JPS62108473A - Cell - Google Patents

Cell

Info

Publication number
JPS62108473A
JPS62108473A JP60249492A JP24949285A JPS62108473A JP S62108473 A JPS62108473 A JP S62108473A JP 60249492 A JP60249492 A JP 60249492A JP 24949285 A JP24949285 A JP 24949285A JP S62108473 A JPS62108473 A JP S62108473A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
battery
active material
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60249492A
Other languages
Japanese (ja)
Inventor
Yoshitomo Masuda
善友 増田
Tadashi Fuse
布施 正
Masao Ogawa
雅男 小川
Eiji Ofuku
大福 英治
Ryota Fujio
藤尾 亮太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP60249492A priority Critical patent/JPS62108473A/en
Priority to DE19863635257 priority patent/DE3635257A1/en
Priority to US06/920,140 priority patent/US4717634A/en
Publication of JPS62108473A publication Critical patent/JPS62108473A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • H01M4/0461Electrochemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the charge/discharge characteristic and to reduce the size and the thickness by integrating a negative electrode employing a lithium alloy as a negative electrode active material and an outer can, thereby preventing increase of the inner resistance caused by insufficient electrical contact. CONSTITUTION:An aluminum base disc is spot welded to the inside of a stainless steel outer can. While employing the aluminum section of the integrated aluminum base/outer can as a functioning electrode, lithium metal as a pair electrode and propylene carbonate solution of LiClO4 as electrolyte, an integrated unit of negative electrode and outer can is formed through such method as the aluminum base body is lithium alloyed to produce a lithium-aluminum alloy. Then it is combined with a positive electrode employing polyaniline as an active material to form a coin type cell. Consequently, the electrical contact performance is improved and the inner resistance is reduced, while the size and thickness can be reduced.

Description

【発明の詳細な説明】 産業上のり ′ 本発明は、内部抵抗が低く、かつ製造性に優れたリチウ
ム合金を負極活物質とする電池に関する。
DETAILED DESCRIPTION OF THE INVENTION Industrial Upgrade The present invention relates to a battery that uses a lithium alloy as a negative electrode active material, which has low internal resistance and excellent manufacturability.

従来の技術及び  が解決しようとするリチウム合金を
負極活?5fRとして用いた電池は、従来より高エネル
ギー密度化が可能である上、電池使用時のtJ& ff
iによる金属リヂウムを原因とするデンドライトの発生
をリチウム合金化によって防止Jることができるなどの
J」山により、長寿命高エネルギー密度電池とりわけ充
放電特性の優れた二次電池として注目されている。
What is the conventional technology and how to solve the problem of lithium alloy as a negative electrode? The battery used as 5fR has a higher energy density than conventional batteries, and also has tJ & ff when using the battery.
Lithium alloying can prevent the formation of dendrites caused by metal lithium, and is attracting attention as a long-life, high-energy density battery, especially as a secondary battery with excellent charge-discharge characteristics. .

しかしながら、これらリチウム合金を負極活物質として
用いた電池は、他の一般の電池と同様、通常、負極と外
装缶とを別個に用意し、電池組立てに際して負極と外装
缶とを十分電気的に接触させて組立てる必要があるが、
直接負極と外装缶とを接触させるだけでは相互の十分な
電気的接触を得ることは難しいといった問題点がある。
However, batteries using these lithium alloys as negative electrode active materials, like other general batteries, usually have a negative electrode and an outer case prepared separately, and when assembling the battery, the negative electrode and the outer case are brought into sufficient electrical contact. It is necessary to assemble the
There is a problem in that it is difficult to obtain sufficient electrical contact between the negative electrode and the outer can simply by directly contacting the negative electrode and the outer can.

従来、電極と外装缶との電気的接触を十分に行なうため
に、電極と外装缶の間にメツシュ等の集電体を形成した
り、あるいはバネ状構造部材を設置するなどの方法が採
用されてきたが、リチウム合金を負極活物質として用い
た場合には、リチウム合金が脆性であるために電池製造
時に負極にカケを生じたり、電池使用時に負極の体積変
化等のために負極と外装缶との電気的接触が不良となり
、電池の内部抵抗が上昇し、特に二次電池の場合には充
放電の繰返しに従い、電池の内部抵抗が増加するなどし
て充放電特性が低下し、遂には充Mffi不能になると
いう問題点Iメあり、また、集電体を形成したり、バネ
状構造部材を設置するために、電池組立時の工程が煩雑
化し、これらの集電体、バネ構造部材が電池の小型化、
薄型化の障害になるといった問題点もあった。
Conventionally, methods such as forming a current collector such as a mesh between the electrode and the outer can or installing a spring-like structural member have been adopted in order to make sufficient electrical contact between the electrode and the outer can. However, when a lithium alloy is used as a negative electrode active material, the brittleness of the lithium alloy may cause the negative electrode to chip during battery manufacture, or the negative electrode and outer case may change due to changes in volume during battery use. If the electrical contact with the battery becomes poor, the internal resistance of the battery will increase. Especially in the case of secondary batteries, as the battery is repeatedly charged and discharged, the internal resistance of the battery will increase and the charging/discharging characteristics will deteriorate. There is a problem that charging Mffi becomes impossible, and the process of assembling the battery becomes complicated due to the formation of the current collector and the installation of spring-like structural members. is the miniaturization of batteries,
There was also the problem that it became an impediment to thinning.

本発明は上記事情に鑑みなされたもので、電気的接触不
良の問題点が解決され、内部抵抗を低い状態に維持し得
、このため二次電池を構成し、これを繰返し充放電して
も電気的接触不良に基づく内部抵抗の増加がないのでそ
の充放電特性を長朋に亘り発揮させることができ、かつ
電池製造工程が簡単化される上、小型化、薄型化が容易
にできるリチウム合金を負極活物質として用いた電池を
提供することを目的とする。
The present invention has been made in view of the above circumstances, and it solves the problem of poor electrical contact and maintains internal resistance at a low level. A lithium alloy that does not increase internal resistance due to poor electrical contact, allows its charging and discharging characteristics to be fully demonstrated over a long period of time, simplifies the battery manufacturing process, and can be easily made smaller and thinner. The purpose of the present invention is to provide a battery using the material as a negative electrode active material.

を  するための   び 本発明者らは、上記目的を達成するため鋭意検討を行な
った結果、リチウム合金を負極活物質とする負極と外装
缶とを一体化することにより、上記目的が達成されるこ
とを知見し、本発明を完成するに至ったものである。
In order to achieve the above object, the inventors of the present invention have conducted intensive studies and found that the above object can be achieved by integrating a negative electrode containing a lithium alloy as a negative electrode active material and an outer can. This knowledge led to the completion of the present invention.

従って、本発明は、負極と外装缶とが一体に形成され、
かつ負極活物質としてリチウム合金を用いた電池を提供
するものである。
Therefore, in the present invention, the negative electrode and the outer can are integrally formed,
The present invention also provides a battery using a lithium alloy as a negative electrode active material.

以下、本発明を更に詳しく説明する。The present invention will be explained in more detail below.

本発明の電池は、負極活物質としてリチウム合金を用い
るものであるが、本発明の電池の負極活物質として用い
られるリチウム合金としては、リチウム及びリチウムと
合金化可能な金属との合金であれば特に制限はなく、例
えばリチウムとアルミニウム、マグネシウム、インジウ
ム、水銀、亜鉛、カドミウム等の11又は2種以上との
合金が挙げられる。これらリチウム合金のうちでも成形
性に優れ、メツシュ等の集電体を用いることなく直接負
極基体を構成しうるなどの製造性からアルミニウム、イ
ンジウム、亜鉛のいずれかの金属とリチウムとの合金が
本発明の電池の負極活物質として好適である。
The battery of the present invention uses a lithium alloy as the negative electrode active material, but the lithium alloy used as the negative electrode active material of the battery of the present invention may be any alloy of lithium and a metal that can be alloyed with lithium. There are no particular limitations, and examples include alloys of lithium and eleven or more of aluminum, magnesium, indium, mercury, zinc, cadmium, and the like. Among these lithium alloys, alloys of aluminum, indium, or zinc with lithium are the most preferred because they have excellent formability and can be manufactured directly into negative electrode substrates without using current collectors such as mesh. It is suitable as a negative electrode active material for the battery of the invention.

次いで、本発明の電池は、このリチウム合金を負極活物
質とする負極を外装缶と一体化するものであるが、この
場合負極と外装缶とが一体化されていれば、特にその一
体化の方法等につき特に制限はない。
Next, in the battery of the present invention, the negative electrode containing this lithium alloy as the negative electrode active material is integrated with the outer can, but in this case, if the negative electrode and the outer can are integrated, the integration is particularly difficult. There are no particular restrictions on the method.

本発明の負極と外装缶とが一体化された複合体を得る方
法は、負極基体、外装缶の材質の種類等により各種方法
を採用し得、例えば予じめリチウム合金を形成し、これ
を外装缶と接合、一体化するなどの方法が挙げられるが
、本発明の負極活物質として用いるリチウム合金が脆性
であるため、リチウム合金からなる負極を外装缶と接合
すると接合時にカケを生じるなどの恐れがあるため、負
極基体に上述したアルミニウム、インジウム、亜鉛等の
成形性に優れたリチウムと合金化可能な金属を用い、こ
の負極基体を外装缶と予め接合してから負極基体をリチ
ウム合金化することが好ましく、特に外装缶にリチウム
の合金相手金属を用い、外装缶の1部を直接リチウム合
金化することが、接合工程の簡略化が可能で、しかも薄
型電池が構成できるなどの点で好ましい。なお、負極あ
るいは負極基体と外装缶との接合方法としては、各材質
、形状、大きさ等により接着、溶接、は/vだ等の方法
が適宜採用され、またリチウム合金を得る方法としても
各種方法が採用し得るが、負極基体あるいは外装缶にリ
チウムの合金相手金属を用いてこれらをリチウム合金化
する場合には、負極部のみがリチウム合金化されるよう
に負極部を残して他部をマスキングし、負極部を例えば
リチウム金属を対極としてリチウム塩を溶解した有機溶
媒中で通電し、通?[ffiで合金化の程度をコントロ
ールするなどの電気化学的方法でリチウム合金化する方
法が好適に採用し得る。
Various methods can be used to obtain the composite body of the present invention in which the negative electrode and the outer can are integrated, depending on the type of material of the negative electrode substrate and the outer can. For example, a lithium alloy is formed in advance, Methods include joining or integrating with the outer can, but since the lithium alloy used as the negative electrode active material of the present invention is brittle, joining the negative electrode made of a lithium alloy with the outer can may cause chipping or other problems during bonding. Therefore, it is necessary to use a metal that can be alloyed with lithium with excellent formability such as aluminum, indium, or zinc for the negative electrode base, and to bond this negative electrode base to the outer can in advance before alloying the negative electrode base with lithium. In particular, it is preferable to use a lithium alloy partner metal for the outer can, and directly alloy a portion of the outer can with lithium, since it is possible to simplify the bonding process and to construct a thin battery. preferable. Note that as a method for joining the negative electrode or negative electrode substrate and the outer can, adhesion, welding, ha/v, etc. can be used as appropriate depending on the material, shape, size, etc. Various methods can also be used to obtain the lithium alloy. However, if the negative electrode substrate or the outer case is alloyed with lithium by using a lithium alloy partner metal, it is necessary to leave the negative electrode part and remove the other parts so that only the negative electrode part is alloyed with lithium. After masking, the negative electrode part is energized in an organic solvent in which lithium salt is dissolved, for example, using lithium metal as the counter electrode. [A method of alloying lithium using an electrochemical method such as controlling the degree of alloying with ffi can be suitably employed.

本発明の電池の正極活物質としては通常の電池の正極活
物質で差支えなく、例えば丁102゜CI”z03.V
2O5,VeO+3.Mn02cuo、Mn0z 、C
LI5 V201 o等の金RW!化物、Ti 82 
、 Fe S、 CLI Co 84 。
The positive electrode active material of the battery of the present invention may be any ordinary battery positive electrode active material, for example, 102°CI"z03.V.
2O5, VeO+3. Mn02cuo, Mn0z, C
Gold RW such as LI5 V201 o! compound, Ti 82
, Fe S, CLI Co 84.

MO33等の金属硫化物、更には陰イAンをドープする
ことのできるグラフ1イトやポリアニリン、ポリアセチ
レン、ポリ−p−フェニレン、ポリベンゼン、ポリピリ
ジン、ポリチオフェン、ポリフラン、ポリピロール、ア
ントラセン、ナフタリン等及びこれらの誘導体の有機5
s電性材料などが挙げられ、中でも、ポリアニリン等の
有機導電性高分子材料を正極活物質とすると、有機導電
性高分子材料が他の正極活物質に比し、軽量で可撓性に
優れ、成形加工が容易であるなどの点で、特に軽量小型
電池の正極活物質として好ましく、とりわけポリアニリ
ンは、電気化学的重合法により金属、カーボン成形体等
の基体と密着性良く得ることができ、しかもこれら基体
とポリアニリンの複合体をポリアニリンを正極、基体を
正極集電体、容器として電池にそのまま利用することが
できるなどから電池用正極活物質として好適に使用し得
る。
Metal sulfides such as MO33, graphite which can be doped with anion A, polyaniline, polyacetylene, poly-p-phenylene, polybenzene, polypyridine, polythiophene, polyfuran, polypyrrole, anthracene, naphthalene, etc., and these. Derivatives of organic 5
Among them, when an organic conductive polymer material such as polyaniline is used as a positive electrode active material, the organic conductive polymer material is lightweight and has excellent flexibility compared to other positive electrode active materials. Polyaniline is particularly preferred as a positive electrode active material for lightweight and small batteries because it is easy to mold, and polyaniline can be obtained with good adhesion to substrates such as metals and carbon molded bodies by electrochemical polymerization. Furthermore, the composite of these substrates and polyaniline can be used as is as a positive electrode active material for batteries because the polyaniline can be used as a positive electrode and the substrate can be used as a positive electrode current collector and a container.

なお、正極基体の形態に特に制限はなく、例えば、繊維
、布、不織布、フィルム、板、粉末等の各種形態で使用
できる。例えば、正極活物質がグラフフィトの場合には
、カーボン繊維、カーボンクロス、カーボン不織布、カ
ーボンベーパー、カーボンフォイル、カーボンフオーム
、カーボン粉末等が使用し得る。
Note that there is no particular restriction on the form of the positive electrode substrate, and it can be used in various forms such as fiber, cloth, nonwoven fabric, film, plate, and powder. For example, when the positive electrode active material is graphite, carbon fiber, carbon cloth, carbon nonwoven fabric, carbon vapor, carbon foil, carbon foam, carbon powder, etc. can be used.

本発明の電池を構成する電解質としては以下に説明する
液体電解質及び固体電解質が使用し得る。
The liquid electrolyte and solid electrolyte described below can be used as the electrolyte constituting the battery of the present invention.

即ち、本発明の電池に使用する液体電解質としては、通
常イオン化合物を溶媒に溶解した電解質溶液が用いられ
、この電池に用いられる電解質溶液を構成するイオン化
合物としては、アニオンとリチウムイオンの組合せより
なる化合物であって、アニオンの例としてはPFa −
,5t)Fe −。
That is, the liquid electrolyte used in the battery of the present invention is usually an electrolyte solution in which an ionic compound is dissolved in a solvent, and the ionic compound constituting the electrolyte solution used in this battery is a combination of anion and lithium ion. An example of the anion is PFa −
, 5t) Fe −.

As Fs−,5bC1s−(7)如きvA族元素(7
)Aロゲン化物アニオン、BF4− 、AJ CJ4−
の如き■△族元素のハロゲン化物アニオン。
vA group elements (7) such as As Fs-, 5bC1s- (7)
) A halogenide anion, BF4-, AJ CJ4-
■Halide anions of △ group elements.

1−  (Ia−)、Br−、CJ−の如きハロゲンア
ニオン、0.104−の如き過塩素酸アニオン。
1-(Ia-), Br-, halogen anions such as CJ-, perchlorate anions such as 0.104-.

1」F2°−、CF 3S O3−、S CN −+ 
S O4−。
1” F2°−, CF 3S O3−, S CN −+
SO4-.

HS O4−等を挙げることができる。これらアニオン
及びリチウムイオンを有する化合物の具体例としては、 Li PFa 、L’ 5bFs * Li AS F
8゜Li CjO4、Li  (、Li Sr 、li
 C1゜Li BF4 、Li AJCJa 、LI 
HF2 。
HSO4- etc. can be mentioned. Specific examples of compounds having these anions and lithium ions include Li PFa, L' 5bFs * Li AS F
8゜Li CjO4, Li (, Li Sr, li
C1゜Li BF4, Li AJCJa, LI
HF2.

Li SCN、Li 803 CF3 等を挙げることができ、これらに限定されるものではな
いが、電池の軽量化、安定化の点からはリチウム塩、特
にLi CjO< 、Li BF4 。
Examples include Li SCN, Li 803 CF3, etc., but from the viewpoint of weight reduction and stabilization of the battery, lithium salts, especially Li CjO< and Li BF4 are preferred.

Lf PFs 、Li  I、Li Br 、Li C
j等が好適に用いられる。
Lf PFs, Li I, Li Br, Li C
j etc. are preferably used.

なお、電池の電解質溶液を構成する溶媒としては、特に
限定はされないが、比較的極性の大きい溶媒が好適に用
いられる。具体的には、プロピレンカーボネート、エチ
レンカーボネート、ベンゾニトリル、テトラヒドロフラ
ン、2−メチルテトラヒドロフラン、γ−ブチ0ラクト
ン、ジオキソラン、塩化メチレン、トリエチルフォスフ
ェート。
Note that the solvent constituting the electrolyte solution of the battery is not particularly limited, but a relatively highly polar solvent is preferably used. Specifically, propylene carbonate, ethylene carbonate, benzonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butylactone, dioxolane, methylene chloride, and triethyl phosphate.

トリエチルフォスファイト、硫酸ジメチル、ジメチルホ
ルムアミド、ジメチルアセトアミド、ジメチルスルフオ
キシド、ジオキサン、ジメトキシエタン、ポリエチレン
グリコール、スルフオラン。
Triethyl phosphite, dimethyl sulfate, dimethyl formamide, dimethyl acetamide, dimethyl sulfoxide, dioxane, dimethoxyethane, polyethylene glycol, sulforane.

ジクロロエタン、クロルベンゼン、ニトロベンゼンなど
の有機溶媒の1秒又は2種以上の混合物を挙げることが
できる。
One or a mixture of two or more organic solvents such as dichloroethane, chlorobenzene, nitrobenzene and the like can be mentioned.

また、本発明の電池に使用する固体電解質としては、上
記電解質溶液を例えばポリエチレンオキサイド、ポリプ
ロピレンオキサイド、ポリエチレンオキサイドのイソシ
アネート架橋体、エチレンオキサイドオリゴマーを側鎖
に持つホスファゼンポリマー等の重合体に含浸させた有
機固体電解質、Li 3 N、Li BCl2.Li4
Si O< −1i3B03等のリチウムガラスなどの
無機固体電解質が挙げられる。
Further, as the solid electrolyte used in the battery of the present invention, the above electrolyte solution is impregnated with a polymer such as polyethylene oxide, polypropylene oxide, an isocyanate crosslinked product of polyethylene oxide, or a phosphazene polymer having an ethylene oxide oligomer in the side chain. Organic solid electrolyte, Li 3 N, Li BCl2. Li4
Examples include inorganic solid electrolytes such as lithium glass such as SiO<-1i3B03.

なお、本発明の電池に電解質を介在させるに際し、使用
する電解質が固体電解質の場合には、正負両漫の接触が
生じる恐れはなく、正負両極間に直接固体雪解質を介在
させることができるが、使用する電解質が液体電解質の
場合には、正負両(−の接触が生じる恐れがあり、正負
両極間に両極の接触による電流の短絡を防ぐためセパレ
ーターを介装することが好ましい。セパレーターとして
は多孔質で電解液を通したり含んだりすることのできる
材料、例えばポリテトラフルオロエチレン、ポリプロピ
レンやポリエチレンなどの合成樹脂製の不織布、織布及
び網等を使用することができる。
In addition, when interposing an electrolyte in the battery of the present invention, if the electrolyte used is a solid electrolyte, there is no risk of contact between the positive and negative electrodes, and the solid snow melt can be directly interposed between the positive and negative electrodes. However, when the electrolyte used is a liquid electrolyte, contact between the positive and negative electrodes (-) may occur, so it is preferable to interpose a separator between the positive and negative electrodes to prevent short-circuiting of current due to contact between the two electrodes.As a separator. Porous materials capable of passing or containing the electrolyte, such as nonwoven fabrics, woven fabrics, and nets made of synthetic resins such as polytetrafluoroethylene, polypropylene, and polyethylene, can be used.

本発明の電池は、円柱型、ボタン型、コイン型、フィル
ム型等各種形状の電池として使用することができ、種々
のサイズの電池を形成し得るが、本発明によれば負極と
外装缶とを一体化したことにより、薄形電池を構成し得
るものである。
The battery of the present invention can be used as batteries of various shapes such as cylindrical shape, button shape, coin shape, film shape, etc., and batteries of various sizes can be formed. By integrating these, a thin battery can be constructed.

11悲LL 以上説明したように、本発明のTF111!!は、負極
と外装缶とを一体化したことにより、電池の小型化、薄
型化が行なえ、また、電池の組立工程が簡略化できるな
ど、製造性に優れているのみならず、電池使用時に負極
と外装缶との間に剥離が生じることもなく、電池の内部
抵抗を低くすることが可能となり、かつ負極活物質とし
てリチウム合金を用いたことにより、電池の長寿命高エ
ネルギー密度化が図れ、二次電池を構成した場合には優
れた充放電特性を示すなどの特長を付与することができ
、このため自動車、飛行機、ボータプル機械、コンピュ
ータ、電気自動車など多方面の用途に好適に使用される
ものである。
11 Sad LL As explained above, TF111 of the present invention! ! By integrating the negative electrode and the outer can, the battery can be made smaller and thinner, and the battery assembly process can be simplified. There is no peeling between the battery and the outer can, making it possible to lower the internal resistance of the battery, and by using a lithium alloy as the negative electrode active material, the battery has a long life and high energy density. When configured as a secondary battery, it can be endowed with features such as exhibiting excellent charging and discharging characteristics, making it suitable for use in a wide variety of applications such as automobiles, airplanes, vortaple machines, computers, and electric vehicles. It is something.

(実施例) 直径1CTl+1厚さ200μmの円板状アルミニウム
基体をステンレス製外装缶内側にスポット溶接にて接合
した。次に、この円板状アルミニウム基体の外周を絶絶
物でマスキングし、このアルミニウム基体/外装缶一体
化物の円板状アルミニウム部を作用極とし、リチウム金
属を対極とし、電解液として11IIO1/JのLiC
オ04のプロピレンカーボネート溶液を用い、通?Pi
屋40IllAHにて電解し、アルミニウム基体をリチ
ウム合金化して、電気化学的に円板状のりチウム−アル
ミニウム合金を作製した。
(Example) A disc-shaped aluminum substrate having a diameter of 1 CTl+1 and a thickness of 200 μm was joined to the inside of a stainless steel exterior can by spot welding. Next, the outer periphery of this disc-shaped aluminum base is masked with an insulating material, the disc-shaped aluminum part of this aluminum base/casing integrated body is used as a working electrode, lithium metal is used as a counter electrode, and 11IIO1/J is used as an electrolyte. LiC
Using a propylene carbonate solution of O04, Pi
The aluminum substrate was electrolyzed at 40IllAH to form a lithium alloy, and a disk-shaped lithium-aluminum alloy was electrochemically produced.

こうして得られた外装缶に一体に接合されたりチウム−
アルミ・ニウム合金を負極として用いると共に、40■
のポリアニリンを正極活物質として1.5CIIlφの
正極を形成し、電解液に1m0J/、1の1iBF4の
プロピレンカーボネート溶液、セパレータにポリプロピ
レン紙を用い、更に正極側外装缶、ポリプロピレン製ガ
スケットを用いて封口し、厚さ1.6mのコイン型電池
を構成した。
The outer can thus obtained is integrally bonded with lithium-ion
In addition to using aluminum/nium alloy as the negative electrode,
A positive electrode of 1.5 CIIlφ was formed using polyaniline as a positive electrode active material, a propylene carbonate solution of 1 m0J/1 iBF4 was used as the electrolyte, polypropylene paper was used as the separator, and the outer can on the positive electrode side was sealed using a polypropylene gasket. A coin-type battery with a thickness of 1.6 m was constructed.

なお、使用したポリアニリンは、1 、5moj /J
のアニリンモノマー、3 、 □ao4 /、1のHB
Faを含む水溶液中で白金板上に電解重合法により得ら
れたものである。
The polyaniline used was 1.5 moj/J
Aniline monomer, 3, □ao4/, 1 HB
It was obtained by electrolytic polymerization on a platinum plate in an aqueous solution containing Fa.

上記構成のコイン型電池につき、0.5mAで8時間の
充電を行ない、0.5mAで2.0■になるまでtIl
電を行なう充放電を1サイクルとして充放電を行ない、
各サイクル毎の内部低数を測定した。
Charge the coin-type battery with the above configuration for 8 hours at 0.5 mA until it becomes 2.0 ■.
Charging and discharging is performed as one cycle of charging and discharging electricity,
The internal low count for each cycle was determined.

この測定の結果、内部抵抗は約400で、20サイクル
経過侵でもこの値はほとんど変化しなかった。
As a result of this measurement, the internal resistance was approximately 400, and this value hardly changed even after 20 cycles of invasion.

〔比較例〕[Comparative example]

コイン型電池を構成するに当りアルミニウムを外装缶に
1体化せず、電気化学的に製造したリチウム−アルミニ
ウム合金を外装缶に当接させた以外は実施例と同様にし
てコイン型電池を得、このコイン型電池につき実施例と
同様の充放電を行ない、各サイクル毎の内部抵抗を測定
した。
A coin-type battery was obtained in the same manner as in the example except that aluminum was not integrated into the outer can in constructing the coin-type battery, but instead an electrochemically produced lithium-aluminum alloy was brought into contact with the outer can. This coin-shaped battery was charged and discharged in the same manner as in the example, and the internal resistance was measured for each cycle.

この測定の結果、充放電初期の内部抵抗は約800を示
し、10サイクル経過後から急激に増加して150〜4
00Ωにも達し、放電カーブにも接触不良によると思わ
れる乱れがII察された。
As a result of this measurement, the internal resistance at the initial stage of charging and discharging was approximately 800, and after 10 cycles, it rapidly increased to 150-400.
00Ω, and disturbances thought to be due to poor contact were observed in the discharge curve.

以上の実膿例と比較例の結果から、本発明の外装缶と1
体化したリチウム合金を負極活物質として用いた電池は
、リチウム合金を負極活物質として用いても負ti m
体と外装缶とが1体化していない場合に比し、電池の内
部抵抗が十分低く、かつ二次電池としても本発明品の方
が充放電の繰返しに対する内部抵抗変化が少なく安定し
ていることが知見され、本発明の効果が確認された。
From the results of the above-mentioned actual cases and comparative examples, it is clear that the outer can of the present invention and 1
A battery using a lithium alloy as a negative electrode active material has a negative ti m
Compared to a case where the body and the outer can are not integrated, the internal resistance of the battery is sufficiently low, and the product of the present invention is more stable as a secondary battery with less internal resistance change due to repeated charging and discharging. This was found, and the effects of the present invention were confirmed.

Claims (1)

【特許請求の範囲】[Claims] 1、負極と外装缶とが一体に形成され、かつ負極活物質
としてリチウム合金を用いたことを特徴とする電池。
1. A battery characterized in that the negative electrode and the outer case are integrally formed, and a lithium alloy is used as the negative electrode active material.
JP60249492A 1985-10-17 1985-11-06 Cell Pending JPS62108473A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60249492A JPS62108473A (en) 1985-11-06 1985-11-06 Cell
DE19863635257 DE3635257A1 (en) 1985-10-17 1986-10-16 GALVANIC ELEMENT
US06/920,140 US4717634A (en) 1985-10-17 1986-10-17 Electric cells utilizing polyaniline as a positive electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60249492A JPS62108473A (en) 1985-11-06 1985-11-06 Cell

Publications (1)

Publication Number Publication Date
JPS62108473A true JPS62108473A (en) 1987-05-19

Family

ID=17193776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60249492A Pending JPS62108473A (en) 1985-10-17 1985-11-06 Cell

Country Status (1)

Country Link
JP (1) JPS62108473A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122077A (en) * 1985-11-21 1987-06-03 Sanyo Electric Co Ltd Nonaqueous secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122077A (en) * 1985-11-21 1987-06-03 Sanyo Electric Co Ltd Nonaqueous secondary battery

Similar Documents

Publication Publication Date Title
US5489492A (en) Composite sheet electrode
CA2184789C (en) Rechargeable lithium battery having a specific electrolyte
WO2001063687A1 (en) Nonaqueous electrolyte secondary cell
US4824745A (en) Electric cell comprising a polymeric material film electrode having a collection integrated therewith
JPH0428172A (en) Secondary battery
JPH09259929A (en) Lithium secondary cell
JP2002015740A (en) Lithium secondary cell
JP2688502B2 (en) Thin battery manufacturing method
JPS62108473A (en) Cell
JPS6151762A (en) Thin type battery
JP2002015739A (en) Positive electrode material for lithium secondary cell
JP2001068095A (en) Negative electrode for lithium secondary battery and lithium secondary battery using the same
JP7466112B2 (en) Non-aqueous electrolyte secondary battery
JPH0139191B2 (en)
JPH01187778A (en) Manufacture of secondary battery
JPS6293868A (en) Secondary battery
JP3108187B2 (en) Lithium secondary battery
JPH0389457A (en) Lithium secondary battery
JPS62246270A (en) Nonaqueous secondary cell
JPS62295370A (en) Electric cell
JPH01166466A (en) Lithium battery
JP2854095B2 (en) Non-aqueous secondary battery
JP3144929B2 (en) Non-aqueous electrolyte secondary battery
JPS62290069A (en) Organic electrolyte secondary battery
JPH01124970A (en) Lithium secondary battery