JPS63115370A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63115370A
JPS63115370A JP61260679A JP26067986A JPS63115370A JP S63115370 A JPS63115370 A JP S63115370A JP 61260679 A JP61260679 A JP 61260679A JP 26067986 A JP26067986 A JP 26067986A JP S63115370 A JPS63115370 A JP S63115370A
Authority
JP
Japan
Prior art keywords
impurity concentration
regions
type
type high
high impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61260679A
Other languages
Japanese (ja)
Inventor
Masataka Minami
正隆 南
Takahiro Nagano
隆洋 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61260679A priority Critical patent/JPS63115370A/en
Publication of JPS63115370A publication Critical patent/JPS63115370A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B10/00Static random access memory [SRAM] devices

Abstract

PURPOSE:To provide a strong resistance to soft errors by providing an insulating film between the p-type high impurity concentration regions and the n-type high impurity concentration regions so as to prevent the p-type high impurity concentration regions and the n-type high impurity concentration regions from being directly contacted, thereby making the capacity of the charge storing region large without lowering the pn junction dielectric strength. CONSTITUTION:An oxide film 5 is provided under s source 3 and a drain 4 regions, and below it p-type high impurity concentration regions 7, 8 are provided. Since the oxide film 5 is interposed between the source and drain regions 3, 4 and the p-type high impurity concentration regions 7, 8 and they are not directly contacted with each other, the p-n dielectric strength depends on the dielectric breakdown strength of the oxide film 5 rather than the impurity concentration, so the impurity concentration of the p-type regions 7, 8 can be made high. If such MOS transistor is used as the driver MOS of a static type random access memory, due to a large capacity of the charge storing region and a small efficiency of collecting noise charges, the reduction amount of the drain potential due to the carriers induced by alpha-rays or the like becomes small, providing a strong resistance to soft errors.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に係り、特にα線などにより誘起さ
れたキャリアによる誤動作の少ない半導体装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and more particularly to a semiconductor device that is less likely to malfunction due to carriers induced by alpha rays or the like.

〔従来の技術〕[Conventional technology]

微細加工技術の進歩に伴い、メモリセルの微細化も進ん
できている。それに伴い、メモリセルの蓄積電荷量が減
少し、α線などにより誘起された雑音電荷により情報が
破壊されるソフトエラーが問題となってきている。
As microfabrication technology advances, memory cells are becoming increasingly finer. Along with this, the amount of accumulated charge in memory cells decreases, and soft errors, in which information is destroyed by noise charges induced by alpha rays, etc., have become a problem.

ソフトエラーの問題を解決するために、従来、たとえば
、特開昭60−113462号公報、特開昭59−84
461号公報に記載のように電荷蓄積領域であるn型の
高不純物濃度の領域の下に隣接してp型の高不純物濃度
の領域を設けて、接合容量を増加させ、p型基板とp型
窩不純物濃度領域との間のポテンシャル障壁により雑音
電荷が接合に集まる効率を減らしたものがある。容量値
が大きくなれば、同じ電荷量の雑音電荷が流入したとき
の電位の変−化量が小さくなり、また、電荷が集まる効
率が小、ル、ムくなれば流入する電荷量が減少し、ソフ
トエラーの発生が抑制される。
In order to solve the problem of soft errors, conventional methods have been used, for example, in Japanese Patent Application Laid-Open No. 113462/1983 and Japanese Patent Application Laid-open No. 59-84.
As described in Japanese Patent No. 461, a p-type high impurity concentration region is provided adjacently below the n-type high impurity concentration region serving as a charge storage region to increase the junction capacitance and connect the p-type substrate and the p-type substrate. There is a method in which the efficiency with which noise charges gather at the junction is reduced by a potential barrier between the mold cavity and the impurity concentration region. The larger the capacitance value, the smaller the amount of change in potential when the same amount of noise charge flows in. Also, if the efficiency of charge collection becomes smaller, the amount of charge flowing in will decrease. , the occurrence of soft errors is suppressed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、現在、最も広く用いられている技術で
ある。上記従来技術でよりソフトエラーの発生を抑制す
るには、p型窩不純物濃度領域の不純物濃度をさらに高
くする必要がある。しかし、n型とp型の領域が互いに
高濃度で接していると接合のアバランシェ耐圧が下がる
ため、n型の不純物濃度は接合耐圧の規格から上限が決
まってしまう。n型領域の不純物濃度は一般にlXl0
”0111−8以上であり、p−n接合を階段接合、接
合耐圧をIOVとすると、P型頭域の不純物濃度の上限
は約1×1017■−8になる。このとき、接合容量は
Ovにおいて約1fF/μイになり、ポテンシャル障壁
はn型基板の不純物濃度をlX1014印−8とすると
約180 m e vになる。上記従来技術では、これ
以上の効果は得られず、さらに微細化が進み、より大き
なソフトエラー抑制効果が必こ−) 、<−1電荷蓄積領域の容量を大きくし、ソフトエラー
に強い半導体装置を提供することにある。
The above conventional technology is currently the most widely used technology. In order to further suppress the occurrence of soft errors using the above-mentioned conventional technology, it is necessary to further increase the impurity concentration in the p-type cavity impurity concentration region. However, if the n-type and p-type regions are in contact with each other at a high concentration, the avalanche breakdown voltage of the junction decreases, so the upper limit of the n-type impurity concentration is determined by the junction breakdown voltage standard. The impurity concentration of the n-type region is generally lXl0
If the p-n junction is a step junction and the junction breakdown voltage is IOV, the upper limit of the impurity concentration in the P-type head region is approximately 1×1017■-8.At this time, the junction capacitance is Ov. When the impurity concentration of the n-type substrate is 1×1014 mark -8, the potential barrier becomes about 180 m e v.With the above conventional technology, no further effect can be obtained, and further miniaturization is required. The present invention aims to provide a semiconductor device that is resistant to soft errors by increasing the capacitance of the <-1 charge storage region.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、n型高不純物濃度領域とn型高不純物濃度
領域との間に絶縁膜を設け、p型高不純物濃度領域とn
型高不純物濃度領域が直接接しないようにすることによ
り、達成される。
The above purpose is to provide an insulating film between the n-type high impurity concentration region and the n-type high impurity concentration region, and to
This is achieved by ensuring that the high impurity concentration regions of the mold do not come into direct contact with each other.

〔作用〕[Effect]

p型高不純物濃度領域とn型高不純物濃度領域との間に
絶縁膜を介しているため、このpn間耐圧は、両者の不
純物濃度に関係なく絶縁膜の絶縁破壊強度によって決ま
る。したがって、この絶縁膜をある所定の絶縁耐圧以上
が得られる厚さにしておけば、pn間の耐圧は下げるこ
となく、n型不純物の濃度を高くすることができる。こ
のpn間の容量は絶縁膜の容量と空乏層の容量の直列接
続とみなすことができる。n型不純物の濃度がn型不純
物の濃度よりも十分高く、空乏層は、n型領域にはほと
んど延びず、n型領域のみに延びているとすると、n型
領域の不純物濃度を高くするほど空乏層幅は狭くなり、
容量値は絶縁膜のみの容量値に近づいてくる。したがっ
て、絶縁膜はなるべく薄くすることが望ましい。n型領
域の不純物濃度を高くするほど容量は増加し、また基板
との間のポテンシャル障壁が高くなり、雑音電荷を集め
る効率が小さくなるため、ソフトエラーに強くなる。
Since an insulating film is interposed between the p-type high impurity concentration region and the n-type high impurity concentration region, the pn breakdown voltage is determined by the dielectric breakdown strength of the insulating film, regardless of the impurity concentrations of both. Therefore, if this insulating film is made to have a thickness that provides a predetermined dielectric strength or higher, the concentration of n-type impurities can be increased without lowering the p-n dielectric strength. This pn capacitance can be regarded as a series connection of the capacitance of the insulating film and the capacitance of the depletion layer. Assuming that the concentration of n-type impurities is sufficiently higher than that of n-type impurities, and the depletion layer hardly extends into the n-type region, but only in the n-type region, the higher the impurity concentration in the n-type region, the more The depletion layer width becomes narrower,
The capacitance value approaches that of the insulating film alone. Therefore, it is desirable to make the insulating film as thin as possible. The higher the impurity concentration in the n-type region, the higher the capacitance, the higher the potential barrier between the n-type region and the substrate, and the lower the efficiency of collecting noise charges, making it more resistant to soft errors.

〔実施例〕〔Example〕

以下、本発明の第一の実施例を第1図により説明する。 A first embodiment of the present invention will be described below with reference to FIG.

第1図は本発明によるMos+−ランリスタの断面図で
ある。1はゲート電極、2はゲート酸化膜、3はソース
領域、4はドレイン領域である。ソース及びドレイン領
域の下に酸化膜5を、さらにその下にn型高不純物濃度
領域7,8を設けている。
FIG. 1 is a cross-sectional view of a Mos+-run lister according to the present invention. 1 is a gate electrode, 2 is a gate oxide film, 3 is a source region, and 4 is a drain region. An oxide film 5 is provided below the source and drain regions, and further below, n-type high impurity concentration regions 7 and 8 are provided.

本構造は、たとえば、n型基板9の表面に選択的に酸化
膜5をつけ、その酸化膜5を通してn型不純物をイオン
打込みしてp型高不純物濃度領域を形成し、全面に多結
晶シリコンを堆積し、レーザー・アニールにより再結晶
化し、表面を酸化してゲート酸化膜2とし、多結晶シリ
コンによりゲート電極1を形成し、ゲート電極1をマス
クとしてn型不純物をイオン打込みし、熱処理してn型
の領域を酸化膜5まで拡散させることにより実現できる
。ゲート電極直下のチャネル領域は、P型基板がシード
となり再結晶化するため、良好な結晶が得られ、MOS
トランジスタの特性も良好なものとなる。また、n型領
域は多結晶シリコンにしても同等なものが得られるため
、他にもいろいろな製造方法がある。ソース・ドレイン
領域3,4とn型高不純物濃度領域7,8は酸化膜5を
介しており、直接接していないためpn間耐圧は不純物
濃度によらず酸化膜5の絶縁破壊強度で決まるため、n
型領域7,8の不純物濃度を高くすることができる。ソ
ース・ドレイン領域3,4の不純物濃度をI X 10
”an−8t n型領域7,8の不純物濃度を1×10
19■−3v P型基板9の不純物濃度をlXl0”■
−8.酸化膜5の厚さを200人とすると、ソース・ド
レイン領域3,4とn型領域7,8との間に容量の最小
値は、1.5 f F/μm′、n型基板9とn型領域
7,8との間のポテンシャル障壁は300 m e V
になり、酸化膜5を介しない場合より、容量では1.5
倍以上、ポテンシャル障壁は1.7倍になる。酸化膜5
をより誘電率の高い窒化シリコン膜などにすれば、さら
に容量は大きくなる。
In this structure, for example, an oxide film 5 is selectively formed on the surface of an n-type substrate 9, and n-type impurities are ion-implanted through the oxide film 5 to form a p-type high impurity concentration region, and the entire surface is covered with polycrystalline silicon. is deposited and recrystallized by laser annealing, the surface is oxidized to form gate oxide film 2, gate electrode 1 is formed from polycrystalline silicon, n-type impurity is ion-implanted using gate electrode 1 as a mask, and heat treated. This can be realized by diffusing the n-type region to the oxide film 5. The channel region directly under the gate electrode is recrystallized using the P-type substrate as a seed, so good crystals are obtained and the MOS
The characteristics of the transistor also become good. Further, since the same n-type region can be obtained by using polycrystalline silicon, there are various other manufacturing methods. The source/drain regions 3 and 4 and the n-type high impurity concentration regions 7 and 8 are interposed through the oxide film 5 and are not in direct contact, so the pn breakdown voltage is determined by the dielectric breakdown strength of the oxide film 5 regardless of the impurity concentration. ,n
The impurity concentration of the mold regions 7 and 8 can be increased. The impurity concentration of the source/drain regions 3 and 4 is I x 10
”an-8t The impurity concentration of n-type regions 7 and 8 is 1×10
19■-3v The impurity concentration of the P-type substrate 9 is lXl0''■
-8. Assuming that the thickness of the oxide film 5 is 200, the minimum value of the capacitance between the source/drain regions 3 and 4 and the n-type regions 7 and 8 is 1.5 f F/μm', and the n-type substrate 9 and The potential barrier between n-type regions 7 and 8 is 300 m e V
The capacitance is 1.5 compared to the case without the oxide film 5.
more than double, the potential barrier becomes 1.7 times. Oxide film 5
If the capacitor is made of a silicon nitride film with a higher dielectric constant, the capacitance will be further increased.

本MOSトランジスタをスタティック型うンダムアクセ
スメモリのドライバMO8として使用すれば、電荷蓄積
領域の容量が大きく、しかも雑音電荷を集める効率が小
さいため、α線などにより誘起されたキャリアによるド
レイン電位の低下量が小さくなりソフトエラーに強くな
る。
If this MOS transistor is used as the driver MO8 of a static type non-access memory, the capacitance of the charge storage region is large and the efficiency of collecting noise charges is low. becomes smaller and more resistant to soft errors.

第2図に本発明の第二の実施例を示す。第一の実施例と
異なる点は酸化膜5がドレイン領域4の下のみである点
である。高抵抗型スタティック型ランダムアクセスメモ
リのドライバMO8のドレインには、互いにドレインと
ゲートを交差接続したもう一方のドライバMO8のゲー
ト及び高抵抗を介して電源電位に接続されており、この
領域に電荷を蓄積する。一方、ソース領域は低抵抗の配
線材料で接地されている。そのため、ソース領域に雑音
電荷が流入しても電位は変化しない。第2図では、ドレ
イン領域4の下には酸化膜5とp型高不純物濃度領域8
を設けて、容量を増加させるとともに雑音電荷を集める
効率を小さくしており、ソース領域3はn型拡散層のみ
として、ドレインよりも雑音電荷を集める効率を高くし
て、雑音型荷がドレインよりもソースに集まりやすくし
ているため、さらにソフトエラー耐量が大きくなる。
FIG. 2 shows a second embodiment of the invention. The difference from the first embodiment is that the oxide film 5 is provided only under the drain region 4. The drain of the driver MO8 of the high-resistance static random access memory is connected to the power supply potential via the gate of the other driver MO8, whose drain and gate are cross-connected to each other, and a high resistance, and charges are transferred to this region. accumulate. On the other hand, the source region is grounded using a low resistance wiring material. Therefore, even if noise charges flow into the source region, the potential does not change. In FIG. 2, below the drain region 4 is an oxide film 5 and a p-type high impurity concentration region 8.
is provided to increase the capacitance and reduce the efficiency of collecting noise charges.The source region 3 has only an n-type diffusion layer, making the efficiency of collecting noise charges higher than that of the drain, so that the noise type charges Since it is made easier to collect in the source, soft error tolerance is further increased.

また、大きな容量をつけたいメモリセル部のみ本発明に
よるMOSFETとし、容量が小さいことが望ましい周
辺回路部は従来構造とすることにより、高速かつ高ソフ
トエラー耐量のメモリを得ることが可能である。
Further, by using the MOSFET according to the present invention only in the memory cell portion where a large capacity is desired and by using the conventional structure in the peripheral circuit portion where a small capacity is desired, it is possible to obtain a memory with high speed and high soft error tolerance.

第3図に本発明の第三の実施例を示す。第3図は、本発
明をダイナミック型ランダムアクセスメモリに適用した
例である。電荷蓄積領域3に雑音電荷が流入しにくくな
り、容量が増加して蓄積電荷量が大きくなるため、ソフ
トエラーに強くなる。
FIG. 3 shows a third embodiment of the present invention. FIG. 3 is an example in which the present invention is applied to a dynamic random access memory. Noise charges are less likely to flow into the charge storage region 3, the capacitance increases, and the amount of stored charge increases, making it resistant to soft errors.

〔発明の効果〕〔Effect of the invention〕

本発明によれば耐圧を下げることなく蓄積容量を大きく
し、α線などにより発生する雑音電荷を集める効率を小
さくできるのでソフトエラー耐量の大きい半導体装置を
提供することができる。
According to the present invention, the storage capacitance can be increased without lowering the withstand voltage, and the efficiency of collecting noise charges generated by α rays can be reduced, so that a semiconductor device with high soft error tolerance can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第一の実施例のMOSトランジスタの
断面図、第2図は本発明の第二の実施例のMOSトラン
ジスタの断面図、第3図は本発明に第三の実施例のダイ
ナミック型ランダムアクセスメモリのメモリセルの断面
図である。 1・・・ゲート電極、2・・・ゲート絶縁膜、3・・・
ソース領域、4・・・ドレイン領域、5・・・絶縁膜、
6・・・フィールド酸化膜、7・・・p型高不純物濃度
領域、8・・・p型高不純物濃度領域、9・・・p型基
板、10・・・キャパシタ電極。
FIG. 1 is a cross-sectional view of a MOS transistor according to a first embodiment of the present invention, FIG. 2 is a cross-sectional view of a MOS transistor according to a second embodiment of the present invention, and FIG. 3 is a cross-sectional view of a MOS transistor according to a third embodiment of the present invention. FIG. 2 is a cross-sectional view of a memory cell of a dynamic random access memory. 1... Gate electrode, 2... Gate insulating film, 3...
Source region, 4... Drain region, 5... Insulating film,
6... Field oxide film, 7... P type high impurity concentration region, 8... P type high impurity concentration region, 9... P type substrate, 10... Capacitor electrode.

Claims (1)

【特許請求の範囲】[Claims] 1、第一導電型の半導体領域に設けられた第二導電型の
半導体領域と、前記第二導電型の半導体領域の少なくと
も一部の下方に隣接して設けられた絶縁膜と、前記期絶
縁膜の下方に隣接して設けられた前記第一導電型半導体
領域よりも高不純物濃度の第一導電型の半導体領域を有
することを特徴とする半導体装置。
1. A semiconductor region of a second conductivity type provided in a semiconductor region of a first conductivity type; an insulating film provided adjacently below at least a portion of the semiconductor region of the second conductivity type; A semiconductor device comprising a first conductivity type semiconductor region having a higher impurity concentration than the first conductivity type semiconductor region provided below and adjacent to the film.
JP61260679A 1986-11-04 1986-11-04 Semiconductor device Pending JPS63115370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61260679A JPS63115370A (en) 1986-11-04 1986-11-04 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61260679A JPS63115370A (en) 1986-11-04 1986-11-04 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS63115370A true JPS63115370A (en) 1988-05-19

Family

ID=17351268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61260679A Pending JPS63115370A (en) 1986-11-04 1986-11-04 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS63115370A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0453961A2 (en) * 1990-04-20 1991-10-30 Kabushiki Kaisha Toshiba SRAM using E/R memory cells that help decrease the software error rate
DE19836953B4 (en) * 1998-01-26 2009-06-18 Lg Semicon Co. Ltd., Cheongju MOSFET and method for its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0453961A2 (en) * 1990-04-20 1991-10-30 Kabushiki Kaisha Toshiba SRAM using E/R memory cells that help decrease the software error rate
DE19836953B4 (en) * 1998-01-26 2009-06-18 Lg Semicon Co. Ltd., Cheongju MOSFET and method for its production

Similar Documents

Publication Publication Date Title
US4646118A (en) Semiconductor memory device
US4616243A (en) Gate protection for a MOSFET
JPH0132660B2 (en)
JPH0150114B2 (en)
KR860000159B1 (en) Semi-conductor memory
JP2001284540A (en) Semiconductor device and its manufacturing method
JPH028464B2 (en)
US4419684A (en) Semiconductor integrated circuit
JPS63115370A (en) Semiconductor device
JPS627153A (en) Semiconductor memory
JPH0371673A (en) Vertical mosfet
JPH02116162A (en) Semiconductor storage device
JPH01189955A (en) Semiconductor device
KR960000960B1 (en) Semiconductor integrated circuit device
JP2666335B2 (en) Method for manufacturing semiconductor memory device
JPH0322476A (en) Semiconductor storage device
KR900002887B1 (en) Semiconductor memory device
JPH0258366A (en) Semiconductor storage device
JP3003407B2 (en) Semiconductor integrated circuit device
JPS6329582A (en) Semiconductor integrated circuit device
JPH08255839A (en) Complementary semiconductor integrated circuit device
JPS61140166A (en) Semiconductor device
JPS63239861A (en) Semiconductor integrated circuit device
JPS6053470B2 (en) Manufacturing method of semiconductor memory
JPS61156830A (en) Semiconductor device and manufacture thereof