JPS62112034A - Particle analyzing instrument - Google Patents

Particle analyzing instrument

Info

Publication number
JPS62112034A
JPS62112034A JP60252334A JP25233485A JPS62112034A JP S62112034 A JPS62112034 A JP S62112034A JP 60252334 A JP60252334 A JP 60252334A JP 25233485 A JP25233485 A JP 25233485A JP S62112034 A JPS62112034 A JP S62112034A
Authority
JP
Japan
Prior art keywords
light
flow cell
optical axis
flow
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60252334A
Other languages
Japanese (ja)
Other versions
JPH061241B2 (en
Inventor
Naoki Yuguchi
湯口 直樹
Akira Tago
晃 多胡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60252334A priority Critical patent/JPH061241B2/en
Priority to US06/918,981 priority patent/US4732479A/en
Publication of JPS62112034A publication Critical patent/JPS62112034A/en
Publication of JPH061241B2 publication Critical patent/JPH061241B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To permit the exact and easy alignment and focusing of an optical axis and the axis of the flow of a specimen particle by imposing a flow cell together with an optical system for photometry on a base plate and making the base plate movable relatively with the optical axis of irradiation light. CONSTITUTION:A pseudo sample liquid which absorbs the light in the wavelength region of a laser beam L is used in place of the specimen particle S and the light intensity distribution in the stage of absorbing the laser beam L irradiated from a laser light source 10 is measured with an arrayed photoelectric detector 16. Adjustment is made until the waveform on a monitor 17 exhibits lateral symmetry by turning a rotary knob 60 to move the flow cell 1 fixed to a stage 41 parallel with a direction Y. The alignment of the focal position of the laser beam L from the light source 10 to the center of the flow of the pseudo sample liquid is checked by turning a rotary knob 59 and adjusting the valley part of the recess of the Gaussian distribution on a monitor to the lowest level and the width thereof to the narrowest width while moving the flow cell 1 parallel with a direction X.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、フローサイトメータ等において、測光光学系
及びフローセルの光軸との調整を可能とした粒子解析装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a particle analysis device that allows adjustment with the optical axis of a photometric optical system and a flow cell in a flow cytometer or the like.

[従来の技術] フローサイトメータ等に用いられる従来の粒子解析装置
では、第5図に示すように、フローセル1の中央部の例
えば200gmX200μmの微小な断面を有する流通
部2内を、シース液に包まれて高速で流れる検体粒子S
に、図示しないレーザー光源からの平行なレーザービー
ムLを、第6図に示すように集光レンズ3を介してフロ
ーセル1内の流通部2に照射する。検体粒子Sにより散
乱された前方散乱光は、対物レンズ4を介して光電検出
器5上に集光され、主に検体粒子Sの大きさに関する情
報が得られる。また、検体粒子Sからの側方散乱光及び
蛍光散乱光は、対物レンズ6を介して光電検出器7上に
集光され、主に検体粒子Sの内部の複雑性に関する重要
な情報を得ることができる。
[Prior Art] In a conventional particle analysis device used in a flow cytometer or the like, as shown in FIG. Specimen particles S wrapped and flowing at high speed
Next, a parallel laser beam L from a laser light source (not shown) is irradiated onto the flow section 2 in the flow cell 1 through the condenser lens 3, as shown in FIG. The forward scattered light scattered by the sample particles S is focused on the photoelectric detector 5 via the objective lens 4, and information mainly regarding the size of the sample particles S is obtained. Further, the side scattered light and fluorescent scattered light from the sample particles S are focused on the photoelectric detector 7 via the objective lens 6, and important information mainly regarding the internal complexity of the sample particles S can be obtained. I can do it.

フローサイトメータにおいて正確な測定を行うには、レ
ーザービームLの光軸とフローセル1の中心が一致して
いると共に、検体粒子Sからの散乱光が測光用対物レン
ズ4,6により正確に集光されなければならない、その
ために、レーザービームLの光軸に対して検体粒子Sの
流れの軸及び集光レンズ4.6を正確に調整しなければ
ならないが、従来装置においてはフローセル1と測光光
学系とが分離されており、フローセル1が微動した状態
で、レーザービームLの光軸に対して検体粒子Sの流れ
の袖を調整すると、側方散乱光m光学系の焦点位置がず
れるため、側方散乱光用光学系の調整も行う必要があり
、操作が繁雑になる上に十分に正確な調整を行うことが
困難である。
In order to perform accurate measurements with a flow cytometer, the optical axis of the laser beam L must be aligned with the center of the flow cell 1, and the scattered light from the sample particles S must be accurately focused by the photometric objective lenses 4 and 6. For this purpose, the flow axis of the sample particles S and the condensing lens 4.6 must be accurately adjusted with respect to the optical axis of the laser beam L. However, in conventional devices, the flow cell 1 and the photometric optical If the flow cell 1 is adjusted slightly with respect to the optical axis of the laser beam L, the focal position of the side scattered light m optical system will shift. It is also necessary to adjust the optical system for side scattered light, which complicates the operation and makes it difficult to perform sufficiently accurate adjustment.

[発明の目的] 本発明の目的は、測光用光学系とフローセルを固定する
ことにより、レーザービームの光軸に対して検体粒子の
流れの軸の合軸調整を行うだけで容易に位置合わせが実
施でき、高精度の測定を可能とする粒子解析装置を提供
することにある。
[Objective of the Invention] An object of the present invention is to fix the photometric optical system and the flow cell so that positioning can be easily achieved by simply aligning the axis of the flow of sample particles with the optical axis of the laser beam. The object of the present invention is to provide a particle analysis device that can perform measurements with high accuracy.

[発明の概要] 上述の目的を達成するための本発明の要旨は、フローセ
ル内の流通部を流れる検体粒子に光ビームを照射する照
射光学系と、光ビームにより散乱された検体粒子からの
散乱光を測定する測光用光学系と、前記70−セルを該
測光用光学系と共に基台上に載置して、該基台を光ビー
ムの照射光軸に対して相対的に移動可能としたことを特
徴とする粒子解析装置である。
[Summary of the Invention] The gist of the present invention for achieving the above-mentioned object is to provide an irradiation optical system that irradiates a light beam to sample particles flowing through a flow section in a flow cell, and an irradiation optical system that irradiates a light beam to sample particles that are scattered by the light beam. A photometric optical system for measuring light and the 70-cell were placed on a base together with the photometric optical system, and the base was movable relative to the irradiation optical axis of the light beam. This particle analysis device is characterized by the following.

[発明の実施例] 本発明を第1図〜第4図に図示の実施例に基づいて詳細
に説明する。
[Embodiments of the Invention] The present invention will be described in detail based on embodiments illustrated in FIGS. 1 to 4.

第1図は光学系及びアライメント装置の平面図である。FIG. 1 is a plan view of the optical system and alignment device.

フローセル1の中央部には、紙面に垂直な上下方向にサ
ンプル液を通過する流通部2が設けられており、このサ
ンプル液の流れと直交する方向にレーザー光源10が配
置され、レーザー光源1oからの照射光を流通部2に導
光するために、光軸01上にレーザービームLの結像形
状を調整する結像レンズ11が配されている。また。
At the center of the flow cell 1, there is provided a flow section 2 through which the sample liquid passes in the vertical direction perpendicular to the plane of the paper. In order to guide the irradiated light to the flow section 2, an imaging lens 11 for adjusting the imaging shape of the laser beam L is disposed on the optical axis 01. Also.

レーザービームLによる検体粒子Sからの前方散乱光側
には、フローセル1側からビームスプリッタ12、対物
レンズ13及び光電検出器14が配置されている。また
、ビームスプリッタ12により分割された光束の分布状
態を検出するために、ビームスプリッタ12の反射側の
光軸02上に対物レンズ15及びアレイ状光電検出器1
6が配されている。そして、光電変換器16の出力は光
強度分布を観察するモニタ17に接続されている。また
、検体粒子Sの流れの軸及び光軸01にそれぞれ直交す
る光軸03上に フローセル1側から測光用対物レンズ
18、ハーフミラ−19、集光レンズ20、絞り21、
集光レンズ22、グイクロイックミラー23.24及び
ミラー25が順次に配置首されている。グイクロイック
ミラー23の反射方向にバリアフィルタ26と光電検出
器27が、グイクロインクミラー23の反射方向に/へ
リアフィルタ28と光電検出器29が、ミラー25の反
射方向にバリアフィルタ30と光電検出器31か配置さ
れている。これらの光電検出器27.29.31には、
微弱光を増強して検出可能にするフォトマルが用いられ
ている。そして、ハーフミラ−19の反射側には、フロ
ーセル1と側方散乱光及び蛍光測光用光学系との焦点調
整に用いるオートフォーカスユニント32が設けられて
いる。
On the side of the forward scattered light from the sample particles S caused by the laser beam L, a beam splitter 12, an objective lens 13, and a photoelectric detector 14 are arranged from the flow cell 1 side. In addition, in order to detect the distribution state of the luminous flux split by the beam splitter 12, an objective lens 15 and an array photoelectric detector 1 are placed on the optical axis 02 on the reflection side of the beam splitter 12.
6 is placed. The output of the photoelectric converter 16 is connected to a monitor 17 for observing the light intensity distribution. Also, on the optical axis 03 perpendicular to the flow axis of the sample particles S and the optical axis 01, from the flow cell 1 side, a photometric objective lens 18, a half mirror 19, a condensing lens 20, an aperture 21,
A condensing lens 22, microchroic mirrors 23, 24, and a mirror 25 are arranged in sequence. A barrier filter 26 and a photoelectric detector 27 are arranged in the reflection direction of the microink mirror 23, a helia filter 28 and a photoelectric detector 29 are mounted in the reflection direction of the microink mirror 23, and a barrier filter 30 is mounted in the reflection direction of the mirror 25. A photoelectric detector 31 is also arranged. These photoelectric detectors 27.29.31 include
Photomuls are used to enhance weak light and make it detectable. An autofocus unit 32 is provided on the reflection side of the half mirror 19 to adjust the focus between the flow cell 1 and the optical system for side scattered light and fluorescence photometry.

ここで、光軸O1上のレーザー光源10〜光電検出器1
4及び光軸02上の対物レンズ15、光電検出器16は
軸:A撃抜に基板40上に固定されている・また、フロ
ーセル1及び光軸03上の対物しンズ18〜ミラー25
、バリアフィルタ26.28.30、光電検出器27.
29.31.オートフォーカスユニット32は、焦点調
整後に光軸03と平行なY方向に移動自在のステージ4
1上に配首され、基板40とステージ41の間には、更
に光軸01と平行なX方向に移動自在のステージ42が
介在されている。そして、ステージ41のY方向の移動
量はダイアルゲージ43により、ステージ42のX方向
の移動量はダイアルゲージ44により測定されるように
なっている。
Here, the laser light source 10 to the photoelectric detector 1 on the optical axis O1
4, an objective lens 15 on the optical axis 02, and a photoelectric detector 16 are fixed on the substrate 40 on the axis A. Also, an objective lens 18 to a mirror 25 on the flow cell 1 and the optical axis 03
, barrier filter 26.28.30, photoelectric detector 27.
29.31. The autofocus unit 32 includes a stage 4 that is movable in the Y direction parallel to the optical axis 03 after focus adjustment.
A stage 42 is arranged between the substrate 40 and the stage 41 and is movable in the X direction parallel to the optical axis 01. The amount of movement of the stage 41 in the Y direction is measured by a dial gauge 43, and the amount of movement of the stage 42 in the X direction is measured by a dial gauge 44.

第2図は第1図のA−A線に治った断面図であり、ステ
ージ42の上面にY方向に2木のレール5oが敷設され
、ステージ41の下面のレール51との嵌合により、ス
テージ41はステージ42に対してY方向に平行移動で
きるようになっている。ステージ42の右端部には軸受
53が設けられ、この軸受53にはカム軸54が回転自
在に軸着され、更にカム軸54の外側にカム軸55が嵌
合されており、このカム軸55はカム軸54に対して回
転自在な状態となっている。カム軸54及び力1、輛5
5には、それぞれ偏心カム54a、55aが周設yれて
おり、これらのカム54a、55aは基板40 、、l
−に固定されているガイド56及びステージ41に固定
されている第3図に図示のガイド57とそれぞれ常時接
触するように、ステージ41.42は図示しないばねに
より付勢された状態となっている。更に、カム軸54の
上部には抜は止め58とカム軸54を回転させる回転つ
まみ59が取り付けられ、カム軸55の上部に回転つま
み60が増り付けられている。
FIG. 2 is a cross-sectional view taken along the line A-A in FIG. 1, in which two rails 5o are laid in the Y direction on the upper surface of the stage 42, and by fitting with the rail 51 on the lower surface of the stage 41, The stage 41 can be moved parallel to the stage 42 in the Y direction. A bearing 53 is provided at the right end of the stage 42, a camshaft 54 is rotatably attached to the bearing 53, and a camshaft 55 is fitted on the outside of the camshaft 54. is in a state where it can freely rotate with respect to the camshaft 54. Camshaft 54 and force 1, vehicle 5
Eccentric cams 54a and 55a are provided around the substrates 40, 5, respectively, and these cams 54a and 55a
- The stages 41 and 42 are biased by springs (not shown) so that they are in constant contact with a guide 56 fixed to the stage 41 and a guide 57 shown in FIG. 3 fixed to the stage 41. . Furthermore, a pull-out stop 58 and a rotation knob 59 for rotating the camshaft 54 are attached to the top of the camshaft 54, and a rotation knob 60 is additionally attached to the top of the camshaft 55.

第3図は第1図のB方向から見た側面図であり、基板4
0上にX方向に2本のレール61が敷設され、ステージ
42の下面の2木のレール62と嵌合しており、ステー
ジ42は基板40に対してX方向に平行移動できるよう
になっている。
FIG. 3 is a side view seen from direction B in FIG.
Two rails 61 are laid on the board 40 in the X direction, and are fitted with two rails 62 on the lower surface of the stage 42, so that the stage 42 can move parallel to the board 40 in the X direction. There is.

レーザー光源10から照射されたレーザービームLは、
結像レンズ11を介してフローセル1の流通部2に入射
し、検体粒子Sによる前方散乱光の一部はビームスプリ
ッタ12を直進して、対物レンズ13を介して光電検出
器14に集光されその光強度が測光される。また、残り
の一部はビームスプリンタ12によって反射され、対物
レンズ15を介してアレイ状光電検出器16に集光され
、光軸01に対する検体粒子Sの流れの位置関係を検出
することになる。
The laser beam L emitted from the laser light source 10 is
A part of the forward scattered light by the sample particles S enters the flow section 2 of the flow cell 1 via the imaging lens 11, passes straight through the beam splitter 12, and is focused on the photoelectric detector 14 via the objective lens 13. The light intensity is photometered. Further, the remaining part is reflected by the beam splinter 12 and focused on the arrayed photoelectric detector 16 via the objective lens 15, thereby detecting the positional relationship of the flow of the sample particles S with respect to the optical axis 01.

また、検体粒子Sによる側方散乱光は、測光用対物レン
ズ18.ハーフミラ−19,集光レンズ20、絞り21
.更に集光レンズ22を介してグイクロインクミラー2
3.24及びミラー25に入射し、これらのミラー23
.24.25による波長領域ごとの各反射光は、バリア
フィルタ26.28.30を介して、光電検出器27.
29.31上にそれぞれ集光され光強度が4III光さ
れる。
Further, side scattered light by the sample particles S is transmitted through the photometric objective lens 18. Half mirror 19, condenser lens 20, aperture 21
.. Further, through the condensing lens 22, the micro ink mirror 2
3.24 and mirror 25, and these mirrors 23
.. Each reflected light for each wavelength range by 24.25 passes through barrier filters 26, 28, and 30 to photoelectric detectors 27.
The light is focused on 29 and 31, respectively, and has a light intensity of 4III.

フローセル1と測光光学系をX方向、Y方向についての
調整を行うには、先ずカム軸54の回転つまみ59を廻
すと、カム54aがカイト56と回転摺動するため、カ
ム54aのこのリフト都゛だけステージ42が基板40
に対してX方向に平行移動できる。同様に、カム軸55
に固定されている回転つまみ60を廻すと、カム55 
aかカイ!パ57に回転摺動するため、カム55aのリ
フト吊だけステージ41をステージ42に対してYjj
向に平行移動することができる。
To adjust the flow cell 1 and the photometric optical system in the X and Y directions, first turn the rotation knob 59 of the camshaft 54. Since the cam 54a rotates and slides on the kite 56, this lift position of the cam 54a Only the stage 42 is the substrate 40
Can be translated in parallel to the X direction. Similarly, the camshaft 55
When the rotary knob 60 fixed to the cam 55 is turned, the cam 55
A or Kai! In order to rotate and slide the cam 57, the stage 41 is Yjj relative to the stage 42 only by lifting the cam 55a.
Can be translated in parallel.

これらのX、Y方向への平行移動値は、回転角度に対す
るリフト省をカム54a、55aによって任意に設定す
ることができるため、相当に蛍!−の範囲での移動が可
能であり、これらの移動1′達は基板40上に固定され
たダイアルケージ4344iこよって読み取りが可能で
ある。
These parallel movement values in the X and Y directions can be set arbitrarily by the cams 54a and 55a to reduce lift with respect to the rotation angle, so they are quite fast! Movements within a range of - are possible, and these movements 1' can be read by a dial cage 4344i fixed on the substrate 40.

次に、この粒子解析装置の調整手順を説明すると、側方
測光用光学系を光軸03に対して軸調整した後にステー
ジ41に固定して、A11l光用光学系に対するフロー
セル1のアライメントを行う。このために、オートフォ
ーカスユニ7]・32を用いて、フローセル1をX、Y
方向へそれぞれ独ケに平行移動させながら、フローセル
1の中心にj、+3点が合った位置で、フローセルlを
ステージ41に固定する。従って、フローセルlと側方
Will光川尤学系はステージ41七で一体となって、
基板40に対してX、Y方向に平行移動できることにな
る。
Next, to explain the adjustment procedure of this particle analyzer, after adjusting the axis of the lateral photometry optical system with respect to the optical axis 03, it is fixed to the stage 41, and the flow cell 1 is aligned with the A11l optical system. . For this purpose, use the autofocus unit 7].32 to move the flow cell 1 in
The flow cell 1 is fixed to the stage 41 at a position where point j, +3 is aligned with the center of the flow cell 1 while independently moving parallel in each direction. Therefore, the flow cell l and the lateral Will Mitsukawa theory unite at stage 417,
This means that it can move parallel to the substrate 40 in the X and Y directions.

ステージ41.42を動かすことによって、前述の調整
されたフローセル1を光軸01上を移動しながら、検体
粒子Sの流れと光軸01とのアライメントを行うには、
例えば検体粒子Sの代りにレーザーど−ムLの波長債域
の光を吸収する疑似サンプル液を使用する。レーザー光
源10から照射されたレーザービームLの一部は、この
疑似サンプル液で吸収され、吸収時の光強度分布はアレ
イ状光電検出器16で測定され、その出力信号はモニタ
17により観察される。光軸01と疑似サンプル液流の
中心か合致している場合には、第4図に示すように光強
度分布状態はガウス分布状の波形の中心部が凹状になっ
た左右対称の波形が観察される。しかし合致していない
場合には、中央の凹状部分が左右何れかにずれて対称の
波形を示さなくなる。この場合には、回転つまみ60を
廻してフローセル1をY方向に平行移動しながら、モニ
タ上の波形が左右対称を示すまで調整を行う。
To align the flow of sample particles S with the optical axis 01 while moving the above-mentioned adjusted flow cell 1 on the optical axis 01 by moving the stages 41 and 42,
For example, instead of the sample particles S, a pseudo sample liquid that absorbs light in the wavelength range of the laser beam L is used. A part of the laser beam L emitted from the laser light source 10 is absorbed by this pseudo sample liquid, and the light intensity distribution at the time of absorption is measured by the array photoelectric detector 16, and its output signal is observed by the monitor 17. . When the optical axis 01 and the center of the pseudo sample liquid flow coincide, the light intensity distribution state is a Gaussian distribution with a concave center and a symmetrical waveform as shown in Figure 4. be done. However, if they do not match, the central concave portion shifts to either the left or right and no longer exhibits a symmetrical waveform. In this case, while rotating the rotary knob 60 to move the flow cell 1 in parallel in the Y direction, adjustments are made until the waveform on the monitor shows left-right symmetry.

また、レーザー光源10からのレーザービームLの焦点
位置と疑似サンプル液流の流れの中心の合致を確認する
には、回転つまみ59を廻してフローセル1をX方向に
平行移動させながら、モニタ上のガウス分布の凹状の谷
の部分が、最も低レベルにかつ幅が最も狭くなるように
調整すればよい、このような調整方法を用いて、光軸O
1に対して疑似サンプル液流の流れの軸との合軸調整を
行うことができる。
To check whether the focal position of the laser beam L from the laser light source 10 matches the center of the flow of the pseudo sample liquid flow, turn the rotary knob 59 to move the flow cell 1 in parallel in the It is only necessary to adjust the concave valley part of the Gaussian distribution to the lowest level and the narrowest width.Using this adjustment method, the optical axis O
1, alignment adjustment with the flow axis of the pseudo sample liquid flow can be performed.

本実施例では、照射光の検体粒子Sによる光軸03」二
の側方散乱光及び蛍光測光用光学系を、ブローセル1を
固定したステージ41.42 上i、: 載置し、これ
らのステージ41.42をY方向又はX方向に平行移動
させることによって、レーザービームLの光軸01との
合軸調整を行ったが、逆にレーザー光源10と前方散乱
光測光用光学系とを載置する基板40にフローセル1を
固定して、この基板40を側方散乱光及び蛍光測光用光
学系に対して移動することにより、合軸調整を行っても
同様の効果か得られる。更には、前方散乱光用光学系の
みをステージ41.42上に載置することもある。なお
実施例では、ステージ41.42の微動調整にカム軸5
4.55を用いる方法を使用したが、他の駆動機構を用
いて光軸調整を行うことも勿論可能である。
In this example, the optical system for side scattered light and fluorescence photometry on the optical axis 03'2 by the specimen particles S of the irradiated light is placed on the stage 41 and 42 on which the blow cell 1 is fixed, and these stages By moving 41 and 42 in parallel in the Y direction or the X direction, the alignment of the laser beam L with the optical axis 01 was adjusted. The same effect can be obtained even if the axis adjustment is performed by fixing the flow cell 1 to a substrate 40 and moving the substrate 40 relative to the optical system for side scattered light and fluorescence photometry. Furthermore, only the optical system for forward scattered light may be placed on the stage 41, 42. In the embodiment, the camshaft 5 is used for fine adjustment of the stages 41 and 42.
Although the method using 4.55 was used, it is of course possible to adjust the optical axis using other drive mechanisms.

[発明の効果コ 以−F説明したように本発明に係る粒子解析装置は、一
方の測光用光学系と共にフローセルを共通の)1(台に
固定し、他方の直交する方向のat(I先光学系の光軸
に対して平行及び垂直に相対的に移動させることによっ
て、レーザービームの光軸と検体粒子の流れの軸との合
@調整及び焦点調整を正確にしかも容易に行うことがで
き、精度の高い測定結果を得ることが可能である。
[Effects of the Invention] As explained above, in the particle analysis device according to the present invention, the flow cell is fixed to a common stand together with one photometric optical system, and the at (I tip) is fixed to the other orthogonal direction. By relatively moving parallel and perpendicular to the optical axis of the optical system, alignment and focus adjustment between the optical axis of the laser beam and the axis of the sample particle flow can be performed accurately and easily. , it is possible to obtain highly accurate measurement results.

【図面の簡単な説明】[Brief explanation of drawings]

図面第1図〜第4図は本発明に係る粒子解析袋aの一実
施例を示し、第1図は光学系と7ライメント装首の構成
図、第2図は第1図のA−A線に沿った断面図、第3図
は第1図のB方向から見た側面図、第4図は合軸状態に
おける光強度分布図であり、第5図はフローセルの斜視
図、第6図は従来の光学系の配置図である。 符号1はフローセル、2は流通部、10はレーザー光源
、11は結像レンズ、12はビームスプリンタ、13.
15.18は対物レンズ、14.16は光電検出器、1
7はモニタ、23.24はグイクロイックミラー、25
はミラー、26.28.30はバリアフィルタ、27.
29.31は光’771検出器、32はオートフォーカ
スユニント、40は基板、41.42はステージ、43
.44はダイアルゲージ、50.51.61.62はレ
ール、54.55はカム軸、54a、55aはカム、5
9.60は回転つまみである。 #許出願人   キャノン株式会社 図面 第1図 第2図 第3図 第4図
Figures 1 to 4 show an embodiment of the particle analysis bag a according to the present invention, Figure 1 is a configuration diagram of an optical system and a 7-line neck attachment, and Figure 2 is A-A in Figure 1. 3 is a side view taken from direction B in FIG. 1, FIG. 4 is a light intensity distribution diagram in the aligned state, FIG. 5 is a perspective view of the flow cell, and FIG. 6 is a cross-sectional view taken along the line. is a layout diagram of a conventional optical system. 1 is a flow cell, 2 is a flow section, 10 is a laser light source, 11 is an imaging lens, 12 is a beam splinter, 13.
15.18 is an objective lens, 14.16 is a photoelectric detector, 1
7 is a monitor, 23.24 is a groic mirror, 25
is a mirror, 26.28.30 is a barrier filter, 27.
29.31 is a light '771 detector, 32 is an autofocus unit, 40 is a substrate, 41.42 is a stage, 43
.. 44 is a dial gauge, 50.51.61.62 is a rail, 54.55 is a camshaft, 54a, 55a are cams, 5
9.60 is a rotary knob. #Applicant: Canon Co., Ltd. Drawings Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1、フローセル内の流通部を流れる検体粒子に光ビーム
を照射する照射光学系と、光ビームにより散乱された検
体粒子からの散乱光を測定する測光用光学系と、前記フ
ローセルを該測光用光学系と共に基台上に載置して、該
基台を光ビームの照射光軸に対して相対的に移動可能と
したことを特徴とする粒子解析装置。 2、前記測光用光学系は側方散乱光を測光するものとし
た特許請求の範囲第1項に記載の粒子解析装置。 3、前記基台は光ビーム照射光軸を含む同一平面内にお
いて、照射光軸に平行及び垂直方向に移動可能とした特
許請求の範囲第1項に記載の粒子解析装置。 4、前記基台の移動手段にはカム軸を用い、該カム軸の
回転角とそのリフト量を利用して移動を行う特許請求の
範囲第1項に記載の粒子解析装置。 5、前記基台の移動量検出手段としてダイアルゲージを
用いた特許請求の範囲第1項に記載の粒子解析装置。 6、前記検体粒子による散乱光の光強度分布をモニタで
観察するようにした特許請求の範囲第1項に記載の粒子
解析装置。
[Scope of Claims] 1. An irradiation optical system that irradiates a light beam onto sample particles flowing through a flow section in a flow cell; a photometric optical system that measures scattered light from the sample particles scattered by the light beam; A particle analysis device characterized in that a flow cell is placed on a base together with the photometric optical system, and the base is movable relative to the irradiation optical axis of the light beam. 2. The particle analysis device according to claim 1, wherein the photometric optical system measures side scattered light. 3. The particle analysis apparatus according to claim 1, wherein the base is movable in parallel and perpendicular directions to the irradiation optical axis within the same plane containing the light beam irradiation optical axis. 4. The particle analysis apparatus according to claim 1, wherein a camshaft is used as the means for moving the base, and the movement is performed using the rotation angle of the camshaft and the amount of lift thereof. 5. The particle analysis device according to claim 1, wherein a dial gauge is used as the movement amount detection means of the base. 6. The particle analysis device according to claim 1, wherein the light intensity distribution of the light scattered by the sample particles is observed on a monitor.
JP60252334A 1985-10-18 1985-11-11 Particle analyzer Expired - Fee Related JPH061241B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60252334A JPH061241B2 (en) 1985-11-11 1985-11-11 Particle analyzer
US06/918,981 US4732479A (en) 1985-10-18 1986-10-15 Particle analyzing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60252334A JPH061241B2 (en) 1985-11-11 1985-11-11 Particle analyzer

Publications (2)

Publication Number Publication Date
JPS62112034A true JPS62112034A (en) 1987-05-23
JPH061241B2 JPH061241B2 (en) 1994-01-05

Family

ID=17235821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60252334A Expired - Fee Related JPH061241B2 (en) 1985-10-18 1985-11-11 Particle analyzer

Country Status (1)

Country Link
JP (1) JPH061241B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63292039A (en) * 1987-05-26 1988-11-29 Fuji Electric Co Ltd Apparatus for detecting fine grain in liquid
JPS6418043A (en) * 1987-07-14 1989-01-20 Kowa Co Method and apparatus for measuring fine particle in liquid
EP0486747A2 (en) * 1990-11-22 1992-05-27 Toa Medical Electronics Co., Ltd. Flow cell mechanism in flow imaging cytometer
JPH05273114A (en) * 1992-03-30 1993-10-22 Nikkiso Co Ltd Grain size distribution measuring device
GB2378526A (en) * 2001-08-07 2003-02-12 Lockheed Corp Plate for mounting camera, illuminator and flow cell
US7019834B2 (en) 2002-06-04 2006-03-28 Lockheed Martin Corporation Tribological debris analysis system
US7184141B2 (en) 2004-03-23 2007-02-27 Lockheed Martin Corporation Optical flow cell for tribological systems
US7307717B2 (en) 2005-09-16 2007-12-11 Lockheed Martin Corporation Optical flow cell capable of use in high temperature and high pressure environment
US7385694B2 (en) 2002-06-04 2008-06-10 Lockheed Martin Corporation Tribological debris analysis system
JP2009145044A (en) * 2007-12-11 2009-07-02 Mitsui Eng & Shipbuild Co Ltd Fluorescence detector
US8079250B2 (en) 2008-07-09 2011-12-20 Lockheed Martin Corporation Viscometer system utilizing an optical flow cell
EP4043862A4 (en) * 2019-11-06 2022-12-07 Sony Group Corporation Method for adjusting position, microparticle analysis device, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128038A (en) * 1974-07-29 1976-03-09 Yoshio Koyama Pachinkokiheno tamakyokyuhohooyobisochi
JPS5299839A (en) * 1976-02-17 1977-08-22 Suntory Ltd Device for observing infinitesimal article in liquid
JPS5942432A (en) * 1982-09-01 1984-03-09 Rion Co Ltd Light scattering type floating particle counting apparatus
JPS59176649A (en) * 1983-03-28 1984-10-06 Shimadzu Corp Particle analyzer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128038A (en) * 1974-07-29 1976-03-09 Yoshio Koyama Pachinkokiheno tamakyokyuhohooyobisochi
JPS5299839A (en) * 1976-02-17 1977-08-22 Suntory Ltd Device for observing infinitesimal article in liquid
JPS5942432A (en) * 1982-09-01 1984-03-09 Rion Co Ltd Light scattering type floating particle counting apparatus
JPS59176649A (en) * 1983-03-28 1984-10-06 Shimadzu Corp Particle analyzer

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63292039A (en) * 1987-05-26 1988-11-29 Fuji Electric Co Ltd Apparatus for detecting fine grain in liquid
JPS6418043A (en) * 1987-07-14 1989-01-20 Kowa Co Method and apparatus for measuring fine particle in liquid
EP0486747A2 (en) * 1990-11-22 1992-05-27 Toa Medical Electronics Co., Ltd. Flow cell mechanism in flow imaging cytometer
JPH05273114A (en) * 1992-03-30 1993-10-22 Nikkiso Co Ltd Grain size distribution measuring device
US6873411B2 (en) 2001-08-07 2005-03-29 Lockheed Martin Corporation Optical debris analysis fixture
GB2378526B (en) * 2001-08-07 2005-02-16 Lockheed Corp Optical debris analysis fixture
GB2378526A (en) * 2001-08-07 2003-02-12 Lockheed Corp Plate for mounting camera, illuminator and flow cell
US7019834B2 (en) 2002-06-04 2006-03-28 Lockheed Martin Corporation Tribological debris analysis system
US7385694B2 (en) 2002-06-04 2008-06-10 Lockheed Martin Corporation Tribological debris analysis system
US7184141B2 (en) 2004-03-23 2007-02-27 Lockheed Martin Corporation Optical flow cell for tribological systems
US7307717B2 (en) 2005-09-16 2007-12-11 Lockheed Martin Corporation Optical flow cell capable of use in high temperature and high pressure environment
JP2009145044A (en) * 2007-12-11 2009-07-02 Mitsui Eng & Shipbuild Co Ltd Fluorescence detector
US8079250B2 (en) 2008-07-09 2011-12-20 Lockheed Martin Corporation Viscometer system utilizing an optical flow cell
EP4043862A4 (en) * 2019-11-06 2022-12-07 Sony Group Corporation Method for adjusting position, microparticle analysis device, and program

Also Published As

Publication number Publication date
JPH061241B2 (en) 1994-01-05

Similar Documents

Publication Publication Date Title
US4732479A (en) Particle analyzing apparatus
JPS62112034A (en) Particle analyzing instrument
TW200428556A (en) Mark position detection apparatus
US6495812B1 (en) Apparatus and method for analyzing an object of interest having a pivotably movable source and detector
JPS60310A (en) Measuring device for surface structure, particularly, roughness
JPH0563771B2 (en)
JPH02161332A (en) Device and method for measuring radius of curvature
CN109520973A (en) Postposition is divided pupil laser differential confocal microscopic detection method and device
CN101221371B (en) Device and method for detecting pattern positioning precision
JP3597302B2 (en) Eccentricity measuring device
CN105372943B (en) A kind of alignment device for lithographic equipment
CN108121179A (en) A kind of focusing leveling device
JP2003148939A (en) Autocollimator provided with microscope, and instrument for measuring shape using the same
JPS61167838A (en) Particle analyzer
JPS63241407A (en) Method and device for measuring depth of fine recessed part
TW201905414A (en) Line width measuring system and line width measuring device
JP2004279075A (en) Lens eccentricity measuring method and measuring device
JPS62502421A (en) Equipment for orienting, inspecting and/or measuring two-dimensional objects
JPS63182547A (en) Particle analyzer
JP2672771B2 (en) Through hole inner diameter measuring device
JPS6236541A (en) Particle analyzer
JPH0471453B2 (en)
JPH05267117A (en) Method and device for detecting and setting gap between mask and substrate
JPS628038A (en) Apparatus for analyzing particle
JPS62245942A (en) Particle analyzer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees