JPH0691207B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0691207B2
JPH0691207B2 JP58249712A JP24971283A JPH0691207B2 JP H0691207 B2 JPH0691207 B2 JP H0691207B2 JP 58249712 A JP58249712 A JP 58249712A JP 24971283 A JP24971283 A JP 24971283A JP H0691207 B2 JPH0691207 B2 JP H0691207B2
Authority
JP
Japan
Prior art keywords
type
region
drain
impurity concentration
high impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58249712A
Other languages
Japanese (ja)
Other versions
JPS60137056A (en
Inventor
宜明 宮川
正一 大関
義昭 矢沢
隆英 池田
雅則 小高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58249712A priority Critical patent/JPH0691207B2/en
Publication of JPS60137056A publication Critical patent/JPS60137056A/en
Publication of JPH0691207B2 publication Critical patent/JPH0691207B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0623Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体装置に係り、特にMOSトランジスタを少
なくとも具備する半導体装置に関する。
Description: TECHNICAL FIELD The present invention relates to a semiconductor device, and more particularly to a semiconductor device including at least a MOS transistor.

〔発明の背景〕[Background of the Invention]

第1図(a),(b)に従来の半導体装置の一例として
NチヤンネルMOSトランジスタをメモリセルとする半導
体記憶装置の平面図及び断面図を示す。
1A and 1B are a plan view and a cross-sectional view of a semiconductor memory device having an N-channel MOS transistor as a memory cell as an example of a conventional semiconductor device.

100は拡散層を利用したGND(接地)配線101はAl配線に
よるデータ線、102はSi半導体を利用したワード線、103
はメモリセルを構成するNMOSトランジスタの一端電極を
データ線101と接続するためのコンタクトホール104はN
型基板、105はP型ウエル領域、106はN型Siゲート107
はゲート酸化膜、108は接地電位GNDにつながるN型のソ
ース領域、109はN型のドレイン領域である。NMOSトラ
ンジスタで構成するメモリセルのGND配線100は、通常デ
ータ線101をAlで配線しているため、GND配線100を拡散
層とコンタクトしてAlで配線できず、NMOSトランジスタ
のソース及びドレイン層の拡散領域をそのまま配線とし
て利用している。拡散領域を配線として用いる場合、特
に半導体記憶装置では、情報の書き込み、読み出し時間
を高速にする必要から配線抵抗を小さくする必要があ
る。しかし微細化に伴う浅接合化によつてMOSトランジ
スタのソース及びドレイン層の抵抗が大きくなる方向に
ある。このためGND配線100の抵抗抗化には第2図に示す
ように本数のデータ線201ごとにGND配線となるAl配線20
2をデータ線201と略平行に走らせ、拡散層を利用したGN
D配線200をコンタクトボール203で接続し、配線抵抗を
低減している。しかしこの方法は、GND配線となるAl配
線202のための面積や配線容量の増加を招く。
Reference numeral 100 is a GND (ground) wiring using a diffusion layer 101 is a data line using an Al wiring, 102 is a word line using a Si semiconductor, 103
Is a contact hole 104 for connecting one end electrode of the NMOS transistor constituting the memory cell to the data line 101.
Type substrate, 105 is a P type well region, 106 is an N type Si gate 107
Is a gate oxide film, 108 is an N-type source region connected to the ground potential GND, and 109 is an N-type drain region. In the GND wiring 100 of the memory cell configured by the NMOS transistor, since the data line 101 is normally wired by Al, the GND wiring 100 cannot be wired by contacting the diffusion layer with Al, and the source and drain layers of the NMOS transistor cannot be wired. The diffusion region is used as it is as wiring. When the diffusion region is used as a wiring, particularly in a semiconductor memory device, it is necessary to reduce the wiring resistance because it is necessary to speed up the writing and reading times of information. However, the resistance of the source and drain layers of the MOS transistor tends to increase due to the shallow junction due to the miniaturization. Therefore, as shown in FIG. 2, for resistance resistance of the GND wiring 100, the Al wiring 20 is used as the GND wiring for every data line 201 of the number.
GN using diffusion layer by running 2 in parallel with data line 201
The D wiring 200 is connected by a contact ball 203 to reduce wiring resistance. However, this method causes an increase in the area and the wiring capacitance for the Al wiring 202 serving as the GND wiring.

また、MOSトランジスタで構成するメモリセルの場合、
浅接合化によつて、ソース、ドレインの接合面積が小さ
くなり接合容量が小さくなる。接合容量が小さくなつた
場合、ソース、ドレインにα線が照射された場合、発生
した電子−正孔対により蓄積電荷の再結合が起り保持さ
れている情報が変わつてしまう懸念がある。
In the case of a memory cell composed of MOS transistors,
Due to the shallow junction, the junction area of the source and drain is reduced and the junction capacitance is reduced. When the junction capacitance is reduced, and when the source and drain are irradiated with α-rays, recombination of stored charges may occur due to the generated electron-hole pairs, which may change the held information.

〔発明の目的〕[Object of the Invention]

本発明の目的は、MOSトランジスタを少なくとも具備す
る半導体装置においてMOSトランジスタのソース及び/
またはドレインの抵抗を低減しチツプ面積を縮少し得る
半導体装置を提供することにある。
An object of the present invention is to provide a source and / or source of a MOS transistor in a semiconductor device including at least a MOS transistor.
Another object is to provide a semiconductor device in which the resistance of the drain is reduced and the chip area can be reduced.

〔発明の概要〕[Outline of Invention]

上記目的を達成する本発明の特徴とするところは、一方
導電型の半導体層の主表面に他方導電型のソース領域及
びドレイン領域が設けられるMOSトランジスタに於い
て、上記ソース領域及び1または上記ドレイン領域に重
なる様に、上記ソース領域及び/または上記ドレイン領
域より深く、かつ高不純物濃度の他方導電型領域を設け
ることにある。
The present invention which achieves the above object is characterized in that, in a MOS transistor in which a source region and a drain region of the other conductivity type are provided on the main surface of a semiconductor layer of the one conductivity type, the source region and the drain region 1 or the drain region are provided. The other conductivity type region is deeper than the source region and / or the drain region and has a high impurity concentration so as to overlap the region.

さらに本発明の特徴とするところは、一方導電型の半導
体層の主表面に他方導電型のソース領域及びドレイン領
域が設けられるMOSトランジスタと、上記主表面に上記
ソース領域及び/または上記ドレイン領域より深く、か
つ高不純物濃度である他方導電型の一方の主端子用領域
が設けられるバイポーラトランジスタとが混在するもの
に於いて、上記ソース領域及び/または上記ドレイン領
域に重なる様に、上記一方の主端子領域と略同じ深さ
で、かつ略同じ不純物濃度の他方導電型領域を設けるこ
とにある。
Further, a feature of the present invention is that a MOS transistor in which a source region and a drain region of the other conductivity type are provided on the main surface of a semiconductor layer of one conductivity type, and the source region and / or the drain region are provided on the main surface. In a case where a bipolar transistor having a deep and high impurity concentration one main terminal region of the other conductivity type is mixed, one of the main regions is overlapped with the source region and / or the drain region. The other conductivity type region is provided with substantially the same depth as the terminal region and with substantially the same impurity concentration.

本発明の好ましい実施態様に於いては、他方導電型領域
は、複数のMOSトランジスタのソース領域及び/または
ドレイン領域に重なる様に設ける。
In a preferred embodiment of the present invention, the other conductivity type region is provided so as to overlap the source region and / or the drain region of the plurality of MOS transistors.

〔発明の実施例〕Example of Invention

以下に本発明の一実施例を説明する。 An embodiment of the present invention will be described below.

第3図(a),(b)は本発明半導体装置の一実施例の
平面図及び断面図であり、バイポーラトランジスタとMO
Sトランジスタとが混在して構成される半導体記憶装置
であり、メモリセル部をNMOSで構成したものである。
3 (a) and 3 (b) are a plan view and a cross-sectional view of one embodiment of the semiconductor device of the present invention.
This is a semiconductor memory device in which S-transistors are mixed and the memory cell portion is composed of NMOS.

尚、バイポーラトランジスタとMOSトランジスタとが混
在する半導体記憶装置の全体構成としては、特公昭43−
19780号公報,特公昭45−8258号公報,特開昭55−12999
4号公報等で知られている。
The overall structure of a semiconductor memory device in which a bipolar transistor and a MOS transistor are mixed is described in JP-B-43-
19780, JP-B-45-8258, JP-A-55-12999
It is known from the publication No. 4, etc.

第3図(a),(b)に於いて110はP型の埋込み領
域、113はP型基板、111はバイポーラトランジスタのコ
レクタ電極引出し用の低抵抗(≦10Ω/□)拡散領域と
略同じ深さでかつ、略同じ不純物濃度のN型拡散領域で
ある。N型拡散領域111は、NMOSトランジスタのソース
領域108より深く、かつ高不純物濃度である。この構造
は、NMOSトランジスタのソース108と拡散領域111が重な
るように配置してあり従来のソース領域108のみを配線
として用いるよりもGND配線抵抗を重ね合せにより小さ
くすることができる。
In FIGS. 3 (a) and 3 (b), 110 is a P-type buried region, 113 is a P-type substrate, and 111 is a low resistance (≦ 10 Ω / □) diffusion region for extracting the collector electrode of the bipolar transistor. The N-type diffusion region is deep and has substantially the same impurity concentration. The N-type diffusion region 111 is deeper than the source region 108 of the NMOS transistor and has a high impurity concentration. In this structure, the source 108 of the NMOS transistor and the diffusion region 111 are arranged so as to overlap each other, and the GND wiring resistance can be made smaller by superposition than the conventional case where only the source region 108 is used as a wiring.

第4図は第3図に示す本発明の一実施例の製造方法を示
すものである。
FIG. 4 shows a manufacturing method of the embodiment of the present invention shown in FIG.

第4図(a)はP型半導体基板1の一主表面に、高濃度
のN型埋込み層2およびP型埋込み層3を選択的に形成
したものである。第4図(b)はN型およびP型埋込み
層2,3を形成した後、熱処理を行ない、N型エピタキシ
ヤル層1′を形成し、さらにN型ウエル層4及びP型ウ
エル層5を形成した状態を示している。第4図(c)は
第4図(b)の構造に薄いSiO2膜を形成した後、シリコ
ンナイトライド膜をマスクとして熱酸化により素子間分
離のための選択酸化膜6を形成した状態を示している。
第4図(d)は通常のCMOSプロセルによつてPMOSトラン
ジスタのゲートとなるSゲート10及びNMOSトランジスタ
のゲートとなるSiゲート12を形成し、Siゲート10,12をS
iO2膜11で覆つた後、NPNバイポーラトランジスタのコレ
クタ電極引出し用のN型拡散層7を形成すると同時にNM
OSトランジスタの一端の拡散層を配線として用いる部位
にN型拡散領域8を形成し、その後バイポーラトランジ
スタのP型ベース領域9を形成したものである。第4図
(e)は熱処理して、N型拡散層7をN型埋込み領域2
に、N型拡散領域をP型埋込み領域3に接触させた後、
バイポーラトランジスタ301のエミツタ電極14をポリシ
リコンで形成し、ポリシリコンエミツタ電極にN型不純
物をドープし、熱処理によつてエミツタ拡散領域13を形
成し、バイポーラトランジスタ301を完成させたもので
ある。第4図(f)は通常のCMOSプロセスによつてP型
のソース15、ドレイン16、P型Siゲート10′を形成する
ことによつてPMOSトランジスタ302を完成した後、N型
のソース17、ドレイン18、N型のSiゲート12′を形成す
ることによつてNMOSトランジスタ303を完成し、素子の
パツシベーシヨン膜19を付け、Al引き出し用のコンタク
トホールをあけた状態を示している。第4図(g)はAl
引き出し電極21をつけ本実施例の構造を完成させたもの
である。
FIG. 4A shows a high concentration N-type buried layer 2 and a P-type buried layer 3 selectively formed on one main surface of the P-type semiconductor substrate 1. In FIG. 4 (b), after the N-type and P-type buried layers 2 and 3 are formed, heat treatment is performed to form an N-type epitaxial layer 1 ', and further the N-type well layer 4 and the P-type well layer 5 are formed. The formed state is shown. FIG. 4C shows a state in which a thin SiO 2 film is formed on the structure of FIG. 4B, and then a selective oxide film 6 for element isolation is formed by thermal oxidation using the silicon nitride film as a mask. Shows.
In FIG. 4 (d), an S gate 10 serving as a gate of a PMOS transistor and a Si gate 12 serving as a gate of an NMOS transistor are formed by an ordinary CMOS process cell, and the Si gates 10 and 12 are formed into S gates.
After covering with the iO 2 film 11, the N-type diffusion layer 7 for drawing out the collector electrode of the NPN bipolar transistor is formed and at the same time NM
The N-type diffusion region 8 is formed in a portion where the diffusion layer at one end of the OS transistor is used as a wiring, and then the P-type base region 9 of the bipolar transistor is formed. In FIG. 4 (e), the N-type diffusion layer 7 is heat-treated to form the N-type buried region 2
After contacting the N-type diffusion region with the P-type buried region 3,
The emitter electrode 14 of the bipolar transistor 301 is formed of polysilicon, the polysilicon emitter electrode is doped with an N-type impurity, and the emitter diffusion region 13 is formed by heat treatment to complete the bipolar transistor 301. FIG. 4 (f) shows a P-type source 15, a drain 16, and a P-type Si gate 10 'formed by a normal CMOS process to complete the PMOS transistor 302, and then an N-type source 17, The state where the NMOS transistor 303 is completed by forming the drain 18 and the N-type Si gate 12 ', the passivation film 19 of the device is attached, and the contact hole for drawing out Al is opened is shown. Fig. 4 (g) shows Al
The structure of the present embodiment is completed by attaching the extraction electrode 21.

本方式によればバイポーラトランジスタのコレクタ引き
出し用のN型拡散層7の工程を利用することで、NMOSト
ランジスタの電極の一端の拡散抵抗を低減することがで
きる。
According to this method, the diffusion resistance at one end of the electrode of the NMOS transistor can be reduced by utilizing the step of forming the N-type diffusion layer 7 for drawing out the collector of the bipolar transistor.

第5図は拡散層の配線幅一定として、第1図に示す従来
の配線方法(拡散抵抗40Ω/□)と本実施例の配線方法
(拡散抵抗10Ω/□)の配線長と抵抗Rの関係を示した
ものである。本発明による方法によれば、GND配線抵抗
は従来のMOSプロセスのGND配線抵抗に比べて75%も改善
できる。特に半導体記憶装置の場合、配線が長くなるの
で、本実施例のようにMOSトランジスタのGND配線となる
ソース領域にコレクタ電極引き出し用拡散領域を同時に
形成し複数個のMOSトランジスタのソース拡散領域108を
接続したGND配線の抵抗を低減でき、第2図に示される
様な従来のGND配線となるAl配線202に要した面積を削除
することができる。
FIG. 5 shows the relationship between the wiring length and the resistance R of the conventional wiring method (diffusion resistance 40 Ω / □) shown in FIG. 1 and the wiring method of this embodiment (diffusion resistance 10 Ω / □) with the wiring width of the diffusion layer being constant. Is shown. According to the method of the present invention, the GND wiring resistance can be improved by 75% as compared with the GND wiring resistance of the conventional MOS process. Particularly in the case of a semiconductor memory device, since the wiring becomes long, a diffusion region for extracting the collector electrode is simultaneously formed in the source region to be the GND wiring of the MOS transistor and the source diffusion regions 108 of the plurality of MOS transistors are formed as in the present embodiment. The resistance of the connected GND wiring can be reduced, and the area required for the Al wiring 202, which is the conventional GND wiring as shown in FIG. 2, can be eliminated.

また、バイポーラトランジスタとMOSトランジスタとが
混石して作るプロセス(以下Bi−CMOSプロセスと略す)
で複数のMOSトランジスタの一端が電源に接続され、配
線として拡散層を利用する場合や複数のMOSトランジス
タの一端が電源に、他端がGNDに接続され、配線として
拡散層を利用する場合でも、コレクタ電極引出し用拡散
領域とMOSトランジスタの一端、あるいは両端の拡散領
域を重ね合せた構造にすることによつても同様の効果が
達成でき、また、Bi−CMOSプロセスでMOSトランジスタ
の拡散電極を低抵抗する場合に於いても、同様の効果が
達成でき、本発明が適用できうる。
Also, a process made by mixing bipolar transistors and MOS transistors (hereinafter abbreviated as Bi-CMOS process)
When one end of a plurality of MOS transistors is connected to a power supply and a diffusion layer is used as a wiring, or when one end of a plurality of MOS transistors is connected to a power supply and the other end is connected to a GND and a diffusion layer is used as a wiring, The same effect can be achieved by using a structure in which the diffusion region for leading out the collector electrode and the diffusion region at one end or both ends of the MOS transistor are superposed, and the diffusion electrode of the MOS transistor is made low by the Bi-CMOS process. Even in the case of resistance, the same effect can be achieved and the present invention can be applied.

本発明の他の実施例について第6図(a),(b)を用
いて以下に述べる。
Another embodiment of the present invention will be described below with reference to FIGS. 6 (a) and 6 (b).

第6図(a)は、高抵抗負荷Rを持つMOSトランジスタ
のメモリセルの一例を示したものである。400はワード
線、401はデータ線、M1,M2,M3,M4はNMOSトランジスタで
フリツプフロツプ型のメモリセルを構成している。メモ
リセルに与えられた情報は、M1とM3及びM2とM4のドレイ
ンの接合容量Cによつて保持される。メモリは正確に書
き込み、読み出し動作ができなければならないが、メモ
リセルにα線が照射された場合、α線照射によつて発生
した電子−正孔対により、接合容量に蓄積された電荷
(情報)と再結合を起し記憶内容が変化する可能性があ
る。α線によるキヤリヤの再結合の影響を小さくするに
は、MOSトランジスタのドレインの接合面積を大きくす
ることによつて接合容量Cを大きくすることである。
FIG. 6 (a) shows an example of a memory cell of a MOS transistor having a high resistance load R. Reference numeral 400 is a word line, 401 is a data line, and M1, M2, M3, and M4 are NMOS transistors to form a flip-flop type memory cell. The information given to the memory cell is held by the junction capacitance C of the drains of M1 and M3 and M2 and M4. The memory must be able to write and read accurately, but when the memory cell is irradiated with α-rays, the electron-hole pairs generated by the α-ray irradiation generate charges (information ) And the memory content may change due to recombination. In order to reduce the influence of carrier recombination due to α-rays, the junction capacitance C is increased by increasing the junction area of the drain of the MOS transistor.

一般にMOSトランジスタはウエハの表面に形成される
が、微細化が進むにつれソース、ドレイン領域も浅く形
成される。このためα線対策ができしかも高集積化の可
能なメモリセルを作るにはメモリ情報を蓄積するための
接合容量を増加する有効な手段とα線により発生する電
子−正孔対の影響を低減する重要な検討課題である。
Generally, MOS transistors are formed on the surface of a wafer, but as miniaturization progresses, the source and drain regions are also formed shallower. For this reason, in order to make a memory cell capable of preventing α rays and having a high degree of integration, an effective means of increasing the junction capacitance for storing memory information and reducing the influence of electron-hole pairs generated by α rays. This is an important issue to consider.

本実施例による有効な接合容量増加法及びα線対策の方
法を第6図(b)を用いて説明する。
An effective junction capacitance increasing method and an α ray countermeasure method according to this embodiment will be described with reference to FIG. 6 (b).

第6図(b)はメモリセルの構成要素である第6図
(a)のM3及びM4のMOSトランジスタを例に示してあ
る。
FIG. 6 (b) shows an example of the M3 and M4 MOS transistors of FIG. 6 (a) which are the constituent elements of the memory cell.

113は第1の導電型からなる基板、110は第1の導電型11
3と同じ導電型を有し113よりも高い不純物濃度からなる
埋め込み層、105は113,110と同じ導電型でMOSトランジ
スタの基板となる不純物濃度を有する層108,109はMOSト
ランジスタのソース及びドレインとなる層、107はゲー
ト酸化膜、106はMOSトランジスタのゲート電極層であ
る。ここで、111,112はこれまで述べてきたバイポーラ
トランジスタのコレクタ電極引き出し用拡散層と同時に
形成される層で各々、ソース108、ドレイン109を重ね合
わせて形成される。
113 is a substrate of the first conductivity type, and 110 is the first conductivity type 11
A buried layer having the same conductivity type as that of 3 and having an impurity concentration higher than 113; 105, layers 108 and 109 having the same conductivity type as 113, 110 and having an impurity concentration serving as a substrate of a MOS transistor, serving as the source and drain of the MOS transistor; 107 is a gate oxide film, and 106 is a gate electrode layer of a MOS transistor. Here, 111 and 112 are layers that are formed at the same time as the diffusion layer for drawing out the collector electrode of the bipolar transistor described above, and are formed by stacking the source 108 and the drain 109, respectively.

前述の如くα線は半導体中を通過する際に電子−正孔対
を発生する。
As described above, α-rays generate electron-hole pairs when passing through a semiconductor.

このα線による生成電荷が蓄積電荷を破壊する現象はpn
接合の空乏層内の電界による電荷収集と空乏層外の拡散
による電荷収集の2つの場合が考えられる。
The phenomenon that the charge generated by this α-ray destroys the stored charge is pn
Two cases can be considered: charge collection by an electric field in the depletion layer of the junction and charge collection by diffusion outside the depletion layer.

前者に対しては接合容量を増加させる方法が有効であり
後者に対しては空乏層の直下に電位障壁を形成し電荷が
pn接合側に集まらないようにする方法が有効である。
For the former, the method of increasing the junction capacitance is effective, and for the latter, a potential barrier is formed immediately below the depletion layer and the charge is
A method that prevents them from gathering on the pn junction side is effective.

第6図(b)では前者を層112による容量増加で対応し
後者を埋込み層110で対応できる。
In FIG. 6B, the former can be dealt with by increasing the capacity of the layer 112, and the latter can be dealt with by the buried layer 110.

第6図(b)に示すように基板と同一導電型でしかも高
濃度埋込み層上に作つたMOSのメモリセルでは、第一の
実施例で述べたようにバイポーラトランジスタのコレク
タ電極引き出し用拡散領域112をドレイン109と重ね合せ
ることによつて接合面積を大きくし接合容量を大きくす
ることができるとともにα線による基板側からの影響を
小さくすることができる。また前述した如くM3,M4のソ
ース拡散領域をGND配線とするためコレクタ引き出し用
拡散領域111を設けることにより配線抵抗を低減でき、
従来の拡散層のAl配線とを併合したGND配線に要したAl
配線領域を削減できる。
As shown in FIG. 6B, in the MOS memory cell of the same conductivity type as the substrate and formed on the high-concentration buried layer, the diffusion region for extracting the collector electrode of the bipolar transistor is used as described in the first embodiment. By overlapping 112 with the drain 109, the junction area can be increased and the junction capacitance can be increased, and the influence of α rays from the substrate side can be reduced. Further, as described above, since the source diffusion regions of M3 and M4 are used as the GND wiring, the wiring resistance can be reduced by providing the collector extraction diffusion region 111.
Al required for the GND wiring combined with the conventional Al wiring of the diffusion layer
The wiring area can be reduced.

本発明は、上述した実施例に限定されずに、P型とN型
とを逆にする等の種々の変形例が考えられる。
The present invention is not limited to the above-described embodiments, and various modifications such as reversing the P type and the N type are conceivable.

以上のように本発明の実施例によればB:C MOSプロセス
で作られるMOSトランジスタのソース、ドレインの拡散
抵抗を低減でき、それに伴つて配線面積を小さくでき
る。
As described above, according to the embodiment of the present invention, it is possible to reduce the diffusion resistance of the source and drain of the MOS transistor manufactured by the B: C MOS process, and accordingly reduce the wiring area.

またメモリセルのソース、ドレインにバイポーラトラン
ジスタとコレクタと同時に作れる高濃度層を重ね合わ
せ、しかも、基板に接する反対導電型の層と接続するこ
とにより、接合容量の増加と基板で発生するキヤリアの
影響を低減できるのでα線対策が可能となる。
In addition, the source and drain of the memory cell are overlaid with a high-concentration layer that can be made at the same time as the bipolar transistor and collector, and are connected to a layer of the opposite conductivity type that contacts the substrate, increasing the junction capacitance and the effect of carriers generated on the substrate. It is possible to reduce α, so that α-ray countermeasures can be taken.

〔発明の効果〕〔The invention's effect〕

本発明によれば、MOSトランジスタのソース及び/また
はドレインの抵抗を低減し、チツプ面積を減少すること
ができる。
According to the present invention, the resistance of the source and / or the drain of the MOS transistor can be reduced and the chip area can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は従来のメモリのGND配線方法を示す
図、第3図は本発明の一実施例を示す図、第4図は本発
明の一実施例に係る製造プロセスを示す図、第5図は本
発明の一実施例と従来方法による配線長と抵抗を比較し
た図、第6図は本発明の他の実施例を示す図である。 108……ソース領域、109……ソース領域、8,111,112…
…他方導電型領域。
1 and 2 are views showing a conventional GND wiring method for a memory, FIG. 3 is a view showing an embodiment of the present invention, and FIG. 4 is a view showing a manufacturing process according to the embodiment of the present invention. FIG. 5 is a diagram comparing an embodiment of the present invention with a wiring length and resistance according to a conventional method, and FIG. 6 is a diagram showing another embodiment of the present invention. 108 …… Source area, 109 …… Source area, 8,111,112…
... On the other hand, a conductivity type region.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 矢沢 義昭 茨城県日立市幸町3丁目1番1号 株式会 社日立製作所日立研究所内 (72)発明者 池田 隆英 茨城県日立市幸町3丁目1番1号 株式会 社日立製作所日立研究所内 (72)発明者 小高 雅則 東京都小平市上水本町1450番地 株式会社 日立製作所コンピユータ事業本部デバイス 開発センター内 (56)参考文献 特開 昭58−56450(JP,A) 特開 昭57−188862(JP,A) ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Yoshiaki Yazawa 3-1-1, Saiwaicho, Hitachi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Takahide Ikeda 3-chome, Saiwaicho, Hitachi, Ibaraki No. 1 Hitachi Ltd., Hitachi Research Laboratory (72) Inventor Masanori Odaka 1450, Josuihonmachi, Kodaira-shi, Tokyo Hitachi, Ltd. Computer Development Division Device Development Center (56) Reference JP-A-58-56450 ( JP, A) JP 57-188862 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体基板内にメモリセルとNPN型バイポ
ーラ・トランジスタとを具備してなり、 上記NPN型バイポーラ・トランジスタは、 N型コレクタ領域の直下に、該N型コレクタ領域と接触
する如く上記半導体基板の内部に形成されたN型高不純
物濃度コレクタ埋め込み領域と、 上記半導体基板の表面から、上記N型高不純物濃度コレ
クタ埋め込み領域と接触する如く形成されたN型コレク
タ引き出し不純物領域とを有し、 上記メモリセルは、 ゲートとドレインとが交叉接続された第1と第2の駆動
MOSトランジスタと、 上記第1と上記第2の駆動MOSトランジスタのドレイン
に接続された第1と第2の負荷素子と、 そのゲートがワード線に接続され、そのソース・ドレイ
ン経路が上記第1と上記第2の駆動MOSトランジスタの
上記ドレインと一対のデータ線との間に接続された第1
と第2の転送MOSトランジスタとを有してなり、 上記メモリセルの上記第1と上記第2の駆動MOSトラン
ジスタは、N型ソース領域と、該N型ソース領域の少な
くとも一部と重なるように形成されたN型高不純物濃度
ソース領域と、N型ドレイン領域と、該N型ドレイン領
域の少なくとも一部と重なるように形成されたN型高不
純物濃度ドレイン領域とを有するN型チャネルMOSトラ
ンジスタであり、 上記メモリセルのN型チャネルの上記第1と上記第2の
駆動MOSトランジスタの上記N型高不純物濃度ソース領
域と上記N型高不純物濃度ドレイン領域とは、上記NPN
型バイポーラ・トランジスタの上記N型コレクタ引き出
し不純物領域の形成のための不純物導入と同時に形成さ
れてなり、 上記N型コレクタ引き出し不純物領域と上記N型高不純
物濃度ソース領域と上記N型高不純物濃度ドレイン領域
とは、上記N型ソース領域および上記N型ドレイン領域
より深く形成されてなることを特徴とする半導体装置。
1. A semiconductor substrate comprising a memory cell and an NPN-type bipolar transistor, wherein the NPN-type bipolar transistor is directly below the N-type collector region and is in contact with the N-type collector region. An N-type high impurity concentration collector buried region formed inside the semiconductor substrate, and an N-type collector extraction impurity region formed so as to come into contact with the N-type high impurity concentration collector buried region from the surface of the semiconductor substrate. The memory cell has a first drive circuit and a second drive circuit in which the gate and the drain are cross-connected.
A MOS transistor, first and second load elements connected to the drains of the first and second drive MOS transistors, a gate thereof is connected to a word line, and a source / drain path thereof is the first and second A first connected between the drain of the second drive MOS transistor and the pair of data lines;
And a second transfer MOS transistor, wherein the first and second drive MOS transistors of the memory cell overlap the N-type source region and at least a part of the N-type source region. An N-type channel MOS transistor having an N-type high impurity concentration source region formed, an N-type drain region, and an N-type high impurity concentration drain region formed so as to overlap at least a part of the N-type drain region. And the N-type high impurity concentration source region and the N-type high impurity concentration drain region of the first and second drive MOS transistors of the N-type channel of the memory cell are the NPN.
Of the N-type collector transistor, the N-type collector extraction impurity region, the N-type high impurity concentration source region, and the N-type high impurity concentration drain The region is a semiconductor device formed deeper than the N-type source region and the N-type drain region.
JP58249712A 1983-12-26 1983-12-26 Semiconductor device Expired - Lifetime JPH0691207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58249712A JPH0691207B2 (en) 1983-12-26 1983-12-26 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58249712A JPH0691207B2 (en) 1983-12-26 1983-12-26 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS60137056A JPS60137056A (en) 1985-07-20
JPH0691207B2 true JPH0691207B2 (en) 1994-11-14

Family

ID=17197074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58249712A Expired - Lifetime JPH0691207B2 (en) 1983-12-26 1983-12-26 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0691207B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2569004B2 (en) * 1986-03-26 1997-01-08 株式会社日立製作所 Semiconductor integrated circuit device
JP2539386B2 (en) * 1986-08-13 1996-10-02 株式会社日立製作所 Method for manufacturing semiconductor integrated circuit device
JP2509930B2 (en) * 1987-03-27 1996-06-26 株式会社日立製作所 Semiconductor integrated circuit device
JP2703280B2 (en) * 1988-09-05 1998-01-26 株式会社東芝 Method for manufacturing semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57188862A (en) * 1981-05-18 1982-11-19 Hitachi Ltd Semiconductor integrated circuit device
JPS5856450A (en) * 1981-09-30 1983-04-04 Nec Corp Complementary mos semiconductor device

Also Published As

Publication number Publication date
JPS60137056A (en) 1985-07-20

Similar Documents

Publication Publication Date Title
US6063686A (en) Method of manufacturing an improved SOI (silicon-on-insulator) semiconductor integrated circuit device
US6208010B1 (en) Semiconductor memory device
US6740958B2 (en) Semiconductor memory device
JPH058583B2 (en)
JPH04324973A (en) Semiconductor device and manufacture thereof
EP0178991B1 (en) A complementary semiconductor device having high switching speed and latchup-free capability
JPH0132660B2 (en)
JPS627701B2 (en)
JP2689923B2 (en) Semiconductor device and manufacturing method thereof
JPH0691207B2 (en) Semiconductor device
JP2003008021A (en) Semiconductor device and its manufacturing method
JPS62276868A (en) Semiconductor integrated circuit device
JP2550119B2 (en) Semiconductor memory device
JPS6362904B2 (en)
KR960000955B1 (en) Semiconductor memory device and the manufacturing method
JP2509930B2 (en) Semiconductor integrated circuit device
JPH0144023B2 (en)
JPS6271258A (en) Semiconductor integrated circuit device
KR100268786B1 (en) Manufacturing method for electrostatic dischange prevention of semiconductor device
JP2574801B2 (en) Semiconductor memory device and method of manufacturing the same
JPH0652782B2 (en) Semiconductor integrated circuit device
JP2680846B2 (en) Semiconductor memory device
JPH08255839A (en) Complementary semiconductor integrated circuit device
JP3003407B2 (en) Semiconductor integrated circuit device
JPH0621370A (en) Semiconductor device