JPS6041761A - Lithium organic secondary battery - Google Patents

Lithium organic secondary battery

Info

Publication number
JPS6041761A
JPS6041761A JP58150870A JP15087083A JPS6041761A JP S6041761 A JPS6041761 A JP S6041761A JP 58150870 A JP58150870 A JP 58150870A JP 15087083 A JP15087083 A JP 15087083A JP S6041761 A JPS6041761 A JP S6041761A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
battery
charge
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58150870A
Other languages
Japanese (ja)
Inventor
Kazumi Yoshimitsu
由光 一三
Noboru Kotani
小谷 昇
Kozo Kajita
梶田 耕三
Toshikatsu Manabe
真辺 俊勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP58150870A priority Critical patent/JPS6041761A/en
Publication of JPS6041761A publication Critical patent/JPS6041761A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/669Steels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To increase charge-discharge performance by applying silver plating to the portion where lithium is electrolytically deposited on the stainless steel surface of a negative current collector. CONSTITUTION:Lithium or lithium alloy with aluminium, mercury, zinc, or cadmium is used as a negative active material. For example, for a button battery, silver plating is applied to a negative can 2 and a negative current collecting net 3, and for a cylindrical battery, silver plating is applied to a negative can, a negative current collecting net, and negative current collecting rod. In this way, according to the battery construction, silver plating is performed in the portion where electrolytically deposited lithium is in contact with the negative current collector. Thereby, decrease of charge-discharge reversibility is suppressed.

Description

【発明の詳細な説明】 物質とするリチウム有機二次電池の改良に係り、充放電
特性の優れたリチウム有機二次電池を提供することを目
的とする。
DETAILED DESCRIPTION OF THE INVENTION It is an object of the present invention to provide a lithium organic secondary battery with excellent charging and discharging characteristics.

リチウムまたはリチウム合金を負極/l’i物′1tと
するリチウム有機二次電池では、発電要素と接する部分
の相性は、一般にステンレス鋼が採用されている。これ
はステンレス鋼が活物タ−1や電解液に刻して安定であ
るという理由に基づく。
In a lithium organic secondary battery using lithium or a lithium alloy as the negative electrode/l'i'1t, stainless steel is generally used for the compatibility of the part in contact with the power generation element. This is based on the reason that stainless steel is stable when cut into active materials and electrolytes.

しかしながら、このような集電[)15分にステンレス
鋼を用いた二次電池の充放電可逆性は予想されるよりも
低い。
However, the charge/discharge reversibility of such a secondary battery using stainless steel for 15 minutes of current collection is lower than expected.

不発明考らばそのような事情に鑑み種々研究を重ねた結
果、リチウムまたはリチウム合金を負極活物質とするリ
チウム有機二次電池Gこおいて、負極集電体のステンレ
ス鋼面でリチウムが電析しうる部分に銀メノ;1−をし
ておくときは、充放電可逆性が飛曜的に向1−すること
を見出し、本発明を完成するにいたった。
Considering these circumstances, we have conducted various studies and found that in a lithium organic secondary battery G in which lithium or lithium alloy is used as the negative electrode active material, lithium is charged on the stainless steel surface of the negative electrode current collector. It was discovered that when a silver coating is applied to the part that can be analyzed, the charge/discharge reversibility is dramatically improved, and the present invention was completed.

本発明において負極集電体とは負極缶、集電網、集電板
、集電棒、集電パイプなどその形態のいかんを問わず、
負極側の集電体として働くものをいう。
In the present invention, the negative electrode current collector refers to a negative electrode can, a current collecting network, a current collecting plate, a current collecting rod, a current collecting pipe, etc., regardless of its form.
This refers to something that acts as a current collector on the negative electrode side.

以下図面にノ,1.ついて本発明をさらにil’l’細
に説明する。
In the drawings below, 1. The present invention will now be explained in further detail.

第1図はボタン形のリチウム白t7■二次電池を示すも
ので、図中、1ばリチウム合金であり、2は負極缶で、
この1′]極缶2はニッケルーステンレス鋼りラソド板
よりなり、そのステンレス鋼面が電池内部側に配;γ1
1されている。3は負極缶2の内面にスポット溶接され
たステンレス鋼製の415電網で、前記リチウム負極■
ばこの集電網3を介して負極缶2の内面に圧着されてい
る。従っ゛にの電池においては負極缶2および集電網3
がf′i極集電体を構成する。4は二硫化チタンを/+
11物’i!tとする正極で、5はニッケル−ステンレ
ス1閑クラッド]及製の正極缶であり、そのステンレス
鋼面か電池内部側に配置されている。6は正極缶5の内
面にスポット溶接したステンレス鋼製の集電網で、7は
微孔性ポリプロピレンフィルムとボリプ1コピレン不織
布とを重ね合わせてなるセパレータであり、微孔性ポリ
プロピレンフィルム側が、リヂうム負極1側に配置され
ている。8はポリプロピレン製の環状ガスケツl−であ
る。
Figure 1 shows a button-shaped lithium white T7 secondary battery. In the figure, 1 is a lithium alloy, 2 is a negative electrode can,
This 1'] pole case 2 is made of a nickel-stainless steel lathod plate, and its stainless steel surface is placed on the inside of the battery; γ1
1 has been done. 3 is a stainless steel 415 wire spot welded to the inner surface of the negative electrode can 2, and the lithium negative electrode
It is crimped onto the inner surface of the negative electrode can 2 via a current collecting network 3 of tobacco. Accordingly, in the battery, the negative electrode can 2 and the current collecting network 3
constitutes the f′i electrode current collector. 4 is titanium disulfide/+
11 things'i! The positive electrode is denoted by t, and 5 is a positive electrode can made of nickel-stainless steel (1-blank clad), and its stainless steel surface is placed inside the battery. 6 is a stainless steel current collection network spot welded to the inner surface of the positive electrode can 5, and 7 is a separator made by superimposing a microporous polypropylene film and a polypropylene nonwoven fabric, with the microporous polypropylene film side being rigid. The negative electrode 1 side is arranged on the negative electrode 1 side. 8 is a polypropylene annular gasket l-.

この電池を放電し、ついで充電すると、リチウムは負極
1の表面のみならず、負極缶2の集電網3が溶接された
部分と環状ガスケット8の嵌合部との間のステンレス鋼
面が露出した部分2aにも電析する。この電析リチウム
は平111面を形成せず樹枝状を呈している。さらに充
放電を繰り返すと、もとの形態を保−9たリチウムはど
んどんなくなり、ついにはリチウJ3が負極側の集?r
l細3や該111電i岡3がン容接され″こいろ部分の
t’t +@泪1にも電41iするようになる。
When this battery was discharged and then charged, lithium was exposed not only on the surface of the negative electrode 1 but also on the stainless steel surface between the part of the negative electrode can 2 where the current collecting network 3 was welded and the fitting part of the annular gasket 8. Electrodeposition is also carried out on part 2a. This electrodeposited lithium does not form a flat 111 plane and has a dendritic shape. When charging and discharging are repeated further, the lithium that maintains its original form gradually disappears, and finally the lithium J3 becomes a collection on the negative electrode side. r
The thin 3 and the 111 electric current 3 are connected to each other, and the electric current 41 is also applied to the t't +@1 of the black part.

不発切者らの伺究によれば、」−記のように電析リチウ
ムが直接スう−ンレス泪面に接触するにつれて充放電比
が、rl、 (なり、充放電特性か著し7く低下する。
According to the investigation by those who failed to decompose the battery, as the electrodeposited lithium comes into direct contact with the sunless surface, the charge/discharge ratio becomes rl, (and the charge/discharge characteristics become significantly 7. descend.

不発切者らは、そのような知見Gこ基づき、負極集電体
の電析リチウムが接触しうるステンレスIFi面を他の
相性゛C彼覆することにより充hk電可逆性の低下を抑
制すべく鋭意研究を重ね、前述のごとく銀メッキでスう
−ンレス鋼面を被覆する本発明を完成したのであイ」。
Based on such knowledge, the researchers have attempted to suppress the decline in charging reversibility by changing the compatibility of the stainless steel IFi surface with which the electrodeposited lithium of the negative electrode current collector can come into contact. As a result of extensive research, we have completed the present invention, which coats the surface of the spunless steel with silver plating as mentioned above.

本発明において、銀メッキの厚さは1μm1す上あれば
よく、図示のようなボタン形声11hで(,1,1′[
極缶2と負極側の集電網3に銀メッキが施され、筒形電
池では1′I極flj、負極側の111電精、負極集電
棒など電池の形!ε1Gこ応じてf′l極4−1重体で
電析リチウムが接触し)る部分にtliメ、キが施され
る。
In the present invention, the thickness of the silver plating may be 1 μm or more, and the button shape 11h as shown in the figure (,1,1'[
The electrode can 2 and the current collector net 3 on the negative electrode side are plated with silver, and in the case of a cylindrical battery, the 1'I pole flj, the 111 electrode on the negative electrode side, the negative electrode current collector rod, etc. are shaped like batteries! Accordingly, the portion where the electrodeposited lithium comes into contact with the f'l electrode 4-1 is plated.

本発明の電池において、負極活物質とし′Cは、リチウ
ム、リチウムとたとえばアルミニウム、水銀、亜鉛、カ
ドミウムなどとのリチウム合金が用いられ、正極活物質
としては、たとえば−硫化チタン、二硫化鉄、硫化第一
鉄、硫化第二鉄などの硫化鉄、二酸化マンガン、(CF
)工、(C2F)χなどのフッ化炭素類、二硫化ニオブ
、■6013、Cu5 V20H口などが用いられる。
In the battery of the present invention, the negative electrode active material C is lithium or a lithium alloy of lithium and, for example, aluminum, mercury, zinc, cadmium, etc., and the positive electrode active material is, for example, titanium sulfide, iron disulfide, Iron sulfides such as ferrous sulfide and ferric sulfide, manganese dioxide, (CF
), fluorocarbons such as (C2F)χ, niobium disulfide, ■6013, Cu5 V20H, etc. are used.

また電1竹ン夜とし゛ては、たとえば1,2−ジメトキ
シエタン、1,2−ジェトキシエタン、プl、】ピレン
カーボネート、γ−ブチロラクトン、テトラヒドロフラ
ン、2−メチルテトラヒドロフラン、1.3−シオキソ
ラン、4−メチル−1,3−ジオキソラン、4,4−ジ
メチル−1,3−ジオキソラン、4.5−ジメチル−1
,3−ジオキソラン、2−メチル−1,3−ジオキソラ
ン、2.4−ジメチル−1,3−ジオキソラン、(CH
30)3 P=O1(C21−150)3 P=0、(
C4Hs O) 3 P−0、(CsH170) 3 
P=O,(CI CH2C1120) 3 P=0など
の単独または2種以」−の混合溶媒に、I2i CI 
04、LiPl’6 、LiBF4、LiA SF6 
、Li5bl’6 、L i Δ ICI4、LiB1
゜CI 10 、L i 1312 CI 12、L 
i H(C61(5) 4、LiB (p−FCs 1
14)3 CH3、LiB (p−FC6H4)4など
の電解質を/8解したものが用いられる。
In addition, examples of electric power include 1,2-dimethoxyethane, 1,2-jethoxyethane, pyrene carbonate, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-thioxolane, 4-pyrene carbonate, Methyl-1,3-dioxolane, 4,4-dimethyl-1,3-dioxolane, 4,5-dimethyl-1
, 3-dioxolane, 2-methyl-1,3-dioxolane, 2,4-dimethyl-1,3-dioxolane, (CH
30)3 P=O1(C21-150)3 P=0, (
C4HsO)3P-0, (CsH170)3
P=O, (CI CH2C1120) 3 I2i CI
04, LiPl'6, LiBF4, LiA SF6
, Li5bl'6 , Li Δ ICI4, LiB1
゜CI 10, L i 1312 CI 12, L
i H(C61(5) 4, LiB(p-FCs 1
14) An electrolyte with a /8 resolution such as 3 CH3 and LiB (p-FC6H4)4 is used.

つぎに実施例をあげて本発明を説明する。Next, the present invention will be explained with reference to Examples.

実施例1 電解液としてL i B CC6Its > 4を4−
メチル−1,3−ジオキソランと1,2−ジメトキシエ
タンとの容険比が70 : 30の混合溶媒に(1,f
iモル/e/8解させたものを用い第1図に示すような
ボタン形電池で正極利用率;)0%以にの充放電ザ・イ
クル数を調べ、ザイクル特性を評価した。その結果を第
1表に示す。ザイクル試験ば1.(1mA /cnlの
定電流で放電1.5V〜充7ii2.7’vの間で行な
われた。
Example 1 Li B CC6Its > 4 as an electrolyte
A mixed solvent of methyl-1,3-dioxolane and 1,2-dimethoxyethane with a volume ratio of 70:30 (1,f
The cycle characteristics were evaluated by examining the number of cycles of charging and discharging to a positive electrode utilization rate of 0% or more in a button type battery as shown in FIG. The results are shown in Table 1. Seikle test 1. (The test was carried out at a constant current of 1 mA/cnl between discharge 1.5 V and charge 7ii 2.7'V.

負極缶はニノゲルー5US304クラッド板、l−りな
り、負極側0戸1’、 71i tli:Iは5LJS
316製+7) ”l’ tQl+ I’d テあり、
これらの(’1極缶の内面側お、)−ひ((−電相1に
厚さ約10μmのI)Jメッキを施した。なお、第21
2.1 L:1第1図のA部拡大図であり、第2図中、
9はfI極缶2の内面側に形成した銀メッキ1nを示す
。電池構成は前記のように負極がリチウム、正極が二硫
化チタンを正極活物質とする二硫化チタン合剤で、セパ
レータにば微孔性ポリプロピレンフィル1カとポリプロ
ピレン不織布を重ねて用いた。l(おセパレータは微孔
性ボリプロビレンフイルノ、が負極側に対向することに
配置した。
The negative electrode can is Ninogel 5US304 clad plate, L-shaped, negative electrode side 0 doors 1', 71i tli:I is 5LJS
Made of 316 + 7) ``l' tQl + I'd te,
These ('1-electrode inner surfaces O,)-H(-electrophase 1 were plated with I)J to a thickness of approximately 10 μm.
2.1 L:1 This is an enlarged view of part A in Figure 1, and in Figure 2,
Reference numeral 9 indicates silver plating 1n formed on the inner surface of the fI pole can 2. As described above, the battery configuration was such that the negative electrode was lithium, the positive electrode was a titanium disulfide mixture with titanium disulfide as the positive electrode active material, and the separator was a layered layer of a microporous polypropylene film and a polypropylene nonwoven fabric. The separator was made of microporous polypropylene film and was placed facing the negative electrode.

比較例1 負極缶と集電網に銀メッキをしなか−、たことはほかは
実施例1と同様の電池について、その正極利用率30%
以」二の充放電サイクル数をl!jlべた。その結果を
第1表に示す。
Comparative Example 1 A battery similar to Example 1 except that the negative electrode can and the current collection network were not silver-plated, with a positive electrode utilization rate of 30%.
The number of charge/discharge cycles is l! jl solid. The results are shown in Table 1.

実施例2 負極にリチウム、正極に二硫化チタン合剤を用い、リチ
ウムを5US316製の平織網に圧着し、二硫化チタン
合剤を前記負極側と同様の4p電順に保持させ、5US
3(14製の負極集電パイプを芯枠にして渦巻状に巻回
し、渦巻電極を形成し、これを用いて筒形のリチウム有
iJl二次電tI!!を竹製した。
Example 2 Using lithium for the negative electrode and a titanium disulfide mixture for the positive electrode, the lithium was crimped onto a plain weave mesh made of 5US316, and the titanium disulfide mixture was held in the same 4p electrical order as on the negative electrode side.
A negative electrode current collecting pipe manufactured by No. 3 (14) was used as a core frame and wound into a spiral shape to form a spiral electrode, and using this, a cylindrical lithium-containing iJl secondary electric current tI!! was made of bamboo.

電解液やセパレータむ、1実施例1と同様であり、正極
はセパレータで包被して負極との隔離をした。
The electrolyte solution and separator were the same as in Example 1, and the positive electrode was covered with a separator to isolate it from the negative electrode.

電池形成にあた一7゛C,負極側の集電網および負極集
電パイプには前もってj7さ約10!1mの銀メノギを
しておいた。
In order to form the battery, silver agate with a length of about 10.1 m was placed in advance on the negative electrode side current collection network and negative electrode current collection pipe at 17°C.

この電池の正(・に利用率30%以」−の充放電サイク
ル数を調べた結果を第2表に示す。
Table 2 shows the results of examining the number of positive charge/discharge cycles of this battery.

比較例2 負極側の集?li 11?+と1で1.極集電パイプに
銀メノギをしなかったほかは実施例2と同様にして筒形
のリチウム電池を形成し、その正極利用率30%以」二
の充放電サイクル数を調べた。その結果を第2表に示す
Comparative example 2 Negative electrode side collection? li 11? 1 with + and 1. A cylindrical lithium battery was formed in the same manner as in Example 2, except that silver agate was not used for the electrode current collecting pipe, and the number of charge/discharge cycles at a positive electrode utilization rate of 30% or more was examined. The results are shown in Table 2.

第 1 表 第 2 表 第1表および第2表に示すように、本発明の電池はサイ
クル数が多く、充放電特性がずくれている。
As shown in Tables 1 and 2, the battery of the present invention has a large number of cycles and has poor charge/discharge characteristics.

実施例1の電池と比較例1の電池のサイクル数と充放電
比との関係を第31ン1に、また実施例20)電池と比
較例2の電lO,!のサイクル数と充1jk電化との関
係を第4図に小ず。なお、充放電比とε:11・記の式
に示す、1゛)に 充電電気用(TTIΔh) 充放電比−・−m=−□−−−−−−−−−−−−−−
−一放電電気Ii(mΔh) 各ザイクルでの放t1【電気量と充電電気l計との比で
あり、充放電ILが1に近いほど充放電’l「f!lが
良好であることを示す。
The relationship between the number of cycles and the charge/discharge ratio of the battery of Example 1 and the battery of Comparative Example 1 is shown in the 31st page, and the relationship between the number of cycles and the charge/discharge ratio of the battery of Example 20) and the battery of Comparative Example 2, ! Figure 4 shows the relationship between the number of cycles and the charge 1jk electrification. In addition, the charge/discharge ratio and ε: 11・1゛) for charging electricity (TTIΔh) charge/discharge ratio −・−m=−□−−−−−−−−−−−−−−−
-One discharge electricity Ii (mΔh) It is the ratio between the amount of electricity released in each cycle and the charging electricity meter, and the closer the charge/discharge IL is to 1, the better the charge/discharge 'l'f!l is. show.

第31メ1および第41ヅ1に示ずよう乙こ、本発明の
電池はサイクル数の11?1加に伴なう充15り電比の
増加が少なく、充放電J1冒!1が良!lTである。
As shown in the 31st page 1 and the 41st page 1, the battery of the present invention has a small increase in the charging/discharging ratio due to an increase in the number of cycles of 11 to 1, and the charge/discharge ratio is small. 1 is good! It is IT.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るホタン形のリチウムイNi■二へ
電池の−・例を示′〕゛断面1ツ1てあり、第21釆I
G:1第1図のΔ部拡大1ツ1である。第31ツ1は本
発明の′ノ5施例1の電池と比1119例1の電池のサ
イクル数と充IJk電比との関係を示す図であり、第4
図は本イこ明の実施例2の電池と比中9例2の7h池の
り′・イクル故と充放電比との関係を示す図である。 1 ・負極、 2・・負極缶、 3・・負極側の集電1
12+、9・・♀艮メ、キ1行芳1m 袢2図
Figure 1 shows an example of a phosphorescent type lithium-ion battery according to the present invention.
G:1 This is an enlarged view of the Δ section in Figure 1. Part 31 is a diagram showing the relationship between the number of cycles and the charging IJk current ratio of the battery of Example 1 of Example 1 of the present invention and the battery of Example 1 of Comparative Example 1.
The figure is a diagram showing the relationship between the battery of Example 2 of the present invention and the 7-hour battery life of Example 2 and the charge/discharge ratio. 1.Negative electrode, 2..Negative electrode can, 3..Negative electrode side current collector 1
12+, 9...♀艮め、Ki 1 line Yoshi 1m Undershirt 2 figure

Claims (1)

【特許請求の範囲】[Claims] (1) リチウムまたはリチウム合金を負極活物質とす
るリチウム有機二次電池に、!:几1て、f’!極集電
体のステンレス鋼面でリチウムが電析しうる部分に銀メ
ッキをしたことを特徴とするリチウム有機二次・電池。
(1) Lithium organic secondary batteries that use lithium or lithium alloy as the negative electrode active material! : 几1te, f'! A lithium organic secondary/battery characterized by silver plating on the stainless steel surface of the electrode current collector where lithium can be deposited.
JP58150870A 1983-08-17 1983-08-17 Lithium organic secondary battery Pending JPS6041761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58150870A JPS6041761A (en) 1983-08-17 1983-08-17 Lithium organic secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58150870A JPS6041761A (en) 1983-08-17 1983-08-17 Lithium organic secondary battery

Publications (1)

Publication Number Publication Date
JPS6041761A true JPS6041761A (en) 1985-03-05

Family

ID=15506173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58150870A Pending JPS6041761A (en) 1983-08-17 1983-08-17 Lithium organic secondary battery

Country Status (1)

Country Link
JP (1) JPS6041761A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122077A (en) * 1985-11-21 1987-06-03 Sanyo Electric Co Ltd Nonaqueous secondary battery
JPS62123664A (en) * 1985-11-25 1987-06-04 Hitachi Maxell Ltd Manufacture of lithium secondary cell
JPS62285371A (en) * 1986-06-04 1987-12-11 Toshiba Battery Co Ltd Nonaqueous solvent secondary battery
KR100638845B1 (en) 2005-05-30 2006-10-25 서보가설산업 주식회사 Concrete distribution apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122077A (en) * 1985-11-21 1987-06-03 Sanyo Electric Co Ltd Nonaqueous secondary battery
JPS62123664A (en) * 1985-11-25 1987-06-04 Hitachi Maxell Ltd Manufacture of lithium secondary cell
JPS62285371A (en) * 1986-06-04 1987-12-11 Toshiba Battery Co Ltd Nonaqueous solvent secondary battery
KR100638845B1 (en) 2005-05-30 2006-10-25 서보가설산업 주식회사 Concrete distribution apparatus

Similar Documents

Publication Publication Date Title
CN105449186B (en) A kind of secondary cell and preparation method thereof
JPH09115523A (en) Nonaqueous electrolytic secondary battery
JPH10241670A (en) Electrode for nonaqueous electrolytic secondary battery and manufacture thereof
JP4512336B2 (en) Capacitors
JPH06310126A (en) Nonaquous electrolytic secondary battery
JPS6041761A (en) Lithium organic secondary battery
JPS62290071A (en) Organic electrolyne secondary battery
JPS60175375A (en) Lithium organic secondary cell
JPH0810605B2 (en) Lithium secondary battery
JPH0536401A (en) Lithium secondary battery
JPH0139191B2 (en)
JPS5916272A (en) Lithium battery
JPH0414758A (en) Lead-acid accumulator
JP2819201B2 (en) Lithium secondary battery
JPS62123651A (en) Lithium secondary battery
JPS60202675A (en) Manufacture of negative electrode for nonaqueous electrolyte secondary battery
JPH02278658A (en) Secondary battery
JP2712428B2 (en) Non-aqueous electrolyte secondary battery
JPH0719619B2 (en) Organic electrolyte secondary battery
JPS6089075A (en) Nonaqueous electrolyte secondary battery
JPH02220370A (en) Flat polymer battery
JPH05159781A (en) Nonaqueous electrolyte battery
JPS62150657A (en) Secondary cell
JPS587767A (en) Lithium cell
JP3021526B2 (en) Electrolyte for lithium secondary battery