JP3003407B2 - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JP3003407B2
JP3003407B2 JP4236708A JP23670892A JP3003407B2 JP 3003407 B2 JP3003407 B2 JP 3003407B2 JP 4236708 A JP4236708 A JP 4236708A JP 23670892 A JP23670892 A JP 23670892A JP 3003407 B2 JP3003407 B2 JP 3003407B2
Authority
JP
Japan
Prior art keywords
conductivity type
power supply
well
potential
supply potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4236708A
Other languages
Japanese (ja)
Other versions
JPH0685203A (en
Inventor
晃 玉越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4236708A priority Critical patent/JP3003407B2/en
Publication of JPH0685203A publication Critical patent/JPH0685203A/en
Application granted granted Critical
Publication of JP3003407B2 publication Critical patent/JP3003407B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Dram (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体集積回路装置に関
し、特に入出力部の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit device, and more particularly to a structure of an input / output unit.

【0002】[0002]

【従来の技術】従来の半導体集積回路装置においては、
電源電位(VCC)として5V程度の電位を用い、また基
板にはP型シリコン基板の場合、接地電位(OV)また
はバックバイアスジェネレータ(B.B.G)により負
電位−VBB(−3V程度)を発生させて、−VBB電位と
している。特にDRAMの場合、メモリセルキャパシタ
に蓄えられた情報となる電荷が、ワード線の電位の浮き
により待機期間中にセルトランジスタを介してビット線
側に漏洩するのを防止するため、セルトランジスタのし
きい値を高くしてオフマージンを大きくしておく必要が
あり、そのため基板電位を−VBBに設定していた。しか
し、微細加工技術の進歩によりゲート酸化膜が薄膜化さ
れ、16M DRAM以降になると極薄のゲート酸化膜
に対する信頼性維持のため印加される電源電圧を降圧し
て使用する必要が生じ、VCCを3V程度で使用する様に
なった。そのため従来と同等のアクセス速度を補償する
ために基板電位を−VBBより接地電位に変更して周辺回
路のトランジスタのしきい値を下げ、更にセル部での電
荷の漏洩を防ぐためダブルウェル構造によりセル部のみ
をPウェルに形成して、このPウェル電位を−VBB電位
とした構造が提案されている。
2. Description of the Related Art In a conventional semiconductor integrated circuit device,
A potential of about 5 V is used as a power supply potential (V CC ). In the case of a P-type silicon substrate, a negative potential −V BB (−3 V) is applied by a ground potential (OV) or a back bias generator (BBG). ), And the potential is set to −V BB potential. In particular, in the case of a DRAM, in order to prevent the charge serving as information stored in the memory cell capacitor from leaking to the bit line side via the cell transistor during the standby period due to floating of the potential of the word line, the potential of the cell transistor is reduced. It must have large off margin by increasing the threshold had been set therefore the substrate potential -V BB. However, the fine gate oxide film advances in processing technology is thinned, it is necessary to use by lowering the power supply voltage applied for maintaining reliability becomes after 16M DRAM for the gate oxide film of the ultra-thin, V CC At about 3V. Therefore, the substrate potential is changed from -V BB to the ground potential to compensate for the access speed equivalent to the conventional one, the threshold value of the transistor in the peripheral circuit is reduced, and the double well structure is used to prevent leakage of electric charge in the cell part. Has been proposed in which only the cell portion is formed in a P-well and the P-well potential is set to a -V BB potential.

【0003】図3はダブルウェル構造のDRAMの断面
模式図である。1はP型シリコン基板であり、接地電位
端に接続したP+ 型拡散層5とオーミック接続してお
り、接地電位に固定される。2は基板中に深く形成され
たNウェルであり、電源電位端に接続しN+ 型拡散層6
とオーミック接続しておりVCC電位となる。4は深いN
ウェル2に形成されたPウェルであり−VBB電位を発生
するバックバイアスジェネレータBBGに接続するP+
型拡散層7とオーミックに接続され−VBB電位となる。
+ 型拡散層8はメモリセルを構成するためのアクティ
ブ領域である。セル領域はPウェル4に形成されP型シ
リコン基板1とは深いNウェル2により分離されてい
る。入出力回路領域AにおいてP型シリコン基板1の表
面に形成されたN+ 型拡散層9はNチャネルMOSトラ
ンジスタを形成するためのアクティブ領域となる。10
はNウェル上に形成されたP+ 型拡散層であり、Pチャ
ネルMOSトランジスタを形成するためのアクティブ領
域となる。11は電源電端に接続したN+ 型拡散層であ
りNウェル3とオーミックに接続され、Nウェル3をV
CC電位に固定する働きをする。
FIG. 3 is a schematic sectional view of a DRAM having a double well structure. Reference numeral 1 denotes a P-type silicon substrate, which is ohmically connected to a P + -type diffusion layer 5 connected to a ground potential terminal, and is fixed at the ground potential. Reference numeral 2 denotes an N well formed deep in the substrate, which is connected to a power supply potential end and has an N + type diffusion layer 6.
The V CC potential has ohmic contact with. 4 is deep N
P is connected to the back-bias generator BBG for generating -V BB potentials are P-well formed in the well 2 +
It is ohmic-connected to the mold diffusion layer 7 and has a potential of -V BB .
The N + type diffusion layer 8 is an active region for forming a memory cell. The cell region is formed in the P well 4 and is separated from the P type silicon substrate 1 by the deep N well 2. N + type diffusion layer 9 formed on the surface of P type silicon substrate 1 in input / output circuit region A becomes an active region for forming an N channel MOS transistor. 10
Is a P + -type diffusion layer formed on the N-well, and becomes an active region for forming a P-channel MOS transistor. Reference numeral 11 denotes an N + -type diffusion layer connected to the power supply terminal, which is ohmically connected to the N well 3 and connects the N well 3 to V
Works to fix to CC potential.

【0004】[0004]

【発明が解決しようとする課題】上述した従来の半導体
集積回路装置においては、基板電位を接地電位にしたこ
とにより、負電位−VBBの時と比べてN+ 型拡散層12
との間の逆バイアス電圧が小さくなり、接合容量が大き
くなる。そのため、入出力端子容量が大きくなり、制限
容量をオーバーする可能性や入出力部でのアクセス速度
を遅らせるなどの問題点が生じる。
In the above-described conventional semiconductor integrated circuit device, the substrate potential is set to the ground potential, so that the N + type diffusion layer 12 has a higher potential than the negative potential −V BB.
, The reverse bias voltage between them decreases, and the junction capacitance increases. For this reason, the input / output terminal capacity is increased, which causes problems such as a possibility of exceeding the limit capacity and a delay in access speed in the input / output unit.

【0005】また、基板電位が負電位より接地電位へと
浅く設定されることにより、ラッチアップに対するマー
ジンが小さくなり、入出力端子からのノイズにより基板
中へ注入された小数キャリアによって起こる基板電位の
変動により、ラッチアップ発生の危険性が大きくなると
いう問題点もある。
Further, since the substrate potential is set to be shallower than the negative potential to the ground potential, the margin for latch-up is reduced, and the substrate potential caused by the minority carriers injected into the substrate due to noise from the input / output terminals is reduced. There is also a problem that the risk of occurrence of latch-up increases due to the fluctuation.

【0006】[0006]

【課題を解決するための手段】本発明の半導体集積回路
装置は、一導電型半導体基板の表面部に設けられた逆導
電型チャネルMOSトランジスタと前記一導電型半導体
基板に形成された第1の逆導電型ウェルの表面部に設け
られた一導電型チャネルMOSトランジスタを含むC
MOS構成の周辺回路と、前記第1の逆導電型ウェルよ
り深い第2の逆導電型ウェルに形成された内部回路と、
前記第2の逆導電型ウェルと実質上同一深さの第3の
導電型ウェルに形成され入力保護回路および出力回路を
含む入出力回路と、前記一導電型半導体基板を第1の電
源電位にバイアスする手段と、前記第1、3の逆導電型
ウェルを第2の電源電位にバイアスする手段と、前記第
2の逆導電型ウェルを第3の電源電位にバイアスする手
段と、を有する半導体集積回路装置であって、前記入出
力回路に含まれる逆導電型チャネルMOSトランジスタ
は、前記第3の逆導電型ウェル内に形成され第4の電源
電位にバイアスされた一導電型ウェルの表面部に設けら
れ、かつ、前記第3の逆導電型ウェルと該一導電型ウェ
ルとの間の逆バイアスが前記第3の逆導電型ウェルと前
記一導電型半導体基板との間の逆バイアスよりも大きい
ことを特徴とし、具体的には、一導電型がP型である場
合は、前記第1の電源電位は接地電位、前記第2、3の
電源電位は正の電源電位、前記第4の電源電位は負の電
源電位であって、一導電型がN型である場合は、前記第
1の電源電位は正の電源電位、前記第2の電源電位は接
地電位、前記第3の電源電位は負の電源電位、前記第4
の電源電位は前記第1の電源電位よりも高い正の電源電
位である、というものである。
According to the present invention, there is provided a semiconductor integrated circuit device comprising a reverse conductive member provided on a surface portion of a semiconductor substrate of one conductivity type.
Type channel MOS transistor and one conductivity type semiconductor
Provided on the surface portion of the first reverse-conducting type well formed in the substrate
C including the obtained one conductivity type channel MOS transistor
A peripheral circuit MOS structure, and an internal circuit formed on the deeper than the first opposite conductivity type wells second opposite conductivity type well,
The second third of the reverse of the opposite conductivity type well substantially the same depth
Is formed on the conductive well and input-output circuit comprising an input protection circuit and an output circuit, the first collector of said Ichishirubeden type semiconductor substrate
And means for biasing the source potential, and means for biasing the opposite conductivity type <br/> well of the first and third to the second power supply potential, said first
A method of biasing the second well of the opposite conductivity type to the third power supply potential.
A semiconductor integrated circuit device comprising:
Reverse conductivity type channel MOS transistor included in power circuit
Is formed in the third well of the opposite conductivity type and is connected to a fourth power supply.
On the surface of the well of one conductivity type
And the third reverse conductivity type well and the one conductivity type well.
Reverse bias between the third reverse conductivity type well and the third reverse conductivity type well.
Greater than the reverse bias between the first conductivity type semiconductor substrate
Specifically, when one conductivity type is a P-type,
In this case, the first power supply potential is the ground potential,
The power supply potential is a positive power supply potential, and the fourth power supply potential is a negative power supply potential.
In the case of the source potential and one conductivity type is N-type,
The first power supply potential is a positive power supply potential, and the second power supply potential is
The ground potential, the third power supply potential is a negative power supply potential,
Is a positive power supply voltage higher than the first power supply potential.
It is a place .

【0007】[0007]

【実施例】次に本発明の実施例について図面を参照して
説明する。
Next, an embodiment of the present invention will be described with reference to the drawings.

【0008】図1は本発明の第1の実施例のダブルウェ
ル構造のDRAMを示す断面模式図である。
FIG. 1 is a schematic sectional view showing a DRAM having a double well structure according to a first embodiment of the present invention.

【0009】図中1はP型シリコン基板であり、P+
拡散層5により接地電位に固定される。2−1はP型シ
リコン基板表面から7〜8μm程度の深さに形成された
深い第2のNウェル、同様に2−2は深い第3のNウェ
ルであり、それぞれメモリセルアレー領域C及び入出力
回路領域Aに形成されて、3V程度の電源電位VCCとな
るN+ 型拡散層6−1,6−2によりVCC電位に固定さ
れる。4−1,4−2は第2,第3のNウェル2−1,
2−2に基板表面より2〜3μm程度の深さに形成され
た第1,第2のPウェルであり、−1〜−3V程度の負
電位−VBBを発生するバックバイアスジェネレータBB
Gと接続するP+ 型拡散層7−1,7−2により−VBB
電位に固定される。8は第1のPウェル4−1に形成さ
れたアクティブ領域となるN+ 型拡散層でありメモリセ
ルアレイ領域Cでセルトランジスタ,セルキャパシタの
構成部となる。同様に、N+ 型拡散層には出力回路領域
Aにおいて入力抵抗、保護回路、出力トランジスタなど
の構成部分である。3はP型シリコン基板1の表面部に
深さ2〜3μm程度に形成される第1のNウェルであ
り、電源端子に接続したN+ 型拡散層11によりVCC
位に固定され、この第1のNウェルに形成されたPチャ
ネルMOSトランジスタのアクティブ領域となるP+
拡散層10とP型シリコン基板1に直接形成されたNチ
ャネルMOSトランジスタのN+ 型拡散層9が周辺回路
領域13に配置される。
In FIG. 1, reference numeral 1 denotes a P-type silicon substrate, which is fixed at a ground potential by a P + -type diffusion layer 5. Reference numeral 2-1 denotes a deep second N well formed at a depth of about 7 to 8 μm from the surface of the P-type silicon substrate, and similarly, 2-2 denotes a deep third N well, which are memory cell array regions C and The N + -type diffusion layers 6-1 and 6-2 formed in the input / output circuit area A and having a power supply potential V CC of about 3 V are fixed to the V CC potential. 4-1 and 4-2 are the second and third N wells 2-1 and 4-2, respectively.
2-2, a first and second P wells formed at a depth of about 2 to 3 μm from the substrate surface, and a back bias generator BB for generating a negative potential −V BB of about −1 to −3 V
-V BB by P + type diffusion layers 7-1 and 7-2 connected to G
It is fixed to the potential. Reference numeral 8 denotes an N + type diffusion layer which is an active region formed in the first P well 4-1, and constitutes a memory cell array region C, which constitutes a cell transistor and a cell capacitor. Similarly, in the N + type diffusion layer, components such as an input resistor, a protection circuit, and an output transistor in the output circuit region A are provided. Reference numeral 3 denotes a first N well formed on the surface of the P-type silicon substrate 1 to a depth of about 2 to 3 μm, which is fixed to the V CC potential by an N + type diffusion layer 11 connected to a power supply terminal. The P + -type diffusion layer 10 serving as an active region of the P-channel MOS transistor formed in the N-well 1 and the N + -type diffusion layer 9 of the N-channel MOS transistor formed directly on the P-type silicon substrate 1 are formed in the peripheral circuit region 13. Placed in

【0010】本実施例では入出力回路領域のアクティブ
領域であるN+ 拡散層12が−VBB電位にバックバイア
スされた第2のPウェル4−2とPN接合を形成してい
るため、従来の様に接地電位となるP型シリコン基板に
接合を形成する場合に比べて空乏層が広がる分だけ接合
容量を小さくすることができる。例えば、従来2pFで
あった接合容量は−VBB=1Vのとき、1.4pF、ま
た、−VBB=−3Vのとき1pF程度となり、従来の5
0〜70%に小さくできる。
In this embodiment, the N + diffusion layer 12 which is the active region of the input / output circuit region forms a PN junction with the second P well 4-2 back-biased to the potential −V BB , so As compared with the case where a junction is formed on a P-type silicon substrate having a ground potential as described above, the junction capacitance can be reduced by the extent that the depletion layer spreads. For example, the junction capacitance, which was conventionally 2 pF, becomes about 1.4 pF when -V BB = 1 V, and about 1 pF when -V BB = -3 V.
It can be reduced to 0 to 70%.

【0011】また、ウェル電位が深くなるためラッチア
ップに対するマージンが大きくなり、入出力端子からの
ノイズによりN+ 型拡散層12から第2のPウェル4−
2内に注入される少数キャリアによるウェル電位の変動
に対し、ラッチアップ耐量が大きくなる。更に、第2の
Pウェル4−2内に注入された少数キャリアに対して
は、VCC電位に固定された深い第3のNウェル2−2の
ガードリング効果のため、基板中に注入される少数キャ
リアは完全に無視できるため周辺回路領域Bでの入出力
端子ノイズによるラッチアップの危険性はなくなる。
Further, since the well potential is deepened, a margin for latch-up is increased, and noise from the input / output terminal causes the N + type diffusion layer 12 to pass through the second P well 4−.
Latch-up tolerance is increased with respect to fluctuations in the well potential due to minority carriers injected into the semiconductor laser 2. Furthermore, minority carriers injected into the second P well 4-2 are injected into the substrate due to the guard ring effect of the deep third N well 2-2 fixed at the Vcc potential. Since the minority carrier can be completely ignored, there is no danger of latch-up due to input / output terminal noise in the peripheral circuit area B.

【0012】図2は本発明の第2の実施例を示す断面模
式図である。
FIG. 2 is a schematic sectional view showing a second embodiment of the present invention.

【0013】本実施例は、N型シリコン基板にPウェル
を形成するCMOS回路に好適である。図中1aはN型
シリコン基板で、N+ 型拡散層5aにより約3Vの電源
電位となるVCC電位に固定される。2a−1,2a−2
はN型シリコン基板1aの表面より7〜8μm程度に形
成された深い第2,第3のPウェルでありメモリセルア
レー領域C及び入出力回路領域Aに形成される。メモリ
セルアレー領域において、第2のPウェル2a−1は、
負電位端に接続され、N+ 型拡散層8aがセルトランジ
スタやキャパシタのアクティブ領域となる。また、入出
力回路領域Aにおいて、接地電位となるP+ 型拡散層6
a−2により接地電位に固定される。4aは入出力回路
領域Aに形成された深さ2〜3μm程度のNウェルであ
り、電源電位以上の電位を発生するブート回路VBOO
Tに接続するN+ 型拡散層7aにより約4〜5Vのブー
ト電位に固定される。12aは入出力パッド13と接続
したP+ 型拡散層であり、入力抵抗、入力保護、出力回
路などのアクティブ領域を構成する。3aはN型シリコ
ン基板1aに形成された深さ2〜3μm程度のPウェル
であり接地電位となるP+ 型拡散層11aにより接地電
位に固定される。このPウェル3aに形成されたN+ 型
拡散層10aと、N型シリコン基板1aに形成されたP
+ 型拡散層9aにより周辺回路領域Bのアクティブ素子
を構成する。本実施例では、メモリセルアレー領域にダ
ブルウェルを用いていない。
This embodiment is suitable for a CMOS circuit in which a P-well is formed in an N-type silicon substrate. In the figure, reference numeral 1a denotes an N-type silicon substrate, which is fixed at a VCC potential which is a power supply potential of about 3 V by an N + type diffusion layer 5a. 2a-1, 2a-2
Are deep second and third P wells formed at a depth of about 7 to 8 μm from the surface of the N-type silicon substrate 1a, and are formed in the memory cell array region C and the input / output circuit region A. In the memory cell array region, the second P well 2a-1
The N + -type diffusion layer 8a connected to the negative potential terminal serves as an active region of a cell transistor or a capacitor. Further, in the input / output circuit region A, the P + type diffusion layer 6 serving as the ground potential is provided.
It is fixed to the ground potential by a-2. Reference numeral 4a denotes an N well having a depth of about 2 to 3 μm formed in the input / output circuit area A, and a boot circuit VBOO for generating a potential higher than a power supply potential.
The boot potential is fixed at about 4 to 5 V by the N + type diffusion layer 7a connected to T. Reference numeral 12a denotes a P + type diffusion layer connected to the input / output pad 13, and constitutes an active area such as an input resistor, an input protection, and an output circuit. Reference numeral 3a denotes a P well having a depth of about 2 to 3 μm formed in the N-type silicon substrate 1a, which is fixed to the ground potential by the P + -type diffusion layer 11a serving as the ground potential. N + type diffusion layer 10a formed in P well 3a and P + type
The active element in the peripheral circuit region B is constituted by the + type diffusion layer 9a. In this embodiment, no double well is used in the memory cell array region.

【0014】[0014]

【発明の効果】以上説明したように、本発明の半導体集
積回路装置は入出力回路領域が第1導電型半導体基板に
形成された第2導電型ウェルに第1導電型ウェルを形成
したダブルウェル構造をしており、さらにこの第1導電
型ウェルの電位を基板よりも深電位としているため、
接合容量を低減でき、入出力部でのアクセス遅れを防ぐ
ことができる。また、入出力部でのラッチアップマージ
ンを大きくでき、更に入出力端子からのノイズによる内
部回路でのラッチアップの発生を防ぐことができる。
As described above, the semiconductor integrated circuit device of the present invention has a double well in which the input / output circuit region is formed in the second conductivity type well formed in the semiconductor substrate of the first conductivity type. since you are deep potential than has the structure, further the potential of the first conductivity type well substrate,
The junction capacitance can be reduced, and access delay in the input / output unit can be prevented. In addition, the latch-up margin in the input / output unit can be increased, and the occurrence of latch-up in the internal circuit due to noise from the input / output terminal can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例を示す断面模式図であ
る。
FIG. 1 is a schematic sectional view showing a first embodiment of the present invention.

【図2】本発明の第2の実施例を示す断面模式図であ
る。
FIG. 2 is a schematic sectional view showing a second embodiment of the present invention.

【図3】従来例を示す断面模式図である。FIG. 3 is a schematic sectional view showing a conventional example.

【符号の説明】[Explanation of symbols]

1 P型シリコン基板 1a N型シリコン基板 2−1,2−2 深いNウェル 2a−1,2a−2 深いPウェル 3 Nウェル 3a Pウェル 4−1,4−2 Pウェル 4−1,4−2 Nウェル 5,7−1,7−2,10 P+ 型拡散層 6,6−1,6−2,9,11 N+ 型拡散層 5a,7a−1,7a−2,10a,12a N+
拡散層 6a−1,6a−2,7a,9a,11a P+ 型拡
散層 13 入出力パッド
DESCRIPTION OF SYMBOLS 1 P-type silicon substrate 1a N-type silicon substrate 2-1 and 2-2 Deep N well 2a-1 and 2a-2 Deep P well 3 N well 3a P well 4-1 and 4-2 P well 4-1 and 4 -2 N well 5,7-1,7-2,10 P + type diffusion layer 6,6-1,6-2,9,11 N + type diffusion layer 5a, 7a-1,7a-2,10a, 12a N + type diffusion layer 6a-1, 6a-2, 7a, 9a, 11a P + type diffusion layer 13 Input / output pad

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 27/108 H01L 21/8238 H01L 21/8242 H01L 27/092 H01L 27/10 ──────────────────────────────────────────────────続 き Continued on the front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01L 27/108 H01L 21/8238 H01L 21/8242 H01L 27/092 H01L 27/10

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一導電型半導体基板の表面部に設けられ
逆導電型チャネルMOSトランジスタと前記一導電型
半導体基板に形成された第1の逆導電型ウェルの表面部
に設けられた一導電型チャネルMOSトランジスタ
含むCMOS構成の周辺回路と、前記第1の逆導電型
ェルより深い第2の逆導電型ウェルに形成された内部回
路と、前記第2の逆導電型ウェルと実質上同一深さの第
3の逆導電型ウェルに形成され入力保護回路および出力
回路を含む入出力回路と、前記一導電型半導体基板を第
1の電源電位にバイアスする手段と、前記第1、3の逆
導電型ウェルを第2の電源電位にバイアスする手段と
前記第2の逆導電型ウェルを第3の電源電位にバイアス
する手段と、を有する半導体集積回路装置であって、前
記入出力回路に含まれる逆導電型チャネルMOSトラン
ジスタは、前記第3の逆導電型ウェル内に形成され第4
の電源電位にバイアスされた一導電型ウェルの表面部に
設けられ、かつ、前記第3の逆導電型ウェルと該一導電
型ウェルとの間の逆バイアスが前記第3の逆導電型ウェ
ルと前記一導電型半導体基板との間の逆バイアスよりも
大きいことを特徴とする半導体集積回路装置。
A first conductivity type channel MOS transistor provided on a surface of a one conductivity type semiconductor substrate;
Surface portion of first reverse conductivity type well formed on semiconductor substrate
A one conductivity type channel MOS transistor provided with a peripheral circuit of a CMOS structure including a first opposite conductivity type c <br/> internal circuit formed deeper than the E le second opposite conductivity type well and an input-output circuit including a second opposite conductivity type well and formed in the third of the opposite conductivity type well substantially the same depth input protection circuit and an output circuit, the Ichishirubeden type semiconductor substrate first
Means for biasing the first power source potential, the reverse of the first and third
Means for biasing the conductivity type well to a second power supply potential ;
Biasing the second reverse conductivity type well to a third power supply potential;
A semiconductor integrated circuit device comprising:
Reverse conductivity type channel MOS transistor included in the entry output circuit
The transistor is formed in the third well of the opposite conductivity type and formed in the fourth well.
At the surface of one conductivity type well biased to the power supply potential
And the third opposite conductivity type well and the one conductivity type well are provided.
The reverse bias between the third reverse conductivity type well and the
Than the reverse bias between the substrate and the one conductivity type semiconductor substrate.
A semiconductor integrated circuit device which is large .
【請求項2】 一導電型がP型である場合は、前記第1
の電源電位は接地電位、前記第2、3の電源電位は正の
電源電位、前記第4の電源電位は負の電源電位であっ
て、一導電型がN型である場合は、前記第1の電源電位
は正の電源電位、前記第2の電源電位は接地電位、前記
第3の電源電位は負の電源電位、前記第4の電源電位は
前記第1の電源電位よりも高い正の電源電位である請求
項1記載の半導体集積回路装置。
2. The method according to claim 1 , wherein the first conductivity type is P-type.
Is the ground potential, and the second and third power supply potentials are positive.
The power supply potential and the fourth power supply potential are negative power supply potentials.
When the one conductivity type is N-type, the first power supply potential
Is a positive power supply potential, the second power supply potential is a ground potential,
The third power supply potential is a negative power supply potential, and the fourth power supply potential is
2. The semiconductor integrated circuit device according to claim 1, wherein the positive power supply potential is higher than the first power supply potential .
JP4236708A 1992-09-04 1992-09-04 Semiconductor integrated circuit device Expired - Lifetime JP3003407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4236708A JP3003407B2 (en) 1992-09-04 1992-09-04 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4236708A JP3003407B2 (en) 1992-09-04 1992-09-04 Semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPH0685203A JPH0685203A (en) 1994-03-25
JP3003407B2 true JP3003407B2 (en) 2000-01-31

Family

ID=17004591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4236708A Expired - Lifetime JP3003407B2 (en) 1992-09-04 1992-09-04 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JP3003407B2 (en)

Also Published As

Publication number Publication date
JPH0685203A (en) 1994-03-25

Similar Documents

Publication Publication Date Title
KR950009815B1 (en) Vlsi semiconductor memory device having a tripole well structure
US6208010B1 (en) Semiconductor memory device
JP2528794B2 (en) Integrated circuit with latch-up protection circuit
JP3128262B2 (en) Semiconductor integrated circuit device
JPS62272620A (en) Logic circuit
JPH0821680B2 (en) Integrated circuit
JPS6132464A (en) Cmos ic device
JP2528795B2 (en) Integrated circuit with latch-up protection circuit
JPH0132660B2 (en)
JPS6050066B2 (en) MOS semiconductor integrated circuit device
JPH0150114B2 (en)
JP3003407B2 (en) Semiconductor integrated circuit device
US6084272A (en) Electrostatic discharge protective circuit for semiconductor device
JPS6197858A (en) Latch-up preventer for cmos transistor
EP0224213A2 (en) Semiconductor memory device
JPH044755B2 (en)
US5343087A (en) Semiconductor device having a substrate bias generator
US6111294A (en) Semiconductor device and method for its fabrication
JPS5852869A (en) Semiconductor device
JPH0144023B2 (en)
JPH02196469A (en) Semiconductor device
JPH0691207B2 (en) Semiconductor device
JPH02116162A (en) Semiconductor storage device
JP2503707B2 (en) Semiconductor memory device
JPH05206387A (en) Semiconductor integrated circuit

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991019

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 13

EXPY Cancellation because of completion of term