JPS61239660A - Semiconductor memory circuit device - Google Patents

Semiconductor memory circuit device

Info

Publication number
JPS61239660A
JPS61239660A JP60080806A JP8080685A JPS61239660A JP S61239660 A JPS61239660 A JP S61239660A JP 60080806 A JP60080806 A JP 60080806A JP 8080685 A JP8080685 A JP 8080685A JP S61239660 A JPS61239660 A JP S61239660A
Authority
JP
Japan
Prior art keywords
groove
poly
memory cell
type
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60080806A
Other languages
Japanese (ja)
Inventor
Isami Sakai
勲美 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60080806A priority Critical patent/JPS61239660A/en
Publication of JPS61239660A publication Critical patent/JPS61239660A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate

Abstract

PURPOSE:To increase storage capacitance, to improve a soft-error resistance by alpha-rays and to reduce an occupying area by forming a groove at a node in a memory cell and forming a layer having a conduction type reverse to a substrate to the side surface of the groove and base thereof in a resistance load type SRAM. CONSTITUTION:A groove 104 is shaped from a window 103 in a gate oxide film 102 on a P-type Si substrate 101, and coated with P-added poly Si 105, 106. An N<+> diffusion layer 107 is formed from poly Si 105, and As ions are implanted to shape N<+> layers 108, 109. An opening 111 is bored to an inter-layer insulating film 110, and poly Si 112 having high resistance connected to the poly Si 105 is formed. An Al electrode 115 is connected to the N<+> layer 109 through an opening 114 in an inter-layer insulating film 113. Elements are isolated by a field oxide film 116 and a P-type channel stopper 117. In a memory cell according to the constitution, the quantity of charges stored by a P-N junction on the side surface of the groove is increased, and a soft-error resistance by alpha-rays is improved while an occupying area can be reduced without minimizing the capacitance area of the cell.

Description

【発明の詳細な説明】 □ 1      c″5′″0″1ll)[:]11  
      本発明は半導体記憶回路装置に係り、特に
α線1      Kよるソフトエラーに対する耐性を
増した半導体記憶回路装置に関するものである。
[Detailed description of the invention] □ 1 c″5′″0″1ll)[:]11
The present invention relates to a semiconductor memory circuit device, and more particularly to a semiconductor memory circuit device with increased resistance to soft errors caused by 1K alpha rays.

〔従来の技術〕[Conventional technology]

近年、絶縁ゲート型電界効果トランジスタを用いた抵抗
負荷型のスタティック・ランダム・アクセス・メモIJ
(SRAM)は集積度の向上が進み記憶セルが縮小され
、また低消費電力化が図られている。
In recent years, resistive load type static random access memory IJ using insulated gate field effect transistors has been developed.
As for (SRAM), the degree of integration has been improved, the memory cells have been reduced, and power consumption has been reduced.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の抵抗負荷形のSRAMは、低消費電力化
のため記憶セルに流れる電流が減少しかつまた記憶セル
の縮小のため記憶セルを構成するトランジスタの節点に
付いている容量が減少したの ためα線によるソフトエラーが起こるなどぬ不都合が生
じた。
In the conventional resistive load type SRAM mentioned above, the current flowing through the memory cell is reduced in order to reduce power consumption, and the capacitance attached to the nodes of the transistors that make up the memory cell is reduced due to the size of the memory cell. This resulted in inconveniences such as soft errors caused by alpha rays.

このことを第3図を用いて説明する。第3図は抵抗負荷
形SRAMの記憶セルの構成図を示したものである。こ
こで節点Aの容量はトランジスタQ1のドレイン拡散層
容量およびトランジスタQ3のソース・ドレイン拡散層
容量と1・2ンジスタQ2のゲート容量からなり、節点
Bの容量も節点Aと同様である。ところで高集積化によ
って記憶セル面積が縮小されているため記憶セルの節点
A、  Bについている容量が減少した。このため節点
A、 Bの蓄積電荷が減少したのでα線によるソフトエ
ラーの影響をうけやすいという不都合を生じた。また低
消費電力化をはかるために抵抗R1,R2は従来よりも
高い抵抗値のものを使用して記憶セルに流れる電流を減
らしている。しかし、高抵抗を使用しているため書込み
および読出し時に変動した記憶セルの節点A、  Hの
電位が高レベル値あるいは低レベル値の定常値に到達す
るのに従来よυも時間がよけいにかかるようになった。
This will be explained using FIG. 3. FIG. 3 shows a configuration diagram of a memory cell of a resistive load type SRAM. Here, the capacitance of node A is composed of the drain diffusion layer capacitance of transistor Q1, the source/drain diffusion layer capacitance of transistor Q3, and the gate capacitance of 1.2 transistor Q2, and the capacitance of node B is also similar to node A. By the way, the area of memory cells has been reduced due to higher integration, so the capacitance at nodes A and B of the memory cells has decreased. As a result, the accumulated charges at nodes A and B decreased, resulting in the disadvantage that they were susceptible to soft errors caused by alpha rays. Furthermore, in order to reduce power consumption, resistors R1 and R2 have higher resistance values than conventional ones to reduce the current flowing through the memory cells. However, because a high resistance is used, it takes longer than conventional methods for the potentials at nodes A and H of the memory cell, which fluctuate during writing and reading, to reach a steady value of a high level value or a low level value. It became so.

このためα線によるソフトエラーの影響を受けやすくな
るという欠点があった。
This has the disadvantage that it is susceptible to soft errors caused by alpha rays.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明の半導体記憶回路装置は、−導電型の半導体基板
に絶縁ゲート型電界効果トランジスタと儀 [負荷抵抗が形成された半導体記憶回路装置において、
前記半導体基板の所定領域に溝が形成され、前記溝の側
面および底面に逆導電型の不純物拡散層が形成され、前
記溝内部に前記溝の側面および底面に接して逆導電型の
不純物を含有する多結晶シリコンが形成され、前記多結
晶シリコンと前記負荷抵抗とが電気的に接続されて構成
される。
A semiconductor memory circuit device of the present invention includes an insulated gate field effect transistor and a load resistor formed on a conductivity type semiconductor substrate.
A groove is formed in a predetermined region of the semiconductor substrate, an impurity diffusion layer of opposite conductivity type is formed on the side and bottom surfaces of the groove, and an impurity of opposite conductivity is contained inside the groove in contact with the side and bottom surfaces of the groove. Polycrystalline silicon is formed, and the polycrystalline silicon and the load resistor are electrically connected.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

この実施例はMOS)ランジスタを用いた抵抗負荷形ス
タティック・ランダム・アクセス・メモリに関するもの
である。第1図はこの実施例を説明するための第2図A
−A’線に沿う記憶セルの断面図、第2図は記憶セルの
平面図である。
This embodiment relates to a resistive load type static random access memory using MOS transistors. Figure 1 is Figure 2A for explaining this embodiment.
A sectional view of the memory cell taken along the line -A', and FIG. 2 is a plan view of the memory cell.

第1図において、P型シリコン基板101上のゲート酸
化膜102の窓103の中に溝104が形成されている
。その上にリンを添加した多結晶シリコン105,10
6が形成され、N+型不純物拡散層107はリンを添加
した多結晶シリコン105からリンの拡散によって形成
され、N十型不純物拡散層108,109はヒ素のイオ
ン注入によって形成されている。多結晶シリコン105
に第1の層間絶縁膜110の開口111を通して高抵抗
の多結晶シリコン112が接続されている。そして、第
2の層間絶縁膜113の開口114を通して、アルミニ
ウム電極115がN中型不純物拡散層109と接続され
ている。フィールド酸化M116とP型のチャンネルス
トッパ117は素子を分離するためのものである。
In FIG. 1, a trench 104 is formed in a window 103 of a gate oxide film 102 on a P-type silicon substrate 101. As shown in FIG. Polycrystalline silicon 105,10 with phosphorus added thereon
6 is formed, the N+ type impurity diffusion layer 107 is formed by phosphorus diffusion from the polycrystalline silicon 105 doped with phosphorus, and the N+ type impurity diffusion layers 108 and 109 are formed by arsenic ion implantation. polycrystalline silicon 105
A high-resistance polycrystalline silicon 112 is connected to the first interlayer insulating film 110 through an opening 111. The aluminum electrode 115 is connected to the N medium impurity diffusion layer 109 through the opening 114 of the second interlayer insulating film 113. Field oxide M116 and P-type channel stopper 117 are for isolating the elements.

次に第2図に示した記憶セルの平面図において、左右の
一対の節点に溝104があシ、溝104の側面および底
面にはソース・ドレインのN十型不純物拡散層108に
続くN生型不純物拡散層107があり、これらのN十型
不純物拡散層はP型シリコン基板との間にPN接合全形
成している。なお、第2図において高抵抗多結晶シリコ
ン112とアルミニウム電極115は省略しである。
Next, in the plan view of the memory cell shown in FIG. 2, grooves 104 are formed at the pair of left and right nodes, and on the side and bottom surfaces of the grooves 104, N-type impurity diffusion layers 108 of the source and drain are formed. There is a type impurity diffusion layer 107, and these N0 type impurity diffusion layers completely form a PN junction with the P type silicon substrate. Note that the high-resistance polycrystalline silicon 112 and aluminum electrode 115 are omitted in FIG.

このような構造をもつ記憶セルはディジット線はアルミ
ニウム電極115、ワード線は多結晶シリコン106、
負荷抵抗は高抵抗の多結晶シリコン112、ドライバー
トランジスタのゲートは多結晶、シリコン105によっ
て記憶回路を構成し、情報の書き込み、読み出しを行な
う。
In a memory cell having such a structure, the digit line is an aluminum electrode 115, the word line is a polycrystalline silicon electrode 106,
The load resistor is made of high-resistance polycrystalline silicon 112, and the gate of the driver transistor is made of polycrystalline silicon 105 to constitute a memory circuit, and information is written and read.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、抵抗負荷型のスタティッ
ク・ランダム・アクセス・メモリにおいて記憶セルの節
点に溝を設け、溝の側面および底面に基板とは逆導電型
の不純物拡散層を有している。このようにして構成され
た記憶セルは、低消費電力化を図るために負荷抵抗を大
きくして多結晶シリコンに流れる電流を減少させた場合
でも、溝の側面に設けられている不純物拡散層によ!1
llPN接合が形成され容量が増加するため、蓄積され
る電荷量が増加し、α線によるソフトエラー耐性が向上
する。また記憶セルの平面積を小さくしだ場合も溝を深
くすることによシ容量面積を補うことができる。
As explained above, the present invention provides a resistive load type static random access memory in which a groove is provided at the node of a memory cell, and an impurity diffusion layer of a conductivity type opposite to that of the substrate is provided on the side and bottom surfaces of the groove. There is. In a memory cell configured in this way, even when the load resistance is increased to reduce the current flowing through the polycrystalline silicon in order to reduce power consumption, the impurity diffusion layer provided on the side surface of the trench Yo! 1
Since the 11PN junction is formed and the capacitance increases, the amount of accumulated charge increases and the resistance to soft errors caused by α rays improves. Furthermore, even if the planar area of the memory cell is made smaller, the capacitance area can be compensated for by making the groove deeper.

したがって記憶セルの容量面積を小さくするととなく記
憶セルの平面積を小さくすることができ、半導体記憶回
路装置の集積度を向上し、信頼性を     、。
Therefore, by reducing the capacitance area of the memory cell, the planar area of the memory cell can be reduced, improving the degree of integration and reliability of the semiconductor memory circuit device.

高めることができる。can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

6一 第1図は本発明の一実施例の半導体記憶回路装置のA、
−A’線断面図、第2図はその平面図、第3図は抵抗負
荷型記憶セルの構成図である。 】01・・・・・・PWシリコン基板、102・・・・
・・ゲート酸化膜、103・・・・・・ゲート酸化膜の
窓、104・・・・・・溝、105,106・・・・・
・多結晶シリコン、107,108゜109・・・・・
・N十型不純(171J拡散層、110,113・・・
・・・層間絶縁膜、11.1,114・・・・・・開口
、112・・・・・・高抵抗の多結晶シリコン、115
・・・・・・アルミニウム電極、116・・・・・・フ
ィールド酸化膜、117・・・・・・P型チャン坏ルス
トッパ。 一7= 茅20 )3回
6-FIG. 1 shows A of a semiconductor memory circuit device according to an embodiment of the present invention.
-A' line sectional view, FIG. 2 is a plan view thereof, and FIG. 3 is a configuration diagram of a resistive load type memory cell. ]01...PW silicon substrate, 102...
...gate oxide film, 103...window of gate oxide film, 104...groove, 105, 106...
・Polycrystalline silicon, 107,108°109...
・N0 type impurity (171J diffusion layer, 110, 113...
...Interlayer insulating film, 11.1, 114...Opening, 112...High resistance polycrystalline silicon, 115
. . . Aluminum electrode, 116 . . . Field oxide film, 117 . . . P-type channel stopper. 17=Kaya 20) 3 times

Claims (1)

【特許請求の範囲】[Claims]  一導電型の半導体基板に絶縁ゲート型電界効果トラン
ジスタと負荷抵抗が形成された半導体記憶回路装置にお
いて、前記半導体基板の所定領域に溝が形成され、前記
溝の側面および底面に逆導電型の不純物拡散層が形成さ
れ、前記溝内部に前記溝の側面および底面に接して逆導
電型の不純物を含有する多結晶シリコンが形成され、前
記多結晶シリコンと前記負荷抵抗とが電気的に接続され
ていることを特徴とする半導体記憶回路装置。
In a semiconductor memory circuit device in which an insulated gate field effect transistor and a load resistor are formed on a semiconductor substrate of one conductivity type, a groove is formed in a predetermined region of the semiconductor substrate, and impurities of an opposite conductivity type are formed on the side and bottom surfaces of the groove. A diffusion layer is formed, polycrystalline silicon containing impurities of an opposite conductivity type is formed inside the groove and in contact with the side and bottom surfaces of the groove, and the polycrystalline silicon and the load resistor are electrically connected. A semiconductor memory circuit device characterized in that:
JP60080806A 1985-04-16 1985-04-16 Semiconductor memory circuit device Pending JPS61239660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60080806A JPS61239660A (en) 1985-04-16 1985-04-16 Semiconductor memory circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60080806A JPS61239660A (en) 1985-04-16 1985-04-16 Semiconductor memory circuit device

Publications (1)

Publication Number Publication Date
JPS61239660A true JPS61239660A (en) 1986-10-24

Family

ID=13728707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60080806A Pending JPS61239660A (en) 1985-04-16 1985-04-16 Semiconductor memory circuit device

Country Status (1)

Country Link
JP (1) JPS61239660A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987090A (en) * 1987-07-02 1991-01-22 Integrated Device Technology, Inc. Static ram cell with trench pull-down transistors and buried-layer ground plate
US4997783A (en) * 1987-07-02 1991-03-05 Integrated Device Technology, Inc. Static ram cell with trench pull-down transistors and buried-layer ground plate
US5075570A (en) * 1987-11-25 1991-12-24 Honeywell Inc. Switching state retention circuit having a feedback loop stabilizing capacitance
US5541427A (en) * 1993-12-03 1996-07-30 International Business Machines Corporation SRAM cell with capacitor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987090A (en) * 1987-07-02 1991-01-22 Integrated Device Technology, Inc. Static ram cell with trench pull-down transistors and buried-layer ground plate
US4997783A (en) * 1987-07-02 1991-03-05 Integrated Device Technology, Inc. Static ram cell with trench pull-down transistors and buried-layer ground plate
US5075570A (en) * 1987-11-25 1991-12-24 Honeywell Inc. Switching state retention circuit having a feedback loop stabilizing capacitance
US5541427A (en) * 1993-12-03 1996-07-30 International Business Machines Corporation SRAM cell with capacitor

Similar Documents

Publication Publication Date Title
US4980732A (en) Semiconductor device having an improved thin film transistor
US4151607A (en) Semiconductor memory device
US4890148A (en) Semiconductor memory cell device with thick insulative layer
US4669062A (en) Two-tiered dynamic random access memory (DRAM) cell
US20050087797A1 (en) Semiconductor memory device
US4688064A (en) Dynamic memory cell and method for manufacturing the same
KR960015348B1 (en) Semiconductor memory device
US4631563A (en) Metal oxide semiconductor field-effect transistor with metal source region
US6936878B2 (en) Semiconductor memory device with reduced memory cell area
US4780751A (en) Semiconductor integrated circuit device
KR960000957B1 (en) Static type random access memory device and the manufacturing
JPS61239660A (en) Semiconductor memory circuit device
JP4336758B2 (en) Memory device
JP2694815B2 (en) Semiconductor device and manufacturing method thereof
JPS6322069B2 (en)
JPH07302846A (en) Semiconductor memory device
JPS6298765A (en) Dynamic random access memory
JP2554332B2 (en) 1-transistor type dynamic memory cell
JPH0828428B2 (en) Static type semiconductor memory
JP2515033B2 (en) Method for manufacturing semiconductor static memory device
JPS60236260A (en) Semiconductor memory device
JP2990707B2 (en) Semiconductor storage device
JPH0321103B2 (en)
JPH0273666A (en) Semiconductor memory device
JPS628559A (en) Semiconductor integrated circuit device