by rotating magnetism, which saves one. A good electrical connection cannot be obtained just by using an IOE bond.

(ハ)発明が解次しようとする間m点 本発明に負極にリチウム合金【用いることを基本とし、
リチウム合金の有する上記問題点を解消してサイクル%
注に優れた非水系二次i1に池を得ることを目的とする
◎ に)問題点tN4決する友めの手段 本発明は負他山としてリチウムと合金化反応する釡属板
と缶構取金m&とのクラッド&?用い。
(c) While the invention is about to be resolved, the present invention basically uses a lithium alloy for the negative electrode,
Solving the above problems of lithium alloys and reducing cycle%
The purpose of the present invention is to obtain a pond in a non-aqueous secondary i1 with excellent performance. Clad with m&? use.

リチウムと合金化反応する金NIi&仮が電池内部側に
位置することt特徴とする。
The feature is that gold NIi and gold alloying reaction with lithium are located inside the battery.

尚、リチウムと合金化反応する金属としてはアルミニウ
ム、 亜鉛、インジウム、シリコン、スズ。
Metals that react with lithium include aluminum, zinc, indium, silicon, and tin.

鉛などが挙げられ、又缶傳成金属としてはステンレス、
ニッケル、鉄などが革げられる。
Examples include lead, and can-forming metals include stainless steel,
Nickel, iron, etc. can be leathered.

(ホ)作 用 本発明電池によれば、負極と負他山とが一体化されたも
のであるため両者間に良好な1!気接続状態が維持され
る。又、この櫨゛厄池ではtS液量が多いほどサイクル
特性に向上することが知られており、本発明電池の場合
負他山の一部が負極を構成するものであるため!池内可
動体積が増大し電解液量を増加させることができる友め
サイクル特性が同上する。
(E) Effect According to the battery of the present invention, since the negative electrode and the negative electrode are integrated, there is a good 1! The air connection state is maintained. In addition, it is known that the larger the amount of tS liquid in this Hajiyaku Pond, the better the cycle characteristics, and in the case of the battery of the present invention, a part of the negative electrode constitutes the negative electrode! The above also has a friend cycle characteristic in which the movable volume within the pond increases and the amount of electrolyte can be increased.

(へ)実 施 例 以下本発明の実施例について詳述する。(f) Implementation example Examples of the present invention will be described in detail below.

実施例1 第1図μ本発明の一実施例による扁平型非水電解液二次
電池の半断面図を示し、図VCおいて(1)は厚みC1
aのステンレス板よりなる正極缶であって、その内底面
には正極(2)が正極集電体(3)を介して圧接されて
いる。正極(2)に活物質としての二硫化f 3’ンに
導電剤としてのアセチレンブラック及び結宿剤としての
フッ素af脂全85:10!5の比率で混盆した正極合
剤を虐足瀘秤取し成型し7m%のであり、且この成型体
tリチウム瓜を含む非水嵐解欣情中に8いて電流留置1
mA/−で理論谷型の50%まで放磁し負極活物質とし
てのりチウムイオンをドープさせている。
Example 1 Figure 1 shows a half-sectional view of a flat non-aqueous electrolyte secondary battery according to an example of the present invention, and in Figure VC, (1) has a thickness of C1.
A positive electrode can is made of a stainless steel plate, and a positive electrode (2) is pressure-welded to the inner bottom surface of the positive electrode can via a positive electrode current collector (3). For the positive electrode (2), a positive electrode mixture was mixed in a ratio of 85:10!5 with F3' disulfide as an active material, acetylene black as a conductive agent, and fluorinated africant oil as a binding agent. It was weighed and molded to be 7m%, and this molded body containing t lithium gourd was heated at 8 and a current was placed at 1.
It is demagnetized to 50% of the theoretical valley type at mA/- and doped with lithium ions as a negative electrode active material.

而して、(4)は本発明の貴旨とする負極オ用の負他山
であって負極として作用する厚み0.1mのアルミニウ
ム板(5)と負他山として作用する厚みα2霧のステン
レス板(6)とのクラッド板よりなり、アルミニウム板
(5)が′1a同部側に泣直している。(7;にポリプ
ロピレン表のセパレータ、(8)はカラス1栽維からな
る保液層であり、この保液層にはプロピレンカーボネー
トに過塩素酸リチウムを1モル/l浴解し友邦水電解液
が含浸されている。(9)は絶縁パツ牛ングである。
Therefore, (4) is a negative plate for the negative electrode which is an important feature of the present invention, and includes an aluminum plate (5) with a thickness of 0.1 m which acts as a negative electrode and a plate with a thickness α2 which acts as a negative plate. It consists of a cladding plate with a stainless steel plate (6), and an aluminum plate (5) is attached to the same side of '1a'. (7; is a polypropylene surface separator, (8) is a liquid-retaining layer made of Karasu 1 fiber, and this liquid-retaining layer is made by dissolving 1 mol/l of lithium perchlorate in propylene carbonate and using Yuho water electrolyte. (9) is an insulating package.

そして、この燐酸の4?1は放電状態にあるので光砥奄
訛2.OmAで50時間元電性い、負極をり^ チウムとアルミニウムの合金状態とする。域池寸法は直
径2屯Qam、高さ五〇劇である。この本発明11L池
を(A1)とする。
And since this phosphoric acid 4?1 is in a discharged state, it becomes a 2. The negative electrode is left in the state of an alloy of lithium and aluminum after being charged for 50 hours at OmA. The pond dimensions are 2 ton Qam in diameter and 50 ton Qam in height. This 11L pond of the present invention is referred to as (A1).

実施fl12 負極兼用の負甑缶(4は5負極として作用する厚み0.
1#の亜鉛板と負他山として作用する厚み0゜2uのス
テンレス板とのクラッド板よりなり、亜鉛板が電池内@
11111に位置していることを除いて他は実施例1と
同様の’ML池を組豆て几。この本発明′電電を(A2
)とする。
Implementation fl12 Negative pot can also be used as a negative electrode (4 is 5, thickness 0.5 is used as a negative electrode)
The clad plate consists of a 1# zinc plate and a 0゜2u thick stainless steel plate that acts as a negative surface.The zinc plate is inside the battery.
The 'ML Pond' was the same as in Example 1 except that it was located at 11111. This invention' electricity (A2
).

又、比較の比めに負、他山として厚み0.3鱈のステン
レス板を用い、その内底面に負極としての厚みQ、 1
 Mのアルミニウム板を圧接し7cものt用いる以外S
実施例1と同様の第1の比較4池(Bt)、及び負他山
として厚み0.3flのステンレス板を用い、そのFF
J底面に負極としての厚み0.1 mの亜鉛板全圧接し
たものを用いる以外、実施例1と同様の第2の比較電池
(B2)全天々1・「成し友。
In addition, for comparison, a stainless steel plate with a thickness of 0.3 was used as the negative electrode, and the inner bottom surface had a thickness of Q, 1 as the negative electrode.
Other than press-welding M aluminum plate and using 7c
A first comparison 4 pond (Bt) similar to that in Example 1 and a stainless steel plate with a thickness of 0.3 fl were used as the negative plate, and the FF was
A second comparative battery (B2) was the same as Example 1, except that a 0.1 m thick zinc plate was fully pressure-welded as a negative electrode on the bottom surface of J (B2).

下表はこれら各篭a vC,’Aける6じ電解液亘tボ
し比ものであり、本発明電池(A1)(A2)は電解液
量が比較!池に比して約20%増加していることがわか
る。
The table below shows the comparison of the amount of electrolyte used in each of these 6 types of batteries (A1) and (A2). It can be seen that the amount has increased by about 20% compared to the pond.

この゛亀解液賞を壇刀口さぞうる原因に仄の塩出による
。即ち、絶縁バッキングtブ「してかしめる構造の電池
においてに封口部の機械的5gi戚を保つ之めKに負極
量の厚みとして回定ILiT(本発明の対象とする電電
では0.5−)以上の厚みt仔することが心安である。
The reason why Dantoguchi won this Kameishi Prize is due to Shiide. That is, in order to maintain the mechanical 5G ratio of the sealing part in a battery having a structure in which the insulating backing is crimped, the thickness of the negative electrode is determined as ILiT (0.5- ) or more is safe.

そこで比較電池のように負極と負極量とが個別のものに
あっては負極缶材料目オの厚−’j’to、5Mとし、
別途負極を設ける必要がある。
Therefore, in cases where the negative electrode and the amount of negative electrode are separate, such as the comparison battery, the thickness of the negative electrode can material -'j'to, is set to 5M.
It is necessary to provide a separate negative electrode.

crt、 vc対して本発明電池のように負極と負極量
とを一体化した負極兼用の貝憾fEを用いれば、それ自
身0.3 Mの厚みのものを用いることで封口部の機械
的強度を保つことができるので奄池内有効体積が増大し
′電解液量t−増加させることができる。
For crt and vc, if a negative electrode fE is used which integrates the negative electrode and the negative electrode amount as in the battery of the present invention, the mechanical strength of the sealing part can be improved by using a material with a thickness of 0.3 M. Since this can be maintained, the effective volume within the pond increases and the amount of electrolyte t can be increased.

第2図は′4池のサイクル特注図であって、サイクル条
件は光′RL電流’;:QmAで光′ζ終止電圧4.0
■、−万放電電流2.Q m Aで放電終止電圧15V
とし6時間のサイクル試験を行り几。第2図より本発明
電池(At)(Az)は比較電池(B1〕(B2)に比
してサイクル特性が向上しているのがわかる。
Fig. 2 is a custom-made diagram of the cycle of the '4 cell, and the cycle conditions are the light 'RL current': QmA and the light 'ζ final voltage of 4.0.
■, -10,000 discharge current2. Discharge end voltage 15V at QmA
Then, a 6-hour cycle test was conducted. It can be seen from FIG. 2 that the batteries of the present invention (At) (Az) have improved cycle characteristics compared to the comparative batteries (B1) and (B2).

この理由に本発明’lLa1’Cおいては負燻と負甑缶
とが一体化されたものであるため両者間が良好な電気接
続状態に維持されること及び電池内W効体積が増大して
電解液fき増加さぞつるためである。
The reason for this is that in the 'lLa1'C of the present invention, the negative smoker and negative heating can are integrated, so a good electrical connection between the two can be maintained and the effective volume of W inside the battery is increased. This is because the amount of electrolyte increases.

尚、本発明t−祝明するに際して非水電解液二次゛dL
aの場合全例示したが、固体電解質を用いた二vcit
i池にも適用しつる。
In addition, when celebrating the present invention, the non-aqueous electrolyte secondary
All examples are shown in case a, but two vcit using solid electrolyte
It also applies to i-ike ponds.

(ト)発明の効果 上述した如く、正負他山とこれら全′胤気絶縁する絶縁
バッキングとt−備えると共にリチウ74ヲ負極活物質
とする非水系二次tmにおいて、負極量としてリチウム
と合金化反応する金属板と缶構成金属版とのクラッド板
を用い、リチウムと合金化反応する金属板七電池内g側
に位置させることにより、サイクル特性を向上させるこ
とができるものであり、この植蒐池の用途拡大に賢する
ところ極めて大である。
(g) Effects of the invention As mentioned above, in the non-aqueous secondary tm, which is provided with an insulating backing that insulates the positive and negative electrodes and all of them, and uses lithium 74 as the negative electrode active material, alloyed with lithium as the negative electrode amount. By using a clad plate consisting of a reacting metal plate and a can-forming metal plate, and placing the metal plate that undergoes an alloying reaction with lithium on the g side of the battery, cycle characteristics can be improved. It is extremely important to be wise in expanding the uses of ponds.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による扁平型非水電解液二次
電池の半断面図、第2図はサイクル特性比較図である。 (IJ・・・正極缶、(2)・・・正極、(3)・・・
正極来電体、(4)・・・負極兼用の負極ffi、 (
51・・・リチウムと合金化反応する金属板、(6)・
・・缶構成金属板、(7)・・・セパレータ。 (8)・・・保液層、(9)・・・絶縁バッキング。
FIG. 1 is a half-sectional view of a flat non-aqueous electrolyte secondary battery according to an embodiment of the present invention, and FIG. 2 is a comparison diagram of cycle characteristics. (IJ...Positive electrode can, (2)...Positive electrode, (3)...
Positive electrode current source, (4)...Negative electrode ffi that also serves as negative electrode, (
51... Metal plate that undergoes an alloying reaction with lithium, (6).
... Can component metal plate, (7) ... Separator. (8)...Liquid retaining layer, (9)...Insulating backing.

Claims (1)

【特許請求の範囲】[Claims] (1)正負極缶とこれらを電気絶縁する絶縁パッキング
とを備えると共にリチウムを負極活物質とするものであ
って、前記負極缶がリチウムと合金化反応する金属板と
缶構成金属板とのクラッド板よりなり、リチウムと合金
化反応する前記金属板が電池内部側に位置することを特
徴とする非水系二次電池。
(1) A device comprising positive and negative electrode cans and insulating packing for electrically insulating them, and using lithium as a negative electrode active material, wherein the negative electrode can is a cladding of a metal plate that undergoes an alloying reaction with lithium and a can-constituting metal plate. 1. A non-aqueous secondary battery comprising a plate, wherein the metal plate that undergoes an alloying reaction with lithium is located inside the battery.
JP60262039A 1985-11-21 1985-11-21 Nonaqueous secondary battery Pending JPS62122077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60262039A JPS62122077A (en) 1985-11-21 1985-11-21 Nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60262039A JPS62122077A (en) 1985-11-21 1985-11-21 Nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JPS62122077A true JPS62122077A (en) 1987-06-03

Family

ID=17370177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60262039A Pending JPS62122077A (en) 1985-11-21 1985-11-21 Nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JPS62122077A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933749A (en) * 1982-08-17 1984-02-23 Matsushita Electric Ind Co Ltd Cylindrical alkaline battery
JPS6041761A (en) * 1983-08-17 1985-03-05 Hitachi Maxell Ltd Lithium organic secondary battery
JPS62108473A (en) * 1985-11-06 1987-05-19 Bridgestone Corp Cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933749A (en) * 1982-08-17 1984-02-23 Matsushita Electric Ind Co Ltd Cylindrical alkaline battery
JPS6041761A (en) * 1983-08-17 1985-03-05 Hitachi Maxell Ltd Lithium organic secondary battery
JPS62108473A (en) * 1985-11-06 1987-05-19 Bridgestone Corp Cell

Similar Documents

Publication Publication Date Title
JPH08102333A (en) Nonaqueous electrolytic secondary battery
JPS63114057A (en) Nonaqueous secondary battery
JP2002237295A (en) Lithium secondary battery and its manufacturing method
JPH04294059A (en) Negative electrode for secondary battery with non-aqueous electrolyte
JPH0425676B2 (en)
JPS62122077A (en) Nonaqueous secondary battery
JP2709303B2 (en) Non-aqueous electrolyte secondary battery
JP3258678B2 (en) Non-aqueous electrolyte battery
JPS61158665A (en) Nonaqueous electrolyte secondary battery
JP3405419B2 (en) Non-aqueous electrolyte secondary battery
JPS58137975A (en) Nonaqueous electrolyte secondary battery
JPH07105952A (en) Lithium secondary battery and its current collecting body
JPH10189037A (en) Nonaqueous electrolytic secondary battery
JPH0558221B2 (en)
JPS62226562A (en) Nonaqueous electrolyte secondary battery
JPH0434844A (en) Nonaqueous system secondary battery
JPH02278658A (en) Secondary battery
JP3475055B2 (en) Conductive agent for hydrogen storage alloy electrode and hydrogen storage alloy electrode
JPH0441471B2 (en)
TW201939797A (en) Nonaqueous electrolyte secondary battery allowing more electrodes to be accommodated in a small battery with stabilized charge and discharge characteristics
JPS59873A (en) Organic electrolyte secondary cell
JPS63126157A (en) Lithium cell
JP3054431B2 (en) Metal-hydrogen alkaline storage battery
JPH11126587A (en) Nonaqueous electrolyte secondary battery and manufacture of its sealing plate
JPS60211779A (en) Non-aqueous electrolyte secondary battery