JPS62114264A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPS62114264A
JPS62114264A JP60257089A JP25708985A JPS62114264A JP S62114264 A JPS62114264 A JP S62114264A JP 60257089 A JP60257089 A JP 60257089A JP 25708985 A JP25708985 A JP 25708985A JP S62114264 A JPS62114264 A JP S62114264A
Authority
JP
Japan
Prior art keywords
region
semiconductor
type
conductivity type
impurity concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60257089A
Other languages
Japanese (ja)
Inventor
Tsutomu Yoshihara
吉原 務
Satoshi Takano
聡 高野
Takao Nakano
隆生 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60257089A priority Critical patent/JPS62114264A/en
Publication of JPS62114264A publication Critical patent/JPS62114264A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To reduce the software error of a bit line mode by burying a higher impurity density first conductivity type first semiconductor buried region than the impurity density of the first conductivity type semiconductor substrate in the substrate and the first conductivity type semiconductor layer disposed on the substrate to contact with the second conductivity type fist semiconductor region connected with a bit line. CONSTITUTION:Since a P<+> type diffused region 16 is contacted with an N<+> type drain region 7 as a bit line region, the extension of the region 7 is decided by the impurity density of the region 16. The density of the region 16 is increased as long as P-N junction resistance is allowed to reduce the width of a depletion layer of the region 7. Most of electrons generated due to the incident radiation such as alpha-ray are collected to the region 7 by funneling effect. Since the funneling length is proportional to the width of the depletion layer, it can be largely improved against the software error of a bit line mode.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は半導体記憶装置に関し、特にメモリセルモー
ドのソフトエラーを低減できる半導体記憶装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor memory device, and particularly to a semiconductor memory device that can reduce soft errors in memory cell mode.

[従来の技術] 第3図は、たとえば特公昭60−4595号公報に示さ
れた半導体記憶装置の構造を示す断面図である。なお、
この図は、後述する発明の詳細説明を容易にするために
若干変形している。初めにこの装置の構成について説明
する。図において、p形シリコン基板1上にn+形トド
レイン領域7よびn+形ソース領域8.n1形拡散領域
3が互いに間隔を隔てて形成されており、さらにp形シ
リコン基板1の不純物濃度より不純物濃度が高いp“形
拡散領t16がn+形拡散領域3.n1形ソースA域8
に接するようにp形シリコン基板1に埋込まれている。
[Prior Art] FIG. 3 is a sectional view showing the structure of a semiconductor memory device disclosed in, for example, Japanese Patent Publication No. 60-4595. In addition,
This figure has been slightly modified to facilitate the detailed description of the invention below. First, the configuration of this device will be explained. In the figure, an n+ type drain region 7, an n+ type source region 8. N1 type diffusion regions 3 are formed at intervals from each other, and p" type diffusion regions t16 having an impurity concentration higher than the impurity concentration of the p type silicon substrate 1 are formed as n+ type diffusion regions 3.n1 type source A region 8.
It is embedded in the p-type silicon substrate 1 so as to be in contact with the p-type silicon substrate 1.

2は素子分離用シリコン酸化膜である。また、n+形ド
レインfl[t47と0+形ソ一ス領域8間のp形シリ
コン基板1上にゲート絶縁m9が形成されており、この
ゲート絶縁!!9上にゲート電極10が形成されている
。また、n1形拡散領域3上にキャパシタ絶縁膜4が形
成されており、キャパシタ絶縁膜4.素子分離用シリコ
ン酸化膜2上にキャパシタN極5が形成されている。n
+形拡散領域3とキャパシタ絶縁!#4と主1アバシタ
電極5とは情報記憶用キャパシタであるメモリセルを構
成し、このキャパシタの一方の電極となるべき記憶ノー
ドのn+形拡散領域3に電荷を蓄積することによって情
報を記憶する。p形シリコン基板1とn+形トドレイン
1a1フn+形ソース鎮域8とゲート絶縁膜9とゲート
電極10とはトランスファゲートトランジスタを構成し
、このゲート電+m i oはメモリヒルを選択するワ
ード線に接続されている。また、キせパシタ電極5゜ゲ
ート電+io:yi+うように酸化膜11が形成されて
おり、この酸化膜11上にメモリセルを選択するビット
線13が形成されている。酸化膜11にコンタク1−開
孔部12が設けられており、この開孔部によりn+形ト
ドレイン領域7ビット線13とが接続されている。
2 is a silicon oxide film for element isolation. Further, a gate insulation m9 is formed on the p-type silicon substrate 1 between the n+ type drain fl[t47 and the 0+ type source region 8, and this gate insulation! ! A gate electrode 10 is formed on 9 . Further, a capacitor insulating film 4 is formed on the n1 type diffusion region 3, and a capacitor insulating film 4. A capacitor N pole 5 is formed on the silicon oxide film 2 for element isolation. n
+ type diffusion region 3 and capacitor insulation! #4 and the main 1 abacitor electrode 5 constitute a memory cell which is an information storage capacitor, and information is stored by accumulating charge in the n+ type diffusion region 3 of the storage node which is to become one electrode of this capacitor. . The p-type silicon substrate 1, the n+-type drain 1a1, the n+-type source region 8, the gate insulating film 9, and the gate electrode 10 constitute a transfer gate transistor, and this gate voltage +mio is connected to a word line for selecting a memory hill. has been done. Further, an oxide film 11 is formed so as to cover the capacitor electrode 5° and the gate electrode +io:yi+, and a bit line 13 for selecting a memory cell is formed on this oxide film 11. A contact hole 12 is provided in the oxide film 11, and the n+ type drain region 7 and the bit line 13 are connected through this hole.

次にこの装置の動作について説明する。メモリセルの電
荷蓄積領域としての01形拡散領域3に電子が蓄積され
ている状態をI Q 111層稙6れていない状態を“
1′′どする。そして、ビット線領域としてのn“形ド
レイン順1I117の電位は予め高電位、多くは電ya
電圧VcCに保持されている。
Next, the operation of this device will be explained. The state in which electrons are accumulated in the 01 type diffusion region 3, which serves as the charge accumulation region of the memory cell, is expressed as IQ.
1'' Do. The potential of the n" type drain order 1I117 as a bit line region is a high potential in advance, and in many cases, the potential is a high potential.
It is held at voltage VcC.

ここで、ワード線の電位が上がりトランス77ゲートト
ランジスタのゲー1”D[+10の電位がしぎいlia
電圧よりも高くなると、トランスファゲートトランジス
タがオンし、n+形トドレイン領域70+形ソース領域
8さらには口4形拡散領域3が導通する。そこで、今メ
モリセルの記憶情報が“l Q IT、すなわちn+形
拡散領域3に電子が蓄積されている状態の場合には、ト
ランス77ゲートトランジスタの導通によってn+形ト
ドレイン領域7電位が下がり、また記憶情報が“1パ、
すなわちn″形拡散領域3に電子が蓄積されていない状
態の場合には、n+形トドレイン領域7電位はB電位に
尿待された状態を変化させない。そして、これらのビッ
ト線電位の変化をセンスアンプ(図示せず)に、より検
知、1−幅してメモリセルから記憶情報を読出す。
Here, the potential of the word line rises and the potential of the gate transistor 1"D[+10 of the transformer 77 rises.
When the voltage becomes higher than the voltage, the transfer gate transistor is turned on, and the n+ type drain region 70+ type source region 8 and the gate 4 type diffusion region 3 become conductive. Therefore, if the stored information of the memory cell is "l Q IT", that is, electrons are accumulated in the n+ type diffusion region 3, the potential of the n+ type drain region 7 decreases due to the conduction of the transformer 77 gate transistor, and Memory information is “1 pa,
In other words, when no electrons are accumulated in the n'' type diffusion region 3, the potential of the n+ type drain region 7 does not change to the B potential.Then, these changes in bit line potential are sensed. An amplifier (not shown) senses and reads stored information from the memory cell.

[発明が解決しようどする問題点1 従来の半導体記憶装置におけるメモリセルでは、電荷蓄
積領域はp形シリコン基板1内のn影領域で形成されて
いるため、α線などの放射線がメモリチップ内に入側し
て生成される電子・正孔のうち、電子が電荷蓄!t!!
領域としてのn1形拡散領域3に収集されて、本来の記
憶情報を反転させてしまい誤動作(以下、ソフトエラー
と呼ぶ)を発生するという問題点があった。このような
欠点を解消するために、第3図に示す従来例では、n十
形拡散領域3の周囲にp形シリコン基板1の不純物濃度
より高不純物濃度のn十形拡散領域6を形成してpn接
合容量を付加することにより、メモリセル容量を増加さ
せると同時に、n+形拡散l[域3゜n+十形−ス領域
8とp形シリコン基板1間の空乏層の延びを抑え、これ
によってn十形拡散領域3に収集される電荷量を低減さ
せソフトエラーの改善を図っている。
[Problem to be Solved by the Invention 1] In a memory cell in a conventional semiconductor memory device, the charge storage region is formed in the n-shaded region in the p-type silicon substrate 1, so that radiation such as α-rays can be absorbed into the memory chip. Of the electrons and holes that are generated by entering the , the electrons accumulate charge! T! !
There is a problem in that the information is collected in the n1 type diffusion region 3, inverting the original stored information and causing a malfunction (hereinafter referred to as a soft error). In order to eliminate such drawbacks, in the conventional example shown in FIG. 3, an n+ type diffusion region 6 having an impurity concentration higher than that of the p-type silicon substrate 1 is formed around the n+ type diffusion region 3. By adding a p-n junction capacitance, the memory cell capacity is increased, and at the same time, the extension of the depletion layer between the n+ type diffusion region 8 and the p-type silicon substrate 1 is suppressed. This reduces the amount of charge collected in the n+-type diffusion region 3 and improves soft errors.

一方、ソフトエラーは第5図の実線で示すようにメモリ
サイクル時間依存性があり、メモリサイクル時間に依存
しない、メモリセル電荷蓄積領域で起こるメモリセルモ
ードのソフトエラーと、メモリサイクル時間に逆比例し
て増大する、ビット線領域で起こるビット線モードのソ
フトエラーとの和として表わされる。メモリセルのn“
形拡散領戚3の下に形成されたn十形拡散領域6は、上
述のようにメモリセルモードのソフトエラーの改善に非
常に効果的であるが、ピッ1−線モードのソフトエラー
に対して改善を要する。ビット線モードのソフトエラー
は、トランスフ7ゲー1−トランジスタがオンしメモリ
セルから情報がビット檜頃域としてのn+十形レイン領
域7に読出され、センスアンプ動作が開始してラッチが
決まるまでの間にα線が入射することによって起こる。
On the other hand, soft errors are memory cycle time dependent, as shown by the solid line in Figure 5, and are inversely proportional to the memory cycle time. It is expressed as the sum of the bit line mode soft errors that occur in the bit line region, which increases as a result. memory cell n”
The n-type diffusion region 6 formed under the shape diffusion region 3 is very effective in improving soft errors in the memory cell mode as described above, but it is very effective in improving soft errors in the pin 1-line mode. Improvement is required. A soft error in the bit line mode occurs when the transistor turns on, information is read from the memory cell to the n + 10-shaped rain region 7 as the bit region, the sense amplifier operation starts, and the latch is determined. This is caused by the incidence of alpha rays during the period.

このビット線モードのソフトエラーを改善するものとし
て、第4図に示す特開昭54−127291号公報の従
来例がある。この従来例では、第3図のp形シリコン基
板1の代わりにn形シリコン基板14を用いて、この基
板上にp形エピタキシセル層15を形成し、n形シリコ
ン基板14とp形エピタキシャル層15との間に逆方向
電圧を印加することによって、α線やノイズなどによっ
て発生した電子が記憶ノードとしてのn十形拡散領域3
やビット線領域としてのn+形トドレイン領域7到達し
ないようにしている。しかし、文献C,Hu”Qrif
t  Co11ectionof  Alpha  G
eneratedCarriers and  Qes
ign  Implication” 、  l 5S
CC’  82   Technical   Dig
est  、  PP、  18−19.1982にあ
るようにα線の入射に対し収集される電荷は大部分F 
unnel ing効果によるもので、F unnel
ing長は空乏層幅に比例する。第4図の従来例では、
メモリセルおよびビット線領域に対し、α粒子の入射で
生成された電子が拡散によって到達する分をp0接合で
の逆バイアスで防ぐという点において効果があると考え
られるが、上述のl”LInneltnQ効果に対して
は役に立たない。
As a method for improving soft errors in the bit line mode, there is a conventional example disclosed in Japanese Patent Application Laid-open No. 127291/1983 as shown in FIG. In this conventional example, an n-type silicon substrate 14 is used instead of the p-type silicon substrate 1 in FIG. 3, a p-type epitaxial cell layer 15 is formed on this substrate, and the n-type silicon substrate 14 and the p-type epitaxial layer By applying a reverse voltage between 15 and 15, electrons generated by α rays, noise, etc.
Also, the n+ type drain region 7 serving as the bit line region is prevented from reaching the n+ type drain region 7. However, Document C, Hu”Qrif
t Co11ection of Alpha G
eneratedCarriers and Qes
ign Implication”, l 5S
CC' 82 Technical Dig
est, PP, 18-19.1982, the charge collected for the incidence of α rays is mostly F
This is due to the tunneling effect.
ing length is proportional to the depletion layer width. In the conventional example shown in Figure 4,
It is thought that the reverse bias at the p0 junction is effective in preventing electrons generated by the incidence of α particles from reaching the memory cell and bit line region through diffusion, but the above-mentioned l"LInneltnQ effect It is useless against.

この発明は上記のような問題点を解消するためになされ
たもので、ビット線モードのソフトエラーを低減できる
半導体記憶装置を得ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a semiconductor memory device that can reduce bit line mode soft errors.

[問題点を解決するための手段] この発明に係る半導体記憶装置は、第1導電形の半導体
基板の不純物濃度より不純物m度が高い第1導電形の第
1半導体埋込み領域を、ビット線に接続される第2導電
形の第1半導体領域に接するように半導体基板およびこ
の基板上の第1導電形の半導体層に埋込むようにしたも
のである。
[Means for Solving the Problems] A semiconductor memory device according to the present invention includes a first semiconductor buried region of a first conductivity type having a higher impurity concentration than an impurity concentration of a semiconductor substrate of a first conductivity type, in a bit line. It is embedded in a semiconductor substrate and a semiconductor layer of a first conductivity type on this substrate so as to be in contact with a first semiconductor region of a second conductivity type to be connected.

[作用] この発明においては、ビットwA5A域どなる第2導電
形の第1半導体M域に接するように第1導電形の半導体
基板およびこの上の第1導電形の半導体層に埋込まれた
、半導体基板の不純物m度より不純L’lJ 9度が高
い第1導電形の第1半導体埋込み領域は、第1半導体(
ii域の空乏層の延びを抑え、これによって放射線の入
射で生成される電子の第1半導体領域への収集員が低減
され、ビット線モードのソフトエラーが低減される。
[Function] In the present invention, the semiconductor substrate is embedded in the semiconductor substrate of the first conductivity type and the semiconductor layer of the first conductivity type thereon so as to be in contact with the first semiconductor region M of the second conductivity type, which is the bit wA5A area. The first semiconductor buried region of the first conductivity type has an impurity L'lJ 9 degree higher than the impurity degree m of the semiconductor substrate.
The extension of the depletion layer in region ii is suppressed, thereby reducing the number of electrons generated by the incidence of radiation that are collected in the first semiconductor region, thereby reducing bit line mode soft errors.

[実施例] 以下、この発明の実施例を図について説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

なお、この実施例の説明にJ3いて、従来の技術の説明
と填複する部分については適宜その説明を省略する。
Note that in the description of this embodiment, the description of parts that overlap with the description of the conventional technology will be omitted as appropriate.

第1図は、この発明の一実施例である半導体層(I!8
置の構造を示す断面図である。この実施例の構成が7A
3図の構成と異なる点は以下の点である。
FIG. 1 shows a semiconductor layer (I!8) which is an embodiment of the present invention.
FIG. The configuration of this example is 7A
The differences from the configuration in Figure 3 are as follows.

すなわら、p形シリコン基板1上にp形エビタキシャル
層15が形成されており、このp形エピタキシャル層1
5上にn+形トドレイン領域7よびn+形ンソー領域8
.n+形拡散領域3が互いに間隔を隔てて形成されてい
る。また、p形シリコン長板1の不純物濃度より不純物
濃度が高いp+形拡散領域16が11+形ドレイン領域
7に接するようにp形エピタキシャル層15.p形シリ
コン長板1に埋込まれている。p+形拡散領域16のn
+形トドレイン領域7接する部分の不純物濃度は、好ま
しくはp形シリコン長板1の不純物濃度より1桁高い1
017〜1020圓/C118であるとよい。また、p
+形膨拡埴域6が除去されている。
That is, a p-type epitaxial layer 15 is formed on a p-type silicon substrate 1, and this p-type epitaxial layer 1
5 on which an n+ type drain region 7 and an n+ type drain region 8 are formed.
.. N+ type diffusion regions 3 are formed at intervals from each other. Further, the p-type epitaxial layer 15. It is embedded in a p-type silicon long plate 1. n of p+ type diffusion region 16
The impurity concentration of the portion in contact with the +-type drain region 7 is preferably one order of magnitude higher than the impurity concentration of the p-type long silicon plate 1.
It is preferable that it is 017 to 1020 circles/C118. Also, p
The +-shaped swelling area 6 has been removed.

このように、p“膨拡11!li域16がビット線領域
としての0+形ドレイン領域7に接しているため、この
n1形ドレイン領域7の空乏層の延びはp”膨拡散領域
16の不純物濃度で決まる。p4形拡散a域16の濃度
をpn1a合耐圧が許ず限り高ll1度にしておくこと
により、11′形ドレイン領域7の空乏層の幅は第3図
、第4図の場合より小さくなる。上述したように、α線
などの故射糠の入射で生成される電子のうち大部分はF
 Ullnel ing効果でn+形トドレイン領域7
収集され、このFunnc I i no長は空乏層の
幅に比例するので、この発明の実施例は、従来例の第1
図で考慮されていなかったビット・線モードのソフトエ
ラーに対して大きな改善効果を持つ。
In this way, since the p" expansion 11!li region 16 is in contact with the 0+ type drain region 7 serving as a bit line region, the extension of the depletion layer of this n1 type drain region 7 is the impurity of the p" expansion diffusion region 16. Determined by concentration. By setting the concentration of the p4 type diffusion a region 16 to be as high as the pn1a breakdown voltage allows, the width of the depletion layer of the 11' type drain region 7 becomes smaller than in the cases of FIGS. 3 and 4. As mentioned above, most of the electrons generated by incident radiation such as alpha rays are F.
N+ type drain region 7 due to Ullneling effect
Since the length of the Funnc I ino is proportional to the width of the depletion layer, the embodiment of the present invention is different from the first conventional example.
This has a significant improvement effect on bit/line mode soft errors, which were not considered in the figure.

なお、第1図の実施例において、第3図に示すようなp
+形拡散111[16を、メモリセル記憶ノードとして
のn+拡散IIwi3に接するようにp形エピタキシャ
ル層15に埋込み、これによってメモリセルモードのソ
フトエラーも低減するようにしてもよい。
In addition, in the embodiment shown in FIG. 1, p as shown in FIG.
The + type diffusion 111[16 may be buried in the p type epitaxial layer 15 so as to be in contact with the n + diffusion IIwi3 as a memory cell storage node, thereby also reducing soft errors in the memory cell mode.

また、この発明の池の実tN例として第2図に示すよう
に、p+形膨拡領域16をビット線領域としてのn+形
トドレイン領域7接するようにp形エピタキシャル層1
5.p形シリコン長板1に埋込むだけでなく、p形シリ
コン長板1の不W;:物濃度より不純物、1度が高いp
+形拡散領域17を、メモリセル記憶ノードとしてのn
1形拡散領域3およびトランスファゲートトランジスタ
のn+形ソース領域8に接するようにp形エピタキシャ
ル層15.p形シリコン長板1に埋込むようにしてもよ
い。このp+形膨拡領域′17のn+形膨拡領域3.n
“形ソース領域8に接する部分の不純物濃喰は、好まし
くはp形シリコン長板1の不純濃度より1桁高い101
7〜1020個/Cl113であるとよい。この場合に
は、ビット線モードのソフトエラーだけでなく、メモリ
セルモードのソフトエラーも低減することができる。
Further, as shown in FIG. 2 as an example of the present invention, a p-type epitaxial layer 1 is formed so that the p+-type expansion region 16 is in contact with an n+-type drain region 7 serving as a bit line region.
5. Not only is it buried in the p-type silicon long plate 1, but also the impurity concentration is higher than the impurity concentration in the p-type silicon long plate 1.
+ type diffusion region 17 as a memory cell storage node
A p-type epitaxial layer 15.1 is in contact with the type 1 diffusion region 3 and the n+ type source region 8 of the transfer gate transistor. It may also be embedded in the p-type silicon long plate 1. The n+ type expansion area 3 of this p+ type expansion area '17. n
The impurity concentration of the portion in contact with the p-type source region 8 is preferably one order of magnitude higher than the impurity concentration of the p-type long silicon plate 1.
It is good if it is 7-1020 pieces/Cl113. In this case, not only soft errors in the bit line mode but also soft errors in the memory cell mode can be reduced.

また、ビット線13に接続されるセンスアンプの内部ノ
ードとしてのn“膨拡散1id(図示せず)に接するよ
うに、p形シリコン長板1の不純物濃度より不純物濃度
が高いp+形膨拡w4域(図示せず)をp形エピタキシ
ャル層15.1)形シリコン長板1に埋込むようにして
もよい。このp+形膨拡領戚の内部ノードに接する部分
の不純物is度は、好ましくはp形シリコン長板1の不
純物1度より1桁高い1017〜102′個/′CII
I)であるとよい。
In addition, a p+ type expansion w4 having an impurity concentration higher than the impurity concentration of the p type long silicon plate 1 is provided so as to be in contact with the n'' expansion diffusion 1id (not shown) as an internal node of the sense amplifier connected to the bit line 13. The p-type epitaxial layer 15.1) may be buried in the long silicon plate 1.The impurity concentration of the portion in contact with the internal node of this p+ type expanded region is preferably p-type. 1017 to 102'pieces/'CII, which is one order of magnitude higher than the impurity level of silicon long plate 1
I) is preferable.

これによって、センスアンプの内部ノードでのソフトエ
ラーを低減することができ、半導体記憶装置のピット線
モードのソフトエラ一対する対策がざらに改善される。
As a result, soft errors at internal nodes of the sense amplifier can be reduced, and countermeasures against pit line mode soft errors in semiconductor memory devices are greatly improved.

[発明の効果コ 以上のようにこの発明によれば、第1導電形の半導体基
板の不純物濃度より不純物濃度が高い第1導電形の第1
半導体埋込み鍮域を、ヒツト線に接続される第2導電形
の第1半導体領域に接するように半導体基板およびこの
上の第1導電形の半導体層に埋込むようにしたので、ピ
ット線モードのソフトエラーを低減できる半導体記憶装
置を得ることができる。
[Effects of the Invention] As described above, according to the present invention, the first semiconductor substrate of the first conductivity type has an impurity concentration higher than the impurity concentration of the first conductivity type semiconductor substrate.
Since the semiconductor buried brass region is embedded in the semiconductor substrate and the semiconductor layer of the first conductivity type thereon so as to be in contact with the first semiconductor region of the second conductivity type connected to the pit line, the pit line mode is suppressed. A semiconductor memory device that can reduce soft errors can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例である半導体記憶装置の
構造を示す断面図である。 第2図は、この発明の他の実施例である半導体記憶装置
の構造を示す断面図である。 第3図は、従来の半導体記憶装置の構造を示す!li面
図である。 第4図は、従来の他の半導体記憶装置のm造を示す断面
図である。 第5図は、半導体記憶装置におけるメモリセルモードお
よびヒツト線モードのソフトエラーとメモリサイクル時
間との関係を示す図である。 図において、1はp形シリコン基板、2は素子分離用シ
リコン酸化膜、3はI)+膨拡散領域、4はキャパシタ
絶縁膜、5はギャバシタ電極、7はn“形トレイン領域
、8はn+形ソース領域、9はゲート絶縁膜、10はゲ
ート電極、11は酸化膜、12はコンタクト開孔部、1
3はビット線、15はp形エピタキシャル層、16.1
7はp+形拡散領域である。 なお、各図中同一符号は同一または相当部分を示す。 代  理  人     大  岩  増  雄鳥 1
 図 第2図 17:P+W41拡散領域 第3図 第4図
FIG. 1 is a sectional view showing the structure of a semiconductor memory device according to an embodiment of the present invention. FIG. 2 is a sectional view showing the structure of a semiconductor memory device according to another embodiment of the invention. FIG. 3 shows the structure of a conventional semiconductor memory device! It is a li side view. FIG. 4 is a sectional view showing the structure of another conventional semiconductor memory device. FIG. 5 is a diagram showing the relationship between soft errors in memory cell mode and human line mode and memory cycle time in a semiconductor memory device. In the figure, 1 is a p-type silicon substrate, 2 is a silicon oxide film for element isolation, 3 is an I)+ diffusion region, 4 is a capacitor insulating film, 5 is a gabacitor electrode, 7 is an n" type train region, and 8 is an n+ a shaped source region, 9 a gate insulating film, 10 a gate electrode, 11 an oxide film, 12 a contact opening, 1
3 is a bit line, 15 is a p-type epitaxial layer, 16.1
7 is a p+ type diffusion region. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Masu Oiwa Otori 1
Figure 2 Figure 17: P+W41 diffusion area Figure 3 Figure 4

Claims (7)

【特許請求の範囲】[Claims] (1)第1導電形の半導体基板と、 前記半導体基板上に形成される第1導電形の半導体層と
、 前記半導体層上に形成され、ビット線に接続される第2
導電形の第1半導体領域と、 前記半導体層上に前記第1半導体領域と間隔を隔てて形
成され、その一部に情報を記憶するための電荷蓄積領域
を含む第2導電形の第2半導体領域とを備える半導体記
憶装置において、 前記第1半導体領域に接するように前記半導体層および
前記半導体基板に埋込まれ、該半導体基板の不純物濃度
より不純物濃度が高い第1導電形の第1半導体埋込み領
域を備えることを特徴とする半導体記憶装置。
(1) a semiconductor substrate of a first conductivity type; a semiconductor layer of a first conductivity type formed on the semiconductor substrate; and a second semiconductor layer formed on the semiconductor layer and connected to a bit line.
a first semiconductor region of a conductivity type; and a second semiconductor of a second conductivity type, which is formed on the semiconductor layer at a distance from the first semiconductor region, and includes a charge storage region for storing information in a part thereof. a first conductivity type semiconductor memory device that is embedded in the semiconductor layer and the semiconductor substrate so as to be in contact with the first semiconductor region, and has an impurity concentration higher than that of the semiconductor substrate; A semiconductor memory device comprising a region.
(2)前記半導体層はエピタキシャル成長層である特許
請求の範囲第1項記載の半導体記憶装置。
(2) The semiconductor memory device according to claim 1, wherein the semiconductor layer is an epitaxially grown layer.
(3)前記第1半導体埋込み領域の前記第1半導体領域
に接する部分の不純物濃度は、前記半導体基板の不純物
濃度より1桁高い10^1^7〜10^2^0個/cm
^3である特許請求の範囲第1項または第2項記載の半
導体記憶装置。
(3) The impurity concentration of the first semiconductor buried region in contact with the first semiconductor region is 10^1^7 to 10^2^0 particles/cm, which is one order of magnitude higher than the impurity concentration of the semiconductor substrate.
The semiconductor memory device according to claim 1 or 2, which is ^3.
(4)さらに、前記第2半導体領域に接するように前記
半導体層および前記半導体基板に埋込まれ、該半導体基
板の不純物濃度より不純物濃度が高い第1導電形の第2
半導体埋込み領域を備える特許請求の範囲第1項ないし
第3項のいずれかに記載の半導体記憶装置。
(4) Further, a second semiconductor layer of the first conductivity type is embedded in the semiconductor layer and the semiconductor substrate so as to be in contact with the second semiconductor region, and has an impurity concentration higher than that of the semiconductor substrate.
A semiconductor memory device according to any one of claims 1 to 3, comprising a semiconductor buried region.
(5)前記第2半導体埋込み領域の前記第2半導体領域
に接する部分の不純物濃度は、前記半導体基板の不純物
濃度より1桁高い10^1^7〜10^2^0個/cm
^3である特許請求の範囲第4項記載の半導体記憶装置
(5) The impurity concentration of the second semiconductor buried region in contact with the second semiconductor region is 10^1^7 to 10^2^0 particles/cm, which is one order of magnitude higher than the impurity concentration of the semiconductor substrate.
The semiconductor memory device according to claim 4, which is ^3.
(6)さらに、前記半導体層上に形成され、前記ビット
線に接続される、センスアンプの内部ノードとなる第2
導電形の第3半導体領域と、前記第3半導体領域に接す
るように前記半導体層および前記半導体基板に埋込まれ
、該半導体基板の不純物濃度より不純物濃度が高い第1
導電形の第3半導体埋込み領域とを備える特許請求の範
囲第1項ないし第5項のいずれかに記載の半導体記憶装
置。
(6) Furthermore, a second node, which is formed on the semiconductor layer and is connected to the bit line, is an internal node of the sense amplifier.
a third semiconductor region of a conductive type; a first semiconductor region embedded in the semiconductor layer and the semiconductor substrate so as to be in contact with the third semiconductor region, and having an impurity concentration higher than that of the semiconductor substrate;
6. The semiconductor memory device according to claim 1, further comprising a conductive type third semiconductor buried region.
(7)前記第3半導体埋込み領域の前記第3導体領域に
接する部分の不純物濃度は、前記半導体基板の不純物濃
度より1桁高い10^1^7〜10^2^0個/cm^
3である特許請求の範囲第6項記載の半導体記憶装置。
(7) The impurity concentration of the third semiconductor buried region in contact with the third conductor region is 10^1^7 to 10^2^0 pieces/cm^, which is one order of magnitude higher than the impurity concentration of the semiconductor substrate.
6. The semiconductor memory device according to claim 6, which is No. 3.
JP60257089A 1985-11-13 1985-11-13 Semiconductor memory device Pending JPS62114264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60257089A JPS62114264A (en) 1985-11-13 1985-11-13 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60257089A JPS62114264A (en) 1985-11-13 1985-11-13 Semiconductor memory device

Publications (1)

Publication Number Publication Date
JPS62114264A true JPS62114264A (en) 1987-05-26

Family

ID=17301588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60257089A Pending JPS62114264A (en) 1985-11-13 1985-11-13 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS62114264A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5276344A (en) * 1990-04-27 1994-01-04 Mitsubishi Denki Kabushiki Kaisha Field effect transistor having impurity regions of different depths and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5276344A (en) * 1990-04-27 1994-01-04 Mitsubishi Denki Kabushiki Kaisha Field effect transistor having impurity regions of different depths and manufacturing method thereof
US5489791A (en) * 1990-04-27 1996-02-06 Mitsubishi Denki Kabushiki Kaisha Field effect transistor having impurity regions of different depths and manufacturing method thereof
US5672533A (en) * 1990-04-27 1997-09-30 Mitsubishi Denki Kabushiki Kaisha Field effect transistor having impurity regions of different depths and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JPS60126861A (en) semiconductor storage device
JP2634163B2 (en) Semiconductor storage device
JPS6050066B2 (en) MOS semiconductor integrated circuit device
JPS602782B2 (en) semiconductor storage device
JPS62114264A (en) Semiconductor memory device
JP2690242B2 (en) Semiconductor fixed storage device
JPS5950102B2 (en) semiconductor memory device
JP2936659B2 (en) Dynamic memory device
JPS6322069B2 (en)
JPS627153A (en) Semiconductor memory
JPS60236260A (en) Semiconductor memory device
JPS6337506B2 (en)
JPS61239660A (en) semiconductor memory circuit device
JPH08255839A (en) Complementary semiconductor integrated circuit device
KR900002887B1 (en) Semiconductor memory device
JPS58105566A (en) Semiconductor structure
JPS6329968A (en) Semiconducotr memory cell
JPS62281470A (en) Method for manufacturing semiconductor integrated circuit device
JPS60258956A (en) Semiconductor memory device
JPH0245973A (en) Semiconductor device and manufacture of it
JPS63121194A (en) semiconductor storage device
JPH03228371A (en) MOS type semiconductor device
JPH0682805B2 (en) Method of manufacturing semiconductor memory device
JPS63115370A (en) Semiconductor device
JPH02270378A (en) Floating gate type memory device