JPS62108386A - Particulate counter - Google Patents

Particulate counter

Info

Publication number
JPS62108386A
JPS62108386A JP24802985A JP24802985A JPS62108386A JP S62108386 A JPS62108386 A JP S62108386A JP 24802985 A JP24802985 A JP 24802985A JP 24802985 A JP24802985 A JP 24802985A JP S62108386 A JPS62108386 A JP S62108386A
Authority
JP
Japan
Prior art keywords
light
signal
sets
particles
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24802985A
Other languages
Japanese (ja)
Inventor
Tadashi Akiyama
正 秋山
Masao Kimura
木村 昌夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAN KAGAKU KK
Original Assignee
DAN KAGAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAN KAGAKU KK filed Critical DAN KAGAKU KK
Priority to JP24802985A priority Critical patent/JPS62108386A/en
Publication of JPS62108386A publication Critical patent/JPS62108386A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a noise component, and to perform the measurement of a particulate by receiving two sets of scattered rays of light with two photodetectors, and performing a pulse-amplitude analysis after the signal outputs are multiplied at an analog multiplication circuit. CONSTITUTION:Irradiating light 2 from a laser light source 1 irradiates a fluid trickle 3, and two sets of scattered rays of light 4 and 4' emitted from the particulate are condensed at lenses 5 and 5' respectively, and are received at two sets of photomultipliers PMT 6 and 6'. The photodetecting signals of the PMTs 6 and 6' are amplified respectively at amplifiers 7 and 7', and are inputted to an analog multiplier 12. The output signal of the multiplier 12 is inputted to a counter 10 through a differential amplifier 9, and the count value of the counter 10 becomes a value that the pulse-amplitude analysis is applied on an input signal. Thus, by multiplying two waves including random signal noise with each other, a true signal overlapped simultaneously in each wave is separated from the noise and can be taken out.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、流体中の微粒子を計測する微粒子計数器に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a particle counter that measures particles in a fluid.

〔発明の背景〕[Background of the invention]

流体中に浮遊する微粒子が発する散乱光を検知して上記
微粒子を計測する光散乱式微粒子計数器は、一般に第5
図に示すように構成されており、光源1からの照射光2
が微粒子を含んだ流体の細流3を照射し、上記微粒子か
らの散乱光の一部4をレンズ5で集光して光電子増倍管
(PMT)6で受光する。第5図では光源としてレーザ
光源を用いた場合を示したが、白熱ランプを光源とした
場合も同様である。7は増幅器、8はしきい値Vthを
与える電圧源、9は電圧比較器、10はカウンタである
。上記P M T 6は光電子放出と二次電子放出との
ゆらぎによる。いわゆるショット雑音(N)を発生し、
微粒子からの散乱光による信号(S)が微弱な場合は雑
音に埋れて検出できなくなる。第6図は比較的大きな微
粒子が照射域を通過したときにPMTで検出される波形
例であって、図中のしが微粒子散乱光を示し、上記し以
外のランダムな波はすべてノイズである。第6図でしき
い値Vthを破線で示すように選ぶとき、しきい値をこ
えた信号をカウントすれば微粒子数を知ることができる
。微粒子の粒径がさらに小さい場合の波形は、第7図に
示すように微粒子からの散乱光信号Mの高さがノイズ信
号に接近している。
A light scattering type particle counter that measures the particles by detecting scattered light emitted by particles suspended in a fluid generally has a fifth particle counter.
It is configured as shown in the figure, and the irradiation light 2 from the light source 1
irradiates a stream 3 of fluid containing fine particles, and a part 4 of the scattered light from the fine particles is focused by a lens 5 and received by a photomultiplier tube (PMT) 6. Although FIG. 5 shows the case where a laser light source is used as the light source, the same applies when an incandescent lamp is used as the light source. 7 is an amplifier, 8 is a voltage source that provides a threshold value Vth, 9 is a voltage comparator, and 10 is a counter. The above P M T 6 is due to fluctuations between photoelectron emission and secondary electron emission. Generates so-called shot noise (N),
If the signal (S) due to the scattered light from the particles is weak, it will be buried in noise and cannot be detected. Figure 6 is an example of a waveform detected by PMT when a relatively large particle passes through the irradiation area, where the circle in the figure indicates the particle scattered light, and all other random waves other than the circle above are noise. . When the threshold value Vth is selected as shown by the broken line in FIG. 6, the number of particles can be determined by counting the signals exceeding the threshold value. In the waveform when the particle size of the particles is even smaller, as shown in FIG. 7, the height of the scattered light signal M from the particles approaches the noise signal.

したがって、しきい値Vthをノイズの高さまで近づけ
ないと信号Mをカウントすることができない。このよう
にしきい値をノイズに近づけると誤計数のおそれが生じ
るので、一般にS/N比として1.5〜2以上に余裕を
もたせることが行われている。ノイズ(N)の成因とし
て最も大きなものは、照射光の一部が検出セルの内面で
反射してPMTに入射することによるPMT出力電流の
直流成分に含まれるショット雑音であって、上記の入射
光(迷光という)を少なくするように、検出セルの構造
と内面の反射防止に工夫を要する。第8図は照射光を周
期的に高速度で振らせる、いわゆるスキャンニング式の
光散乱微粒子計数器の構成を示す図である。レーザ光源
1からの光はスキャンニング用振動ミラー11によって
振られながら。
Therefore, the signal M cannot be counted unless the threshold value Vth approaches the height of the noise. If the threshold value is brought close to noise in this way, there is a risk of erroneous counting, so generally the S/N ratio is set to a margin of 1.5 to 2 or more. The largest source of noise (N) is the shot noise contained in the DC component of the PMT output current, which is caused by a portion of the irradiated light reflecting off the inner surface of the detection cell and entering the PMT. In order to reduce the amount of light (called stray light), the structure of the detection cell and the prevention of reflection on the inner surface must be devised. FIG. 8 is a diagram showing the configuration of a so-called scanning-type light-scattering particle counter that oscillates irradiation light periodically at high speed. The light from the laser light source 1 is swung by a scanning oscillating mirror 11.

流体中に浮遊する微粒子12を照射する。同図の13で
示した部分が検出空間であって、該検出空間1;3から
の散乱光だけを検出するように、レンズ5゜スリット1
4、レンズ5′を通して集光し、PMT6で受光するが
、上記PMT6以降は前記第3図の場合と同様である。
Fine particles 12 suspended in the fluid are irradiated. The part indicated by 13 in the figure is the detection space, and the lens 5° slit 1 is designed to detect only the scattered light from the detection space 1;
4. The light is focused through the lens 5' and received by the PMT 6, but the steps after the PMT 6 are the same as in the case of FIG. 3 above.

スリット14によってwl測視野が制限されるので、上
記検出空間13の部分に存在する微粒子だけの散乱光が
受光できる。上記構成では、微粒子が静止していてもレ
ーザ光が高速度でスキャンニングしているから、受光信
号はパルス状になるが、上記のように検出空間13を限
定しても、上記迷光の存在をある程度以下に減少するこ
とはできない。すなわちノイズそのものを小さくするに
は限界があるため、信号処理によってS/N比の改善を
しなければ、より微小な微粒子を計測することは難しい
Since the wl measurement field is limited by the slit 14, scattered light from only the particles present in the detection space 13 can be received. In the above configuration, even if the particles are stationary, the laser beam is scanning at high speed, so the received light signal becomes a pulse. However, even if the detection space 13 is limited as described above, the stray light still exists. cannot be reduced below a certain point. In other words, since there is a limit to reducing the noise itself, it is difficult to measure even smaller particles unless the S/N ratio is improved through signal processing.

既に公知である実開昭58−138063号には光散乱
微粒子計測装置が示されている。本公知例では、第9図
に示すように、微粒子によって散乱された散乱光を極め
て接近して配置した2個の受光素子6.6′で等量に受
光し、しきい値8.8′をもつ電圧比較器9,9′でそ
れぞれ波高分析した結果を、AND回路15で同時刻信
号の判定を行っている6本計測装置により、しきい値を
1にしたとき0.5程度の高さの信号を得て波形処理を
しようとする場合に、電圧比較器9から例えば第2図(
a)に示すように信号CだけがAND回路15に入り、
電圧比較器9′からは第2図(b)に示すように信号A
、B、DがAND回路15に入ったとすると、上記AN
D回路15の出力はゼロとなり、波形を判断処理するこ
とができなくなる。
A light scattering particle measuring device is disclosed in the already well-known Japanese Utility Model Application Publication No. 58-138063. In this known example, as shown in FIG. 9, the scattered light scattered by the fine particles is received in equal amounts by two light receiving elements 6.6' arranged very close to each other, and the threshold value is 8.8'. When the threshold value is set to 1, the results of wave height analysis by voltage comparators 9 and 9', respectively, are analyzed by six measuring devices in which simultaneous signals are determined by an AND circuit 15. When trying to process a waveform by obtaining a signal, the voltage comparator 9, for example,
As shown in a), only signal C enters the AND circuit 15,
The voltage comparator 9' outputs a signal A as shown in FIG. 2(b).
, B, and D enter the AND circuit 15, the above AN
The output of the D circuit 15 becomes zero, and the waveform cannot be judged or processed.

〔発明の目的〕[Purpose of the invention]

本発明は、ノイズ成分を低減した微粒子計数器を得るこ
とを目的とする。
An object of the present invention is to obtain a particle counter with reduced noise components.

〔発明の概要〕[Summary of the invention]

本発明の微粒子計数器は、流体中に浮遊する微粒子に光
線を照射し、上記微粒子からの散乱光を検出して、微粒
子の粒径ならびに個数を計測する微粒子計数器において
、集光レンズで集光した2組の散乱光をそれぞれ受光す
る2個の受光素子と、各受光素子の信号出力をアナグロ
乗算回路により。
The particle counter of the present invention is a particle counter that measures the diameter and number of particles by irradiating light beams onto particles floating in a fluid, detecting scattered light from the particles, and collecting the particles with a condensing lens. Two light-receiving elements each receive two sets of scattered light, and the signal output of each light-receiving element is processed by an analog multiplication circuit.

乗算したのち、波高分析する手段とを備えたことによっ
て、ノイズ成分を低減したものである。
After the multiplication, the noise component is reduced by providing means for analyzing the wave height.

〔発明の実施例〕 つぎに本発明の実施例を図面とともに説明する。[Embodiments of the invention] Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明による微粒子計数器の第1実施例を示す
構成図、第2図は上記実施例におけるアナグロ乗算回路
の入力および出力波形図、第3図は本発明の第2実施例
を示す構成図、第4図は本発明の第3実施例を示す構成
図である。第1図において、レーザ光源1からの照射光
2は浮遊微粒子を含む流体細流3を照射し、上記微粒子
から発する2組の散乱光4,4′はそれぞれレンズ5.
5′で集光して2個の光電子増倍管(PMT)6.6′
で受光し、各PM76.6’の受光信号をそれぞれ増幅
器7.7′で増幅してアナグロ乗算回路]2に入力する
。上記受光系5〜7と5′〜7′とは同じものであるが
、レーザ照射光2の光軸に対し対称の位置に配置されて
いる。10はカウンタである。
FIG. 1 is a block diagram showing a first embodiment of a particle counter according to the present invention, FIG. 2 is an input and output waveform diagram of the analog multiplication circuit in the above embodiment, and FIG. 3 is a diagram showing a second embodiment of the present invention. FIG. 4 is a block diagram showing a third embodiment of the present invention. In FIG. 1, irradiation light 2 from a laser light source 1 irradiates a fluid trickle 3 containing suspended particles, and two sets of scattered lights 4, 4' emitted from the particles are transmitted to a lens 5.
5' and two photomultiplier tubes (PMT) 6.6'
The received light signals of each PM 76.6' are amplified by amplifiers 7.7' and input to the analog multiplier circuit]2. The light receiving systems 5 to 7 and 5' to 7' are the same, but are arranged at symmetrical positions with respect to the optical axis of the laser irradiation light 2. 10 is a counter.

上記アナグロ乗算回路12のそれぞれの入力XとYが各
増幅器7′、7から入力されると、上記アナグロ乗算器
12はに−X−Y (但しkは常数)となるような演算
を行う。第2図に入力X、入力YおよびXYの各信号波
形の例を示す。図において(a)はx(し)の波形、(
b)はY (t)の波形、(C)はX−Yの波形をそれ
ぞれ示している。
When the respective inputs X and Y of the analog multiplier circuit 12 are input from the respective amplifiers 7' and 7, the analog multiplier 12 performs an operation such that -X-Y (k is a constant). FIG. 2 shows examples of signal waveforms of input X, input Y, and XY. In the figure, (a) is the waveform of x (shi), (
b) shows the waveform of Y (t), and (C) shows the waveform of XY.

入力X、大入力はそれぞれコンピュータにより任意に発
生させたランダム信号であって、PMT6.6′のノイ
ズに相当するものと考えられる。X・Yはアナグロ乗算
回路12の出力に相当する(X(t)、Y D)の各時
刻の値を掛は算したものである)、ここでA’、B、C
,Dに示す時刻に散乱信号がX (t) 、 Y (t
)にそれぞれ重畳したとし、各信号の大きさは0.5で
あるとする(ノイズの大きさは最小値がO1最大値が1
とした)、。
Input X and large input are random signals arbitrarily generated by a computer, and are considered to correspond to noise of PMT6.6'. X・Y corresponds to the output of the analog multiplication circuit 12 (the value obtained by multiplying the values of X(t), YD) at each time), where A', B, C
, D, the scattered signals are X (t), Y (t
), and the magnitude of each signal is 0.5 (the minimum value of noise is O1, the maximum value is 1), and the magnitude of each signal is 0.5.
),.

信号が重畳したときの波形は0印で示しである。The waveform when the signals are superimposed is indicated by a 0 mark.

図から明らかなように、X (t)の波形ではCの信号
だけがノイズをはっきり分離できる。Y (t)の波形
ではA、B、Dの各信号をノイズと分離することができ
るが、Cの信号はノイズにかくれてしまい、分離が難し
い。しかしX−Yの波形(c)を見ると、A、B、C,
Dの全ての信号をノイズから分離することが可能である
。このようにして。
As is clear from the figure, in the waveform of X (t), only the C signal can clearly separate the noise. In the Y(t) waveform, each of the A, B, and D signals can be separated from the noise, but the C signal is hidden by the noise and is difficult to separate. However, when looking at the X-Y waveform (c), A, B, C,
It is possible to separate all signals in D from noise. In this way.

ランダム信号ノイズを含んだ2つの波を互に掛算するこ
とにより、それぞれの波の中に同時に重畳している真の
信号をノイズから分離して取出すことができる。
By mutually multiplying two waves containing random signal noise, the true signal that is simultaneously superimposed in each wave can be separated from the noise and extracted.

第3図に示す第2実施例は、レーザ光源からのレーザ光
を光路変換用のミラー16で直角に曲げ、振動用ミラー
11に入射してスキャンニングビームとし、該スキャン
ニングビームをレンズ17で平行にしたのち、浮遊微粒
子12に照射し、得られた散乱光をレンズ5,5′、ス
リット14.14′を介してそれぞれのPMT6.6′
で受光している。受光信号の信号処理系は上記第1実施
例と同様なので省略している。
In the second embodiment shown in FIG. 3, a laser beam from a laser light source is bent at right angles by a mirror 16 for changing the optical path, enters a vibration mirror 11 to form a scanning beam, and the scanning beam is converted to a scanning beam by a lens 17. After making them parallel, the floating particles 12 are irradiated, and the scattered light is transmitted to each PMT 6.6' through lenses 5, 5' and slits 14 and 14'.
It is receiving light. The signal processing system for the light-receiving signal is the same as that in the first embodiment, so it is omitted.

第4図に示す第3実施例は、レーザ光源1からのレーザ
光によって微粒子を含む流体細流3から発する散乱光を
、1個の集光レンズ5で集光したのちハーフミラ−18
により、透過光と反射光にそれぞれ2分し、各光をPM
T6および6′で受光している。図における19は光ト
ラップである。受光信号の信号処理系は上記第1実施例
と同様であり、図では省略している。
In the third embodiment shown in FIG. 4, scattered light emitted from a fluid stream 3 containing fine particles is focused by a single condensing lens 5 using a laser beam from a laser light source 1, and then a half mirror 18
splits each light into two parts, the transmitted light and the reflected light, and PM each light.
Light is received at T6 and 6'. 19 in the figure is an optical trap. The signal processing system for the received light signal is the same as that in the first embodiment, and is omitted in the figure.

上記各実施例は、いずれもレーザ光源によるレーザ光を
用いた例を示したが、光源として白熱ランプを使用した
場合においても、同様の結果が得られることはいうまで
もない。
Although each of the above embodiments uses laser light from a laser light source, it goes without saying that similar results can be obtained even when an incandescent lamp is used as the light source.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明による微粒子計数器は、流体中に浮
遊する微粒子に光線を照射し、上記微粒子からの散乱光
を検出して、微粒子の粒径ならびに個数を計測する微粒
子計数器において、集光レンズで集光した2組の散乱光
をそれぞれ受光する2個の受光素子と、各受光素子の信
号出力をアナグロ乗算回路により乗算したのち、波高分
析する手段とを備えたことによって、ノイズ成分を低減
し、上記信号をノイズから分離することができるため、
より微小な微粒子の計数が可能である。
As described above, the particle counter according to the present invention irradiates light beams onto particles floating in a fluid, detects scattered light from the particles, and measures the diameter and number of particles. By providing two light-receiving elements that each receive two sets of scattered light condensed by an optical lens, and a means for multiplying the signal output of each light-receiving element by an analog multiplier circuit and then analyzing the wave height, noise components can be detected. Because it is possible to reduce the noise and separate the above signal from the noise,
It is possible to count even smaller particles.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による微粒子計数器の第1実施例を示す
構成図、第2図は上記実施例におけるアナグロ乗算回路
の入力および出力波形図、第3図は本発明の第2実施例
を示す構成図、第4図は本発明の第3実施例を示す構成
図、第5図は従来の微粒子計数器を示す構成図、第6図
は比較的大きな微粒子が照射域を通過した際の検出波形
例を示す図、第7図は小さい微粒子が照射域を通過した
際の検出波形例を示す図、第8図はスキャンニング式の
光散乱微粒子計数器の構成図、第9図は受光信号の判定
にAND回路を用いた従来例の構成図である。
FIG. 1 is a block diagram showing a first embodiment of a particle counter according to the present invention, FIG. 2 is an input and output waveform diagram of the analog multiplication circuit in the above embodiment, and FIG. 3 is a diagram showing a second embodiment of the present invention. FIG. 4 is a configuration diagram showing the third embodiment of the present invention, FIG. 5 is a configuration diagram showing a conventional particle counter, and FIG. 6 is a configuration diagram showing a conventional particle counter. Figure 7 is a diagram showing an example of a detection waveform when a small particle passes through the irradiation area, Figure 8 is a configuration diagram of a scanning type light scattering particle counter, and Figure 9 is a diagram showing a detection waveform when a small particle passes through the irradiation area. FIG. 2 is a configuration diagram of a conventional example using an AND circuit for signal determination.

Claims (4)

【特許請求の範囲】[Claims] (1)流体中に浮遊する微粒子に光線を照射し、上記微
粒子からの散乱光を検出して、微粒子の粒径ならびに個
数を計測する微粒子計数器において、集光レンズで集光
した2組の散乱光をそれぞれ受光する2個の受光素子と
、各受光素子の信号出力をアナログ乗算回路により乗算
したのち、波高分析する手段とを備えたことを特徴とす
る微粒子計数器。
(1) In a particle counter that measures the particle size and number of particles by irradiating light beams onto particles floating in a fluid and detecting the scattered light from the particles, two sets of light beams focused by a condensing lens are used. A particle counter comprising two light receiving elements each receiving scattered light, and means for multiplying the signal output of each light receiving element by an analog multiplication circuit and then analyzing the wave height.
(2)上記2組の散乱光は、1個の集光レンズで集光し
た散乱光を、光学的に2分割したものであることを特徴
とする特許請求の範囲第1項に記載した微粒子計数器。
(2) The fine particles according to claim 1, wherein the two sets of scattered lights are optically divided into two pieces of scattered light collected by one condensing lens. Counter.
(3)上記2組の散乱光は、2個の集光レンズで別々に
集光した、それぞれの散乱光であることを特徴とする特
許請求の範囲第1項に記載した微粒子計数器。
(3) The particle counter according to claim 1, wherein the two sets of scattered lights are respective scattered lights that are separately focused by two condenser lenses.
(4)上記2個の集光レンズで別々に集光した散乱光は
、照射光軸に対して、対称の角度に集光光軸を設けたも
のであることを特徴とする特許請求の範囲第3項に記載
した微粒子計数器。
(4) The scope of the claim characterized in that the scattered lights separately focused by the two focusing lenses have their focusing optical axes set at symmetrical angles with respect to the irradiation optical axis. The particulate counter described in Section 3.
JP24802985A 1985-11-07 1985-11-07 Particulate counter Pending JPS62108386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24802985A JPS62108386A (en) 1985-11-07 1985-11-07 Particulate counter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24802985A JPS62108386A (en) 1985-11-07 1985-11-07 Particulate counter

Publications (1)

Publication Number Publication Date
JPS62108386A true JPS62108386A (en) 1987-05-19

Family

ID=17172138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24802985A Pending JPS62108386A (en) 1985-11-07 1985-11-07 Particulate counter

Country Status (1)

Country Link
JP (1) JPS62108386A (en)

Similar Documents

Publication Publication Date Title
JP2641927B2 (en) Particle measurement device
CN108956402B (en) High-sensitivity dust concentration detection method with composite multi-photosensitive-area structure
JPS6311838A (en) Granular size detector
US4984889A (en) Particle size measuring system with coincidence detection
US7453569B2 (en) Method and apparatus for measuring particle motion using scattered radiation
JP2000121540A (en) Apparatus for measuring particle size distribution
JPH0129576Y2 (en)
US6320656B1 (en) High numerical aperture flow cytometer and method of using same
JP2863874B2 (en) Particle size distribution analyzer
JP3532274B2 (en) Particle detector
US4264206A (en) Dust particle analyzer
CN112730180B (en) High-sensitivity dust particle counting sensor with double detectors
JPH0462455A (en) Particle size distribution measuring instrument
JPS62108386A (en) Particulate counter
JPH0749302A (en) Method and apparatus of measuring particle size of microparticle in fluid
JPS62293143A (en) Measuring instrument for corpuscle
JPS6138447A (en) Particle analyser
JP4105888B2 (en) Particle size distribution measuring device
JP2879798B2 (en) Particle detector for use in particle size detector
JPH0611433A (en) Particulate measuring device and particulate sensing method
JPH0336176B2 (en)
JPH0442621B2 (en)
JPS6135335A (en) Particle analyzing device
JPS6093944A (en) Light-scattering particle measuring apparatus
JPH0226054Y2 (en)