JPS62295370A - Electric cell - Google Patents

Electric cell

Info

Publication number
JPS62295370A
JPS62295370A JP62087723A JP8772387A JPS62295370A JP S62295370 A JPS62295370 A JP S62295370A JP 62087723 A JP62087723 A JP 62087723A JP 8772387 A JP8772387 A JP 8772387A JP S62295370 A JPS62295370 A JP S62295370A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
battery
current collector
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62087723A
Other languages
Japanese (ja)
Inventor
Eiji Ofuku
大福 英治
Tadashi Fuse
布施 正
Masao Ogawa
雅男 小川
Yoshitomo Masuda
善友 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP62087723A priority Critical patent/JPS62295370A/en
Publication of JPS62295370A publication Critical patent/JPS62295370A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/669Steels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent a sudden increase of the inner resistance during the operation, by fixing a negative electrode consisting of lithium or a lithium alloy to armoring cans through collectors, and securing the electrical connection between the negative electrode and the armoring cans. CONSTITUTION:As a negative electrode active substance, lithium or a lithium alloy is used. In this case, there is no restriction on the type of the lithium alloy, but an alloy of aluminum and lithium is especially preferable to have a good negative electrode property and a good plastic performance. Moreover, the negative electrode 4 is fixed to armoring cans 1a and 1b through collectors 6 and 9. In this case, there is no restriction on the material of the collectors 6 and 9, and an adequate form of stainless steel, nickel, aluminum, platinum, and carbonic conductor, for example, are available for this purpose, a stainless steel being especially preferable. Since a cell with the negative electrode of lithium or a lithium alloy has a high voltage, and a high energy density with little self-discharge, the stainless steel is preferable to be thin, being 5 to 100mum normally.

Description

【発明の詳細な説明】 3、発明の詳細な説明 洸^上件秤刑分災 本発明は、リチウム又はリチウム合金を負極活物質とし
た電池に関し、更に詳述すると使用中に内部抵抗が急激
に増加することがなく、このため二次電池として使用し
た場合にもサイクル寿命に優れるなど、安定した電気的
接続を有する電池に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention The present invention relates to a battery using lithium or a lithium alloy as a negative electrode active material. The present invention relates to a battery that has stable electrical connection, such as no increase in energy consumption and therefore excellent cycle life even when used as a secondary battery.

54来の技術及び°明が解決しようとするlil 3f
ir、iリチウム又はリチウム合金を負極活物質として
用いた電池は、高エネルギー密度化が可能であるなどの
理由により、長寿命高エネルギー密度トハ池、とりわけ
充放電特性の優れた二次電池として注目されている。
lil 3f that 54 years old technology and ° Ming try to solve
Batteries using ir, i lithium or lithium alloys as negative electrode active materials are attracting attention as long-life, high-energy-density batteries, especially secondary batteries with excellent charge-discharge characteristics, due to their ability to achieve high energy density. has been done.

しかしながら、これらリチウム又はリチウム合金を負極
活物質として用いた電池は、他の一般の電池と同様に負
極と外装缶とを別個に用意し、電池組立てに際して負極
と外装缶とを十分電気的に接触させて組立てる必要があ
るが、直接負極と外装缶とを接触させるだけでは相互の
十分な電気的接触を得ることは難かしいといった問題点
がある。
However, in batteries using these lithium or lithium alloys as the negative electrode active material, the negative electrode and the outer can are prepared separately like other general batteries, and the negative electrode and the outer can are brought into sufficient electrical contact during battery assembly. However, there is a problem in that it is difficult to obtain sufficient electrical contact between the negative electrode and the outer can simply by directly contacting the negative electrode and the outer can.

これに対し、電池と外装缶との電気的接触を十分に行な
うために、従来電極と外装缶との間にメツシュ等の集電
体やバネ状構造部材を配置するなどの方法が採用されて
きたが、リチウム又はリチウム合金を負極活物質として
用いた場合には、これらが脆性であるために電池製造時
に負極にカケを生じたり、電池使用時に負極の体積変化
等のために負極と外装缶との電気的接触が不良となり、
電池の内部抵抗が上昇し、特に二次電池の場合には充放
電の繰返しにつれて、電池の内部抵抗が増加するなどし
て充放電特性が低下し、遂には充放電不能になるという
問題点がある。
On the other hand, in order to make sufficient electrical contact between the battery and the outer can, conventional methods have been adopted such as placing a current collector such as a mesh or a spring-like structural member between the electrode and the outer can. However, when lithium or lithium alloys are used as negative electrode active materials, they are brittle and may cause chips to occur in the negative electrode during battery manufacture, or may cause damage to the negative electrode and the outer case due to changes in the volume of the negative electrode during battery use. The electrical contact with the
The problem is that the internal resistance of the battery increases, and especially in the case of secondary batteries, as the battery is repeatedly charged and discharged, the internal resistance of the battery increases and the charging and discharging characteristics deteriorate, eventually making it impossible to charge and discharge. be.

本発明は上記事情に鑑みなされたもので、リチウム又は
リチウム合金を負極活物質とした場合の外装缶との電気
的接触不良が防止され、使用中に内部抵抗が急激に増加
することがなく、このため二次電池として使用した場合
にはサイクル寿命に優れるなど、長期に亘って安定した
電気的接続を有する高エネルギー密度で長寿命な電池を
提供することを目的とする。
The present invention was made in view of the above circumstances, and it prevents poor electrical contact with the outer can when lithium or lithium alloy is used as the negative electrode active material, and prevents the internal resistance from increasing rapidly during use. Therefore, it is an object of the present invention to provide a battery with high energy density and long life, which has a stable electrical connection over a long period of time, such as an excellent cycle life when used as a secondary battery.

皿“占を ゛するための   び 即ち1本発明は上記目的を達成するため、正極、負極及
び電解質がそれぞれ外装缶内に収容され。
To achieve the above object, the present invention includes a positive electrode, a negative electrode, and an electrolyte each housed in an outer can.

かつ負極がリチウム又はリチウム合金により形成された
電池において、上記負極を集電体を介して外装缶に固着
したものである。
In a battery in which the negative electrode is made of lithium or a lithium alloy, the negative electrode is fixed to an outer can via a current collector.

本発明によれば、リチウム又はリチウム合金からなる負
極を外装缶に集電体を介して固着するようにしたので、
負極と外装缶との間の電気的接続が不十分になるという
問題が解決され、長期に亘って安定に電気的接続が確保
されて接触不良が可及的に防止され、使用中に内部抵抗
が急激に増加することがなく、このためサイクル寿命に
優れた二次電池が得られるものである。
According to the present invention, since the negative electrode made of lithium or lithium alloy is fixed to the outer can via the current collector,
This solves the problem of insufficient electrical connection between the negative electrode and the outer can, ensuring a stable electrical connection over a long period of time, preventing contact failures as much as possible, and reducing internal resistance during use. There is no sudden increase in the amount, and therefore a secondary battery with excellent cycle life can be obtained.

これに対し、例えばスポット溶接によってリチウム又は
リチウム合金からなる負極と外装缶とを直接固着した場
合、負極の溶接箇所の強度が低下し、充放電のサイクル
が増したときに負極と外装缶とが剥離して電池寿命を低
下させる可能性があるが、本発明においては両者を集電
体を介して固着したことにより、このような問題が生じ
ないものである。
On the other hand, if the negative electrode made of lithium or lithium alloy and the outer can are directly fixed together by spot welding, for example, the strength of the welded part of the negative electrode decreases, and the negative electrode and the outer can become weaker when the number of charge/discharge cycles increases. Although there is a possibility that the battery will peel off and the battery life will be shortened, in the present invention, such a problem does not occur because the two are fixed together via a current collector.

以下、本発明につき更に詳しく説明する。The present invention will be explained in more detail below.

本発明の電池は、負極活物質としてリチウム又はリチウ
ム合金を用いるものである。この場合、リチウム合金の
種類に特に制限はなく、例えばリチウムとアルミニウム
、マグネシウム、インジウム、水銀、亜鉛、カドミウム
、鉛、ビスマス、錫、アンチモン等の1種又は2種以上
との合金などを好適に使用し得るが、特にアルミニウム
又はリチウムとの合金を用いることが負極特性、成形性
の点で好ましい。
The battery of the present invention uses lithium or a lithium alloy as the negative electrode active material. In this case, there is no particular restriction on the type of lithium alloy; for example, alloys of lithium and one or more of aluminum, magnesium, indium, mercury, zinc, cadmium, lead, bismuth, tin, antimony, etc. are preferable. Although it can be used, it is particularly preferable to use an alloy with aluminum or lithium in terms of negative electrode characteristics and formability.

また、本発明においては上記負極を集電体を介して外装
缶に固着するものである。この場合、集電体の材質に限
定はなく1例えば適宜形状のステンレススチール、ニッ
ケル、アルミニウム、白金。
Further, in the present invention, the negative electrode is fixed to the outer can via a current collector. In this case, there are no limitations on the material of the current collector; for example, stainless steel, nickel, aluminum, or platinum in an appropriate shape.

炭素質4電体等を使用し得るが、特にステンレススチー
ルを用いることが好ましい。
Although a carbonaceous four-electric body or the like may be used, it is particularly preferable to use stainless steel.

ここで、ステンレススチールの種類は制限されず、オー
ステナイト系、マルテンサイト系等のいずれでも使用し
得るが、特にオーステナイト系のものが加工性、耐食性
の点で好ましく、具体的にはSUS  304、SUS
  316等を好適に用いることができる。また、リチ
ウム又はリチウム合金を負極とする電池は、電圧が高く
、自己放電の少ない高エネルギー密度のものであるため
、ステンレススチールは薄いことが好ましく2通常5〜
100μ日とすることが好適である。これに対し、5p
より薄いと強度が弱く、負極又は外装缶との接合が困難
になることがあり、また100岬より厚いと電池内容積
の利用率が低くなり、高密度エネルギー電池としての性
能が不十分になることがある。なお、ステンレススチー
ルの形状に限定はないが、綱状のもの、例えば金網、エ
キスバンドメタル、パンチングメタル等を用いることが
特に好ましい。このような網状ステンレススチールは柔
軟性を有し、かつ軽量であるため、負極と外装缶との固
着が容易になり、また電池軽気化の面でもメリットがあ
る。
Here, the type of stainless steel is not limited, and either austenitic or martensitic stainless steel can be used, but austenitic stainless steel is particularly preferable in terms of workability and corrosion resistance. Specifically, SUS 304, SUS
316 etc. can be suitably used. In addition, since batteries with lithium or lithium alloy as the negative electrode have high voltage and high energy density with little self-discharge, it is preferable that the stainless steel be thin.
It is suitable to set it as 100 microdays. On the other hand, 5p
If it is thinner, the strength will be weak and it may be difficult to bond with the negative electrode or the outer can, and if it is thicker than 100 capes, the utilization rate of the battery's internal volume will be low, resulting in insufficient performance as a high-density energy battery. Sometimes. Although there is no limitation on the shape of the stainless steel, it is particularly preferable to use a wire-like material, such as wire mesh, expanded metal, punched metal, or the like. Since such reticulated stainless steel is flexible and lightweight, it facilitates fixation of the negative electrode to the outer can, and is also advantageous in terms of making the battery lighter.

本発明において、負極を集電体を介して外装缶に固着す
る手段は限られず、例えば負極と集電体、集電体と外装
缶とをそれぞれ接着剤、溶接又ははんだ付けによって接
合する方法を採用し得るが。
In the present invention, the means for fixing the negative electrode to the outer can via the current collector is not limited, and for example, a method of joining the negative electrode and the current collector, and the current collector and the outer can by adhesive, welding, or soldering, respectively. It can be adopted.

特に溶接法が好ましく、中でもスポット溶接法。Welding methods are particularly preferred, especially spot welding methods.

レーザー溶接法、TIGパルス溶接法は微細加工が可能
なため、コイン型電池やボタン型電池等の小型電池の形
成にも適用し得る点から好適である。
The laser welding method and the TIG pulse welding method are suitable because they allow fine processing and can be applied to the formation of small batteries such as coin-type batteries and button-type batteries.

なお、負極をリチウム合金で形成する場合、リチウム合
金は脆性であり、接合時にカケを生じるおそれがあるた
め、アルミニウム等のリチウムと合金可能な金属をステ
ンレススチールを介して外装缶に固着した後、この金属
を電気化学的方法によってリチウム合金化することがで
きる。
Note that when forming the negative electrode with a lithium alloy, the lithium alloy is brittle and may break during bonding, so after fixing a metal that can be alloyed with lithium, such as aluminum, to the outer can via stainless steel This metal can be alloyed with lithium by electrochemical methods.

本発明の電池の正極活物質としては通常の電池の正極活
物質で差支えなく1例えばTiO2,Crよ0.。
As the positive electrode active material of the battery of the present invention, there is no problem with the positive electrode active material of ordinary batteries, such as TiO2, Cr, etc. .

■20stV、O,,,MnO,,CuO,MnO2,
Cu5V20.。
■20stV, O,,,MnO,,CuO,MnO2,
Cu5V20. .

等の金属酸化物、TiS、、 FeS 、CuCo5.
、MoS、等の金属硫化物、更には陰イオンをドープす
ることのできるグラファイトやポリアニリン、ポリアセ
チレン、ポリ−p−フェニレン、ポリベンゼン、ポリピ
リジン、ポリチオフェン、ポリフラン、ポリピロール、
アントラセンやナフタリン等及びこれらの誘導体のポリ
マー、その他の有機導電性材料などが挙げられ、中でも
、ポリアニリン等の有機導電性高分子材料を正極活物質
とすると、有機導電性高分子材料が他の正極活物質に比
し、軽量で可撓性に優れ、成形加工が容易であるなどの
点で特に軽量小型電池の正極活物質として好ましく、と
りわけポリアニリンは、電気化学的重合法により金Ja
S、カーボン成形体等の基体と密着性良く得ることがで
き、しかもこれら基体とポリアニリンの複合体をポリア
ニリンを正極、基体を正極集電体や容器として電池にそ
のまま利用することができるなどから電池用正極活物質
として好適に使用し得る。
Metal oxides such as TiS, FeS, CuCo5.
, MoS, etc., as well as graphite that can be doped with anions, polyaniline, polyacetylene, poly-p-phenylene, polybenzene, polypyridine, polythiophene, polyfuran, polypyrrole,
Examples include polymers of anthracene, naphthalene, etc. and their derivatives, and other organic conductive materials. Among them, when an organic conductive polymer material such as polyaniline is used as a positive electrode active material, the organic conductive polymer material can be used as a positive electrode active material. Compared to active materials, polyaniline is particularly preferred as a positive electrode active material for lightweight and small batteries because it is lightweight, has excellent flexibility, and is easy to mold.
S, can be obtained with good adhesion to substrates such as carbon molded bodies, and the composite of these substrates and polyaniline can be used as is in batteries, with polyaniline as a positive electrode and the substrate as a positive electrode current collector or container. It can be suitably used as a positive electrode active material.

また、正極基体の形態に特に制限はなく1例えば、Wi
維、布、不織布、フィルム、板、粉末等の各種形態で使
用できる。例えば、正極活物質がグラファイトの場合に
は、カーボン繊維、カーボンクロス、カーボン不織布、
カーボンペーパー、カーボンフォイル、カーボンフオー
ム、カーボン粉末等が使用し得る。
Furthermore, there is no particular restriction on the form of the positive electrode substrate; for example, Wi
It can be used in various forms such as fiber, cloth, non-woven fabric, film, plate, powder, etc. For example, when the positive electrode active material is graphite, carbon fiber, carbon cloth, carbon nonwoven fabric,
Carbon paper, carbon foil, carbon foam, carbon powder, etc. can be used.

なお、有機導電性高分子材料を正極活物質として使用す
る場合、この正極を直接又は上記と同様に集電体を介し
て外装缶に固着することができ、これにより有機導電性
高分子材料を正極とした場合の外装缶との電気的接触不
良が防止され、使用中に内部抵抗が急激に増加すること
がなく、このため二次電池として使用した場合にはサイ
クル寿命に優れるなど、長期に亘って安定した電気的接
続を有する電池を得ることが可能となる。
In addition, when using an organic conductive polymer material as a positive electrode active material, this positive electrode can be fixed to the outer can directly or through a current collector in the same way as above, and this allows the organic conductive polymer material to be used as a positive electrode active material. When used as a positive electrode, electrical contact failure with the outer case is prevented, and internal resistance does not increase rapidly during use. Therefore, when used as a secondary battery, it has an excellent cycle life and can be used for a long time. It becomes possible to obtain a battery having stable electrical connection throughout.

この場合、電気的接続の点から有機導電性高分子材料を
集電体と一体化し、この集電体を外装缶と固着するよう
にすることが好ましい。ここで、有機導電性高分子材料
と集電体とを一体化する方法としては、有機導電性高分
子材料が化学的重合法等によって粉末状に得られた場合
は、かかる粉末状の有機導電性高分子材料を導電性基体
上にコートして圧縮成形したり、有機導電性高分子材料
の粉末に粘結剤等を混合してペースト状にしてから導電
性基体上に塗布し乾燥するなどして製造することができ
る。しかし、このような粉末状のものを用いた場合は電
池のエネルギー密度が低下するなどの問題を生じさせる
場合があるので、電解重合法により導電性基体上に有機
導電性高分子材料を付着形成する方法が好ましい。この
ように導電性基体を電解電極として電解重合すると導電
性基体上に有機導電性高分子材料が膜状に付着生成する
ので、この導電性基体を電極集電体とすることにより、
上述したように有機導電性高分子材料の’、J3造と同
時に電池用電極が製造されることになり、製造コスト上
極めて有利であり、しかも電解重合で生成した有機導電
性高分子材料は電極集電体としての導電性基体と電気的
に良好な接続がとれているため、全ての有機導電性高分
子材料を′1ト極活物質として有効に利用することがで
き、また内部抵抗も小さく、内部抵抗による電圧の低下
も小さいという利点を有するものである。
In this case, from the viewpoint of electrical connection, it is preferable to integrate the organic conductive polymer material with the current collector, and to fix this current collector to the outer can. Here, as a method for integrating the organic conductive polymer material and the current collector, if the organic conductive polymer material is obtained in powder form by a chemical polymerization method, etc., the organic conductive polymer material in powder form can be A conductive polymer material is coated on a conductive substrate and compression molded, or a powder of an organic conductive polymer material is mixed with a binder, etc., made into a paste, and then applied onto a conductive substrate and dried. It can be manufactured by However, if such a powder is used, it may cause problems such as a decrease in the energy density of the battery, so an organic conductive polymer material is deposited on a conductive substrate using an electrolytic polymerization method. A method of doing so is preferred. When electrolytically polymerizing a conductive substrate as an electrolytic electrode in this way, an organic conductive polymer material is deposited on the conductive substrate in the form of a film, so by using this conductive substrate as an electrode current collector,
As mentioned above, battery electrodes will be manufactured at the same time as organic conductive polymer materials and J3 manufacturing, which is extremely advantageous in terms of manufacturing costs.Moreover, organic conductive polymer materials produced by electrolytic polymerization are Since it has a good electrical connection with the conductive substrate as a current collector, all organic conductive polymer materials can be effectively used as the active material for the top electrode, and the internal resistance is small. This has the advantage that the drop in voltage due to internal resistance is also small.

本発明の電池を構成する電資質としては以下に説明する
液体電解質及び固体電解質が使用し得る。
As the electrolyte constituting the battery of the present invention, the liquid electrolyte and solid electrolyte described below can be used.

即ち1本発明の電池に使用する液体電解質としては1通
常イオン化合物を溶媒に溶解した電解質溶液が用いら九
、この電池に用いられる電解質溶液を構成するイオン化
合物としては、アニオンとリチウムイオンの組合せより
なる化合物であって、アニオンの例としてはPF5−+
SbF、−、AsF、−。
Namely, the liquid electrolyte used in the battery of the present invention is usually an electrolyte solution in which an ionic compound is dissolved in a solvent.9 The ionic compound constituting the electrolyte solution used in this battery is a combination of anion and lithium ion. An example of the anion is PF5-+
SbF,-, AsF,-.

5bcQ、−の如きVA族元素のハロゲン化物アニオン
、B F4−、AIICQ4−の如きIIIA族元素の
ハロゲン化物アニオン、r−(■a−LBr−+cQ−
の如きハロゲンアニオン、CQ04−の如き過塩素酸ア
ニオン、HF2−、CFiSO,−,5CN−、SQ、
−、H3O4−等を挙げることができる。これらアニオ
ン及びリチウムイオンを有する化合物の具体例としては
5bcQ, a halide anion of a group VA element such as -, a halide anion of a group IIIA element such as B F4-, AIICQ4-, r-(■a-LBr-+cQ-
Halogen anions such as, perchlorate anions such as CQ04-, HF2-, CFiSO,-, 5CN-, SQ,
-, H3O4-, and the like. Specific examples of compounds containing these anions and lithium ions include:

LiPF、、Li5bFG、LiAsF、、LiCQO
4,LiI。
LiPF, Li5bFG, LiAsF, LiCQO
4, LiI.

LiBr、LiCLLiBF、、LiAfl(14,L
iHF2゜Li5CN、Li503CF、等を挙げるこ
とができ、これらに限定されるものではないが、電池の
軽量化、安定化の点からはリチウム塩、特にL ic 
QO4eLiBF、、LiPF、、LiI、LiBr、
LiCQ等が好適に用いられる。
LiBr, LiCLLiBF, , LiAfl (14, L
Examples include, but are not limited to, iHF2゜Li5CN, Li503CF, etc. Lithium salts, especially Lic
QO4eLiBF, ,LiPF, ,LiI,LiBr,
LiCQ or the like is preferably used.

なお、電池の電解質溶液を構成する溶媒としては、特に
限定はされないが、比較的極性の大きい溶媒が好適に用
いられる。具体的には、プロピレンカーボネート、エチ
レンカーボネート、ベンゾニトリル、テトラヒドロフラ
ン、2−メチルテトラヒドロフラン、γ−ブチロラクト
ン、ジオキソラン、塩化メチレン、トリエチルフォスフ
ェート。
Note that the solvent constituting the electrolyte solution of the battery is not particularly limited, but a relatively highly polar solvent is preferably used. Specifically, propylene carbonate, ethylene carbonate, benzonitrile, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, dioxolane, methylene chloride, and triethyl phosphate.

トリエチルフォスファイト、硫酸ジメチル、ジメチルホ
ルムアミド、ジメチルアセトアミド、ジメチルスルフオ
キシド、ジオキサン、ジメトキシエタン、ポリエチレン
グリコール、スルフオラン。
Triethyl phosphite, dimethyl sulfate, dimethyl formamide, dimethyl acetamide, dimethyl sulfoxide, dioxane, dimethoxyethane, polyethylene glycol, sulforane.

ジクロロエタン、クロルベンゼン、ニトロベンゼンなど
の有機溶媒の1種又は2@以上の混合物を挙げることが
できる。
One type or a mixture of two or more of organic solvents such as dichloroethane, chlorobenzene, and nitrobenzene can be mentioned.

また、本発明の電池に使用する固体電解質としては、上
記電解質溶液を例えばポリエチレンオキサイド、ポリプ
ロピレンオキサイド、ポリエチレンオキサイドのイソシ
アネート架橋体、エチレンオキサイドオリゴマーを側鎖
に持つホスファゼンポリマー等の重合体に含浸させた有
機固体電解質。
Further, as the solid electrolyte used in the battery of the present invention, the above electrolyte solution is impregnated with a polymer such as polyethylene oxide, polypropylene oxide, an isocyanate crosslinked product of polyethylene oxide, or a phosphazene polymer having an ethylene oxide oligomer in the side chain. Organic solid electrolyte.

Li、N、LiBCQ4.Li4Sin4.LL、80
3等のリチウムガラスなどの無機固体電解質が挙げられ
る。
Li, N, LiBCQ4. Li4Sin4. L.L., 80
Examples include inorganic solid electrolytes such as lithium glass such as No. 3 lithium glass.

なお1本発明の電池に電解質を介在させるに際し、使用
する電解質が固体電解質の場合には、正負両極の接触が
生じるおそれはなく、正負両極間に直接固体電解質を介
在させることができるが、使用する電解質が液体電解質
の場合には、正負両極の接触が生じるおそれがあり、正
負両極間に両極の接触による電流の短絡を防ぐためにセ
パレータを介装することが好ましい。セパレータとして
は多孔質で′市解液を通したり含んだりすることのでき
る材料、例えばポリテトラフルオロエチレン。
1. When interposing an electrolyte in the battery of the present invention, if the electrolyte used is a solid electrolyte, there is no risk of contact between the positive and negative electrodes, and the solid electrolyte can be directly interposed between the positive and negative electrodes. When the electrolyte to be used is a liquid electrolyte, there is a risk that the positive and negative electrodes may come into contact with each other, and it is preferable to interpose a separator between the positive and negative electrodes in order to prevent current short-circuiting due to contact between the two electrodes. As a separator, a porous material that can pass or contain the liquid, such as polytetrafluoroethylene.

ポリプロピレンやポリエチレンなどの合成樹脂製の不織
布、織布及び網等を使用することができる。
Nonwoven fabrics, woven fabrics, nets, etc. made of synthetic resins such as polypropylene and polyethylene can be used.

本発明の電池は、円柱型、ボタン型、コイン型。The battery of the present invention has a cylindrical shape, a button shape, and a coin shape.

フィルム型筒各種形状の電池として使用することができ
、種々のサイズのfu池を形成し1!)るが1本発明に
よれば負雨と外装缶とを集電体を介して固着したことに
より、得命の長い信頼性に優れた電池を得ることができ
る。
Film-shaped cylinders can be used as batteries of various shapes, and can form fu ponds of various sizes. However, according to the present invention, by fixing the negative rain and the outer can through the current collector, a battery with excellent reliability and a long life can be obtained.

一介唄の効果 以上説明したように、本発明電池は、負極と外装缶とを
集電体を介して固着したことにより安定した電気的接続
が得られ、電池の内部抵抗を低くすることが可能となり
、かつ負極活物質としてリチウム合金を用いたことによ
り、電池の長寿命高エネルギー密度化が図られ、二次電
池を構成した場合には優れた充放電特性を示すなどの特
長を付与することができ、このため自動車、飛行機、ポ
ータプル機械、コンピュータ、電気自動車など多方面の
用途に好適に使用されるものである。
As explained above, in the battery of the present invention, a stable electrical connection can be obtained by fixing the negative electrode and the outer can via the current collector, and it is possible to lower the internal resistance of the battery. In addition, by using a lithium alloy as the negative electrode active material, the battery has a long life and high energy density, and when used as a secondary battery, it has features such as excellent charge and discharge characteristics. Therefore, it is suitable for use in a wide variety of applications such as automobiles, airplanes, portable machines, computers, and electric vehicles.

以下、実施例を示し、本発明を具体的に説明するが1本
発明は下記の実施例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to the following Examples.

〔実施例〕〔Example〕

直径1■l!Xさ20C)csの円板状アルミニウム基
体を直径1■の円形ステンレススチール製金網(SUS
  316,300メツシユ)の−面にスポノト溶接に
て接合すると共に、この金網の他面をステンレススチー
ル製外装缶内側にスポット溶接にて接合した6次に、こ
の円板状アルミニウム基体の外周を絶縁物でマスキング
し、このアルミニウム基体/外装缶固着物の円板状アル
ミニウムを作用極とし、リチウム金属を対極とし、電解
液として1モル/QのL i CQ O4のプロピレン
カーボネート溶液を用い1通電量40mAHにて電解し
、アルミニウム基体をリチウム合金化して、電気化学的
に円板状のリチウム−アルミニウム合金を作製した。
Diameter 1■l! A circular stainless steel wire mesh (SUS
316,300 mesh) by sponoto welding, and the other side of this wire mesh was joined to the inside of the stainless steel exterior can by spot welding.Next, the outer periphery of this disc-shaped aluminum base was insulated. The disk-shaped aluminum adhered to the aluminum base/external can was used as a working electrode, lithium metal was used as a counter electrode, and a propylene carbonate solution of 1 mol/Q Li CQ O4 was used as an electrolyte, and one current was applied. The aluminum substrate was electrolyzed at 40 mAH to form a lithium alloy, and a disk-shaped lithium-aluminum alloy was electrochemically produced.

こうして得られた外装缶に集電体を介して固着されたリ
チウム−アルミニウム合金を負極として用いると共に、
40■のポリアニリンを正極活物質として直径1.5a
mの正極を形成し、電解液に1モル/QのLiBF、の
プロピレンカーボネート溶液、セパレータにポリプロピ
レン紙を用い、更に正極側外装缶、ポリプロピレン製ガ
スケットを用いて封口し、厚さ1.6mのコイン型電池
を構成した。なお、使用したポリアニリンは、1.5モ
ル/12の7ニリンモノマー、3.0モル/Qの1−I
 B F 、を含む水溶液中で白金板上に電解重合する
ことにより得られたものである。
Using the lithium-aluminum alloy fixed to the thus obtained outer can via a current collector as a negative electrode,
Diameter 1.5a using 40cm polyaniline as positive electrode active material
A positive electrode with a thickness of 1.6 m was formed, a propylene carbonate solution of 1 mol/Q LiBF was used as the electrolyte, polypropylene paper was used as a separator, and the outer can on the positive electrode side was sealed using a polypropylene gasket. A coin-type battery was constructed. The polyaniline used was 1.5 mol/12 of 7-niline monomer, 3.0 mol/Q of 1-I monomer,
It was obtained by electrolytic polymerization on a platinum plate in an aqueous solution containing B F .

即ち、このコイン型電池は、第1,2図に示すように、
それぞれステンレススチールにより形成された外装缶1
a、lbをガスケット2を介して互に固着すると共に、
これら外装缶1a、lb内に正極3と負極4とこれら両
極3,4間に介在されかつドーパントを含む電解液を担
持してなる絶縁性セパレータ5とを収容してなるもので
ある。
That is, this coin-type battery, as shown in FIGS. 1 and 2,
Exterior cans 1 each made of stainless steel
a and lb are fixed to each other via a gasket 2, and
A positive electrode 3, a negative electrode 4, and an insulating separator 5 which is interposed between these electrodes 3 and 4 and supports an electrolytic solution containing a dopant are housed in these outer cans 1a and 1b.

また、6は正極集電体で、この集電体6は前記電解重合
時の電極である白金板をそのまま使用しており、従って
正極3(ポリアニリン)と密着一体化していると共に、
この集電体6を一方の外装缶1aにスポット溶接7する
ことにより、外装缶1aと固着されている。なお、8は
上記ステンレススチールメツシュ製の負極集電体である
Further, 6 is a positive electrode current collector, and this current collector 6 uses the platinum plate that is the electrode during the electrolytic polymerization as it is, and is therefore closely integrated with the positive electrode 3 (polyaniline).
This current collector 6 is fixed to one of the outer cans 1a by spot welding 7 to the outer can 1a. Note that 8 is the negative electrode current collector made of the stainless steel mesh mentioned above.

上記構成のコイン型電池につき、Q、5mAで2時間の
充電及び放電を行なう充放電過程を1サイクルとして充
放電を行ない、各サイクル毎の内部抵抗を測定した。
The coin-type battery having the above configuration was charged and discharged, with a charging and discharging process of charging and discharging for 2 hours at Q, 5 mA as one cycle, and the internal resistance was measured for each cycle.

この測定の結果、内部抵抗は約40Ωで。As a result of this measurement, the internal resistance was approximately 40Ω.

1000サイクル経過後でもこの値はほとんど変化しな
かった。
This value hardly changed even after 1000 cycles.

〔比較例1〕 コイン型電池を構成するに当りアルミニウムを外装缶に
固着せず、電気化学的に製造したリチウム−アルミニウ
ム合金を外装缶に当接させた以外は実施例と同様にして
コイン型電池を得、このコイン型電池につき実施例と同
様の充放電を行ない、各サイクル毎の内部抵抗を測定し
た。
[Comparative Example 1] A coin-type battery was made in the same manner as in Example, except that aluminum was not fixed to the outer can and an electrochemically produced lithium-aluminum alloy was brought into contact with the outer can. A battery was obtained, and this coin-shaped battery was charged and discharged in the same manner as in the example, and the internal resistance was measured for each cycle.

この測定の結果、充放電初期の内部抵抗は約80Ωを示
したが、10oサイクル経過後から急激に増加して15
0〜400Ωにも達し、放電カーブにも接触不良による
と思われる乱れが61 ’fAされた。
As a result of this measurement, the internal resistance at the initial stage of charging and discharging was approximately 80Ω, but after 10o cycles, it rapidly increased to 15Ω.
The resistance reached 0 to 400Ω, and there was a disturbance in the discharge curve of 61' fA, which was thought to be due to poor contact.

〔比較例2〕 実施例と同様のアルミニウム基体を直接外装缶にスポッ
ト溶接し、その後実施例と同じ工程でこの基体をリチウ
ム合金化した。次いで、この基体を負極として用いた以
外は実施例と同様にしてコイン型電池を得、このコイン
型電池につき実施例と同様の充放電を行ない、各サイク
ル毎の内部抵抗を、測定した。
[Comparative Example 2] The same aluminum base as in the example was directly spot welded to the outer can, and then this base was made into a lithium alloy in the same process as in the example. Next, a coin type battery was obtained in the same manner as in the example except that this substrate was used as a negative electrode, and this coin type battery was charged and discharged in the same manner as in the example, and the internal resistance was measured for each cycle.

この測定の結果、充放電初期の内部抵抗は約40Ωを示
したが、400サイクル経過後から急激に増加して15
0〜400Ωにも達し、放電カーブにも接触不良による
と思われる乱れが観察された。
As a result of this measurement, the internal resistance at the initial stage of charging and discharging was approximately 40Ω, but after 400 cycles, it rapidly increased to 15Ω.
It reached 0 to 400Ω, and disturbances thought to be due to poor contact were observed in the discharge curve.

以上の実施例と比較例の結果から、本発明の外装缶と集
電体を介して固着したリチウム合金を負極活物質として
用いた電池は、リチウム合金を負極活物質として用いて
も負極基体と外装缶とを固着していない場合及び直接固
着した場合に比し、電池の内部抵抗が十分低く、かつ二
次電池としても本発明品の方が充放電の繰返しに対する
内部抵抗変化が少なく安定していることが知見され1本
発明の効果が確認された。
From the results of the above Examples and Comparative Examples, it is clear that a battery using the lithium alloy fixed via the outer can of the present invention and the current collector as the negative electrode active material has no negative electrode substrate even if the lithium alloy is used as the negative electrode active material. The internal resistance of the battery is sufficiently lower than when the battery is not fixed to the outer can or when it is directly fixed, and the product of the present invention is more stable as a secondary battery with less internal resistance change due to repeated charging and discharging. It was found that the effect of the present invention was confirmed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電池の一実施例を示す概略断面図、第
2図は第1図■−■線に沿った要部断面図である。 1 a、1 b・・・外装缶、3・・・正極、4・・・
負極、6.9・・・集電体。 出願人  株式会社 ブリデストン 代理人  弁理士  小 島 隆 同 第1図 第2図
FIG. 1 is a schematic cross-sectional view showing one embodiment of the battery of the present invention, and FIG. 2 is a cross-sectional view of essential parts taken along the line ■--■ in FIG. 1 a, 1 b...Exterior can, 3...Positive electrode, 4...
Negative electrode, 6.9... Current collector. Applicant Brideston Co., Ltd. Agent Patent Attorney Takashi Kojima Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1、正極、負極及び電解質がそれぞれ外装缶内に収容さ
れ、かつ負極がリチウム又はリチウム合金により形成さ
れた電池において、上記負極を集電体を介して外装缶に
固着してなることを特徴とする電池。 2、集電体がステンレススチールからなる特許請求の範
囲第1項記載の電池。 3、集電体を負極及び外装缶とそれぞれ溶接により固着
した特許請求の範囲第1項又は第2項記載の電池。 4、正極を直接又は集電体を介して外装缶に固着した特
許請求の範囲第1項乃至第3項いずれか記載の電池。 5、正極が有機導電性高分子材料からなる特許請求の範
囲第1項乃至第4項いずれか記載の電池。
[Claims] 1. In a battery in which a positive electrode, a negative electrode, and an electrolyte are each housed in an outer can, and the negative electrode is made of lithium or a lithium alloy, the negative electrode is fixed to the outer can via a current collector. A battery characterized by: 2. The battery according to claim 1, wherein the current collector is made of stainless steel. 3. The battery according to claim 1 or 2, wherein the current collector is fixed to the negative electrode and the outer can by welding, respectively. 4. The battery according to any one of claims 1 to 3, wherein the positive electrode is fixed to the outer can directly or via a current collector. 5. The battery according to any one of claims 1 to 4, wherein the positive electrode is made of an organic conductive polymer material.
JP62087723A 1987-04-09 1987-04-09 Electric cell Pending JPS62295370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62087723A JPS62295370A (en) 1987-04-09 1987-04-09 Electric cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62087723A JPS62295370A (en) 1987-04-09 1987-04-09 Electric cell

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP61077453 Division 1985-10-17 1986-04-02

Publications (1)

Publication Number Publication Date
JPS62295370A true JPS62295370A (en) 1987-12-22

Family

ID=13922829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62087723A Pending JPS62295370A (en) 1987-04-09 1987-04-09 Electric cell

Country Status (1)

Country Link
JP (1) JPS62295370A (en)

Similar Documents

Publication Publication Date Title
US7033702B2 (en) Particulate electrode including electrolyte for a rechargeable lithium battery
US5108855A (en) Secondary battery
US9214697B2 (en) Lithium secondary battery
EP2575201A1 (en) Non-aqueous electrolyte secondary battery comprising lithium vanadium phosphate and lithium nickel composite oxide as positive electrode active material
US4824745A (en) Electric cell comprising a polymeric material film electrode having a collection integrated therewith
JPH0428172A (en) Secondary battery
US5792576A (en) Limited rechargeable lithium battery based on a cathode slurry
JPH09259929A (en) Lithium secondary cell
JPH06310126A (en) Nonaquous electrolytic secondary battery
US20210399305A1 (en) A protective barrier layer for alkaline batteries
JPH08213049A (en) Lithium secondary battery
JPH05226002A (en) Lithium secondary cell gel-like electrolyte
JP3403858B2 (en) Organic electrolyte battery
JP2001068143A (en) Flat nonaqueous electrolyte secondary battery
JPH09245753A (en) Paired battery and grouped battery
JP3116236B2 (en) Rechargeable battery
JPS62295370A (en) Electric cell
JPH0139191B2 (en)
JP2752377B2 (en) Sheet electrode
JP7466112B2 (en) Non-aqueous electrolyte secondary battery
JPH01166466A (en) Lithium battery
JPS6293868A (en) Secondary battery
JP2000285965A (en) Nonaqueous electrolyte secondary battery and its manufacture
JPH0447431B2 (en)
JPS62108473A (en) Cell