JPS6210570A - 冷暖房給湯機 - Google Patents
冷暖房給湯機Info
- Publication number
- JPS6210570A JPS6210570A JP15096585A JP15096585A JPS6210570A JP S6210570 A JPS6210570 A JP S6210570A JP 15096585 A JP15096585 A JP 15096585A JP 15096585 A JP15096585 A JP 15096585A JP S6210570 A JPS6210570 A JP S6210570A
- Authority
- JP
- Japan
- Prior art keywords
- hot water
- refrigerant
- water supply
- temperature
- compressor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)
- Central Air Conditioning (AREA)
- Steam Or Hot-Water Central Heating Systems (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は冷暖房給湯機、詳しくは、室外側熱交換器、室
内側熱交換器及び給湯側熱交換器と圧縮機とを切換機構
を介して接続してなる冷媒回路に、高沸点冷媒と低沸点
冷媒との混合冷媒を封入すると共に、循環冷媒の組成比
を変更可能とする手段を設けて、給湯運転時に、前記冷
媒回路の循環冷媒の組成比を変更し、該冷媒中の高沸点
冷媒の組成比を高<シ(以下、高沸点冷媒リッチという
)給湯温度を高くできるようにした冷暖房給湯機に関す
る。
内側熱交換器及び給湯側熱交換器と圧縮機とを切換機構
を介して接続してなる冷媒回路に、高沸点冷媒と低沸点
冷媒との混合冷媒を封入すると共に、循環冷媒の組成比
を変更可能とする手段を設けて、給湯運転時に、前記冷
媒回路の循環冷媒の組成比を変更し、該冷媒中の高沸点
冷媒の組成比を高<シ(以下、高沸点冷媒リッチという
)給湯温度を高くできるようにした冷暖房給湯機に関す
る。
(従 来 技 術 )
本出願人は、特願昭59−177189号において、こ
の種冷暖房給湯機(冷媒回路に関しては、本発明に係る
図面である第2図参照)を提案した。
の種冷暖房給湯機(冷媒回路に関しては、本発明に係る
図面である第2図参照)を提案した。
しかして、第2図に示す冷暖房給湯機は、圧縮機(4)
への吸入冷媒の状態を、液管(8)に介装する電動膨張
弁(9または10)により湿り状態と過熱状態とに変更
制御して、前記吸入冷媒を湿り状態に制御することによ
り、該冷媒中に残存する高沸点冷媒リッチの未蒸発液冷
媒を前記圧縮機(4)の流入側に設ける気液分離器(1
2)に貯留し、また、逆に前記吸入冷媒を過熱状態に制
御することにより、前記気液分離器(12)に貯留され
た高沸点冷媒リッチの液冷媒を蒸発させて循環回路に戻
してやることにより、前記循環冷媒における高沸点冷媒
と低沸点冷媒との組成比を変更するようにしている。
への吸入冷媒の状態を、液管(8)に介装する電動膨張
弁(9または10)により湿り状態と過熱状態とに変更
制御して、前記吸入冷媒を湿り状態に制御することによ
り、該冷媒中に残存する高沸点冷媒リッチの未蒸発液冷
媒を前記圧縮機(4)の流入側に設ける気液分離器(1
2)に貯留し、また、逆に前記吸入冷媒を過熱状態に制
御することにより、前記気液分離器(12)に貯留され
た高沸点冷媒リッチの液冷媒を蒸発させて循環回路に戻
してやることにより、前記循環冷媒における高沸点冷媒
と低沸点冷媒との組成比を変更するようにしている。
尚、(1)は室外側熱交換器、(2)は室内側熱交換器
、(3)は給湯側熱交換器、(7)は四路切換弁からな
る冷媒回路の切換機構であり、また、一点鎖線矢印(ハ
)は給湯サイクルを示している。
、(3)は給湯側熱交換器、(7)は四路切換弁からな
る冷媒回路の切換機構であり、また、一点鎖線矢印(ハ
)は給湯サイクルを示している。
そして、給湯運転時においては、高温給湯を可能とする
ために、循環冷媒の組成比を高沸点冷媒リッチ側に調節
して、比較的低い高圧圧力で凝縮温度を高く設定できる
ようにしている。
ために、循環冷媒の組成比を高沸点冷媒リッチ側に調節
して、比較的低い高圧圧力で凝縮温度を高く設定できる
ようにしている。
ところで、所定容量の前記給湯側熱交換器(3)におい
て、単位時間に一定の熱量を放熱させるには、°前記熱
交換器(3)内の凝縮冷媒と被加熱対象である貯湯水と
の間にある温度以上の温度差が必要である。
て、単位時間に一定の熱量を放熱させるには、°前記熱
交換器(3)内の凝縮冷媒と被加熱対象である貯湯水と
の間にある温度以上の温度差が必要である。
従って、一般に、設定給湯温度を高くすると、それだけ
凝縮温度、従って、凝縮圧力が上昇することになる。
凝縮温度、従って、凝縮圧力が上昇することになる。
そこで、従来、設定給湯温度の上限値は、過負荷運転を
防止の観点から前記圧縮機(4)に定められている許容
高圧圧力(許容凝縮温度)と、所定の放熱量により定ま
る前記所要温度差とを考慮して設定していたのである。
防止の観点から前記圧縮機(4)に定められている許容
高圧圧力(許容凝縮温度)と、所定の放熱量により定ま
る前記所要温度差とを考慮して設定していたのである。
換言すると、設定給湯温度の上限値は、前記許容凝縮温
度より前記所要温度差分だけ低い温度に制限されていた
のである。
度より前記所要温度差分だけ低い温度に制限されていた
のである。
(発明が解決しようとする問題点)
ところで、上記冷暖房給湯機において、冷媒回−路に、
高沸点冷媒の組成比の高い混合冷媒を封入してやれば、
それだけ低い高圧圧力で高い給湯温度が得られるのであ
るが、換言すると、前記設定給湯温度の上限値を高くで
きるのであるが、カフした場合にはその反面、冷房、暖
房運転時の冷凍能力が小さくなる欠点を生じるのである
。
高沸点冷媒の組成比の高い混合冷媒を封入してやれば、
それだけ低い高圧圧力で高い給湯温度が得られるのであ
るが、換言すると、前記設定給湯温度の上限値を高くで
きるのであるが、カフした場合にはその反面、冷房、暖
房運転時の冷凍能力が小さくなる欠点を生じるのである
。
しかして、本発明は、所定容量の前記給湯側熱交換器に
おいても、単位時間に放熱させる放熱量を少なくすれば
、この放熱に必要な凝縮冷媒と貯湯水との所要温度差も
それに応じて小さくなることに着目して発明したもので
、その目的は、前記設定給湯温度を高く設定する場合に
は、前記圧縮機の能力を積極的に減少させて前記給湯側
熱交換器での放熱量を少なくシ、前記冷媒回路に殊更に
高沸点冷媒の組成比の高い混合冷媒を封入しなくても、
かつ、凝縮圧力を従来に比して高くすることなく、給湯
温度(設定給湯温度の上限値)を高くできるようにする
点にある。
おいても、単位時間に放熱させる放熱量を少なくすれば
、この放熱に必要な凝縮冷媒と貯湯水との所要温度差も
それに応じて小さくなることに着目して発明したもので
、その目的は、前記設定給湯温度を高く設定する場合に
は、前記圧縮機の能力を積極的に減少させて前記給湯側
熱交換器での放熱量を少なくシ、前記冷媒回路に殊更に
高沸点冷媒の組成比の高い混合冷媒を封入しなくても、
かつ、凝縮圧力を従来に比して高くすることなく、給湯
温度(設定給湯温度の上限値)を高くできるようにする
点にある。
(問題点を解決するための手段)
本発明の構成を第1図及び第2図に基づいて説明すると
、室外側熱交換器(1)、室内側熱交換器(2)及び給
湯側熱交換器(3)と圧縮機(4)とを切換機構(7)
を介して接続して冷媒回路を形成し、この冷媒回路に高
沸点冷媒と低沸点冷媒との混合冷媒を封入している。更
に、液管(8)に介装する電動膨張弁(9,10)の弁
開度制御の変更により循環冷媒の組成比を変更可能とし
、給湯運転時には循環冷媒の組成比を変更して、該冷媒
中の高沸点冷媒の組成比を高くする如くしている。
、室外側熱交換器(1)、室内側熱交換器(2)及び給
湯側熱交換器(3)と圧縮機(4)とを切換機構(7)
を介して接続して冷媒回路を形成し、この冷媒回路に高
沸点冷媒と低沸点冷媒との混合冷媒を封入している。更
に、液管(8)に介装する電動膨張弁(9,10)の弁
開度制御の変更により循環冷媒の組成比を変更可能とし
、給湯運転時には循環冷媒の組成比を変更して、該冷媒
中の高沸点冷媒の組成比を高くする如くしている。
更に、前記圧縮機(4)に、該圧縮機(4)の部分容量
運転を可能とする8全制御手段を設ける一方、給湯運転
における設定給湯温度を高低に切換える切換手段(15
)と、該切換手段(15)が高温側の設定給湯温度に切
換えられた時に、前記8全制御手段をオン動作して前記
圧縮機(4)を部分容量運転させる制御手段とを設けた
のである。
運転を可能とする8全制御手段を設ける一方、給湯運転
における設定給湯温度を高低に切換える切換手段(15
)と、該切換手段(15)が高温側の設定給湯温度に切
換えられた時に、前記8全制御手段をオン動作して前記
圧縮機(4)を部分容量運転させる制御手段とを設けた
のである。
(作 用 )
給湯運転時であって、前記切換手段(15)を高温側の
設定給湯温度側に切換えると、このことによって、前記
圧縮機(4)が部分容量運転させられるから、冷凍能力
が低下し、前記給湯側熱交換器での放熱量が積極的に減
少させられるのである。
設定給湯温度側に切換えると、このことによって、前記
圧縮機(4)が部分容量運転させられるから、冷凍能力
が低下し、前記給湯側熱交換器での放熱量が積極的に減
少させられるのである。
このため、この減少した放熱量を放熱させるために必要
な凝縮冷媒と貯湯水との温度差も従来の全容量運転時に
比して減少するから、この所要温度差の減少分だけ凝縮
温度(高圧圧力)を上昇させることなく、前記設定給湯
温度の上限値を高く設定できるのである。
な凝縮冷媒と貯湯水との温度差も従来の全容量運転時に
比して減少するから、この所要温度差の減少分だけ凝縮
温度(高圧圧力)を上昇させることなく、前記設定給湯
温度の上限値を高く設定できるのである。
(実 施 例 )
第2図に示すものは、冷房、暖房、給湯及び冷房給湯運
転を可能とした冷暖房給湯機である。
転を可能とした冷暖房給湯機である。
即ち、室外側熱交換器(1)、室内側熱交換器(2)及
び給湯側熱交換器(3)と、圧縮機(4)とを、2個の
第1及び第2四路切換弁(5)(6)から成る切換機構
(7)を介して接続して冷媒回路を形成している。
び給湯側熱交換器(3)と、圧縮機(4)とを、2個の
第1及び第2四路切換弁(5)(6)から成る切換機構
(7)を介して接続して冷媒回路を形成している。
そして、この冷媒回路に高沸点冷媒(R22)と低沸点
冷媒(R12)とを混合してなる混合冷媒を封入してい
る。
冷媒(R12)とを混合してなる混合冷媒を封入してい
る。
更に、前記室外側熱交換器(1)と前記室内側熱交換器
(2)とを接続する液管(8)に、任意に弁開度制御を
行えるようにした第1及び第2電動膨張弁(9)(10
)を介装する一方、前記圧縮機(4)の吸入ガス管(1
1)に、吸入冷媒中の未蒸発液冷媒を分離して貯留可能
とした気液分離器(12)を介装している。
(2)とを接続する液管(8)に、任意に弁開度制御を
行えるようにした第1及び第2電動膨張弁(9)(10
)を介装する一方、前記圧縮機(4)の吸入ガス管(1
1)に、吸入冷媒中の未蒸発液冷媒を分離して貯留可能
とした気液分離器(12)を介装している。
尚、(13)は受液器、(14)はアキュムレータであ
る。
る。
かくして、前記切換機構(7)を切換操作して、実線矢
印(イ)で示すごとく冷凍サイクルを形成することによ
り冷房運転を、また、破線矢印(ロ)のごとく形成する
ことにより暖房運転を、一点鎖線矢印(ハ)に示すごと
く形成することにより給湯運転を、更に、二点鎖線矢印
(ニ)のごとく形成することにより冷房給湯運転を行え
61うにしている。これと同時に、各運転に応シテ前記
第1及び第2電動膨張弁(9)(10)のいずれか一方
を第1表に示すごとく通電して弁開度制御し、または非
通電として開放し、前記圧縮機(4)の吸入冷媒の過熱
度を制御するごとくしている。
印(イ)で示すごとく冷凍サイクルを形成することによ
り冷房運転を、また、破線矢印(ロ)のごとく形成する
ことにより暖房運転を、一点鎖線矢印(ハ)に示すごと
く形成することにより給湯運転を、更に、二点鎖線矢印
(ニ)のごとく形成することにより冷房給湯運転を行え
61うにしている。これと同時に、各運転に応シテ前記
第1及び第2電動膨張弁(9)(10)のいずれか一方
を第1表に示すごとく通電して弁開度制御し、または非
通電として開放し、前記圧縮機(4)の吸入冷媒の過熱
度を制御するごとくしている。
尚、前記切換機構(7)の各四路切換弁(5)(6)は
通電により実線側に切換えられるもので、各運転時にお
ける通7Ii杖態は前記第1表に示す通りである。
通電により実線側に切換えられるもので、各運転時にお
ける通7Ii杖態は前記第1表に示す通りである。
更に、前記冷媒回路の循環混合冷媒の組成比を後記する
ごとく変更可能として、冷暖房運転時においては、循環
冷媒中の高沸点冷媒の組成比を高低に変更して、冷凍能
力を大小に変更制御する一方、給湯運転時には循環冷媒
中の高沸点冷媒の組成比を高くして、高圧圧力に対する
凝縮温度を高く、従って、温度の高い給湯が行えるよう
にしている(尚、この場合冷凍能力は低下する)。
ごとく変更可能として、冷暖房運転時においては、循環
冷媒中の高沸点冷媒の組成比を高低に変更して、冷凍能
力を大小に変更制御する一方、給湯運転時には循環冷媒
中の高沸点冷媒の組成比を高くして、高圧圧力に対する
凝縮温度を高く、従って、温度の高い給湯が行えるよう
にしている(尚、この場合冷凍能力は低下する)。
以下、冷房運転時における能力調整について説明すると
、冷凍能力を大きくする場合には、前記第1電動膨張弁
(9)の弁開度を前記吸入冷媒が湿り状態となるように
開きぎみに制御するのであって、かくすると前記吸入ガ
ス管(1りを流通する吸入冷媒に残存する高沸点冷媒リ
ッチの未蒸発液冷媒が前記気液分離器(12)で分離さ
れて該分離器(12)に貯留されていくのである。
、冷凍能力を大きくする場合には、前記第1電動膨張弁
(9)の弁開度を前記吸入冷媒が湿り状態となるように
開きぎみに制御するのであって、かくすると前記吸入ガ
ス管(1りを流通する吸入冷媒に残存する高沸点冷媒リ
ッチの未蒸発液冷媒が前記気液分離器(12)で分離さ
れて該分離器(12)に貯留されていくのである。
このようにして高沸点冷媒リッチの液冷媒が前記気液骨
1iIi5(12)に貯留されていくと、循環冷媒中の
高沸点冷媒の組成比が低下し、換言すると、低沸点冷媒
の組成比が上昇するので能力が増大するのである。
1iIi5(12)に貯留されていくと、循環冷媒中の
高沸点冷媒の組成比が低下し、換言すると、低沸点冷媒
の組成比が上昇するので能力が増大するのである。
また、前記第1?11動膨張弁(9)の弁開度を前記吸
入冷媒が過熱状態となるように制御するとマ前記気液分
離器(12)に貯留されていた高沸点冷媒リッチの液冷
媒が前記吸入冷媒に蒸発していき、前記気液分離器(1
2)から放出されるので、循環冷媒中の高沸点冷媒の組
成比が再び上昇して能力が低下するのである。
入冷媒が過熱状態となるように制御するとマ前記気液分
離器(12)に貯留されていた高沸点冷媒リッチの液冷
媒が前記吸入冷媒に蒸発していき、前記気液分離器(1
2)から放出されるので、循環冷媒中の高沸点冷媒の組
成比が再び上昇して能力が低下するのである。
一方、給湯、または、冷房給湯運転時には、前記第2ま
たは第1電動膨張弁(10)(9)を、前記吸入冷媒が
過熱状態となるように制御して、前記冷房運転時におけ
る能力低下時と同様に循環冷媒中の高沸点冷媒の組成比
を高くするのである。かくすると、冷凍能力は低下する
が、高圧圧力に対する凝縮温度が高くなり、従って、高
温給湯が可能となるのである。
たは第1電動膨張弁(10)(9)を、前記吸入冷媒が
過熱状態となるように制御して、前記冷房運転時におけ
る能力低下時と同様に循環冷媒中の高沸点冷媒の組成比
を高くするのである。かくすると、冷凍能力は低下する
が、高圧圧力に対する凝縮温度が高くなり、従って、高
温給湯が可能となるのである。
以上のごとく構成する冷暖房給湯機において、前記圧縮
Ja(4)に容量を2段階に調節可能とした容量制御手
段を設けると共に、 前記設定給湯温度を高低に切換える切換手段(15)(
第3図参照)と、 給湯まだは冷房給湯運転時に前記切換手段(15)の信
号を入力して、前記容量制御手段を動作させて前記圧縮
機(1)を部分容量運転させる制御手段とを設けるので
ある。
Ja(4)に容量を2段階に調節可能とした容量制御手
段を設けると共に、 前記設定給湯温度を高低に切換える切換手段(15)(
第3図参照)と、 給湯まだは冷房給湯運転時に前記切換手段(15)の信
号を入力して、前記容量制御手段を動作させて前記圧縮
機(1)を部分容量運転させる制御手段とを設けるので
ある。
前記圧縮機(4)はステージeナリーベーン形の回転圧
縮機で、前記容量制御手段を次のようにして設けている
。即ち、シリンダ(図示せず)に、吸入側にバイパス通
路(41)を介して連通ずる中間吐出孔(42)を開口
すると共に、該中間吐出孔(42)を開閉する中間吐出
弁(43)を設ける一方、この中間吐出弁(43)の背
面側に高圧または低圧ガスを作用させて、抜弁(43)
を開閉動作させる3方電磁弁(44)を設けている。
縮機で、前記容量制御手段を次のようにして設けている
。即ち、シリンダ(図示せず)に、吸入側にバイパス通
路(41)を介して連通ずる中間吐出孔(42)を開口
すると共に、該中間吐出孔(42)を開閉する中間吐出
弁(43)を設ける一方、この中間吐出弁(43)の背
面側に高圧または低圧ガスを作用させて、抜弁(43)
を開閉動作させる3方電磁弁(44)を設けている。
か(して、前記3方電磁弁(44)への通電を遮断して
、前記中間吐出弁(43)の背面に高圧、 を作用させ
ることによって、前記中間吐出孔(42)を閉鎖して全
容量運転し1また1前記3方電磁弁(44)に通電して
、前記中間吐出弁(43)の背面に低圧を作用させると
、抜弁(43)がリターンばね(45)により開動作し
て、部分容量運転が行えるようにしている。
、前記中間吐出弁(43)の背面に高圧、 を作用させ
ることによって、前記中間吐出孔(42)を閉鎖して全
容量運転し1また1前記3方電磁弁(44)に通電して
、前記中間吐出弁(43)の背面に低圧を作用させると
、抜弁(43)がリターンばね(45)により開動作し
て、部分容量運転が行えるようにしている。
また、前記圧縮機(4)には、過負荷運転防止用の高圧
制御スイッチ(図示せず)を設けており、高圧圧力が設
定圧力に達すると前記圧縮機(4)を停止するようにし
ている。従って、凝縮温度の上限は前記設定圧力に対応
した凝縮温度Cto)に制限されている。
制御スイッチ(図示せず)を設けており、高圧圧力が設
定圧力に達すると前記圧縮機(4)を停止するようにし
ている。従って、凝縮温度の上限は前記設定圧力に対応
した凝縮温度Cto)に制限されている。
また、前記切換手段は後記するマイクロコンピュータの
入力側に接続する切換スイッチ(15)からなるもので
ある。
入力側に接続する切換スイッチ(15)からなるもので
ある。
更に、前記制御手段は前記マイクロコンピュータに組込
むプログラムにより達成するものである。
むプログラムにより達成するものである。
以上、電気回路について概略説明すると、マイクロコン
ピュータ(C)の入力側に、運転モードを切換える運転
モード選択手段(16)と、前記切換スイッチ(15)
とを接続する一方、前記マイクロコンピュータ(C)の
出力側には、前記容量制御手段の前記3方電磁弁(44
)、前記各四路切換弁(5)(8)及び前記各電動膨張
弁(9)(10)を接続している。
ピュータ(C)の入力側に、運転モードを切換える運転
モード選択手段(16)と、前記切換スイッチ(15)
とを接続する一方、前記マイクロコンピュータ(C)の
出力側には、前記容量制御手段の前記3方電磁弁(44
)、前記各四路切換弁(5)(8)及び前記各電動膨張
弁(9)(10)を接続している。
尚、給湯運転時には前記したごとく設定給湯温度を高低
に切換えられるようにしているが、これら高温側の設定
給湯温度及び低温側の設定給湯l」度はいずれも前記マ
イクロコンピュータのROMに予めインプットされてい
る。
に切換えられるようにしているが、これら高温側の設定
給湯温度及び低温側の設定給湯l」度はいずれも前記マ
イクロコンピュータのROMに予めインプットされてい
る。
尚、図示していないが、前記給湯側熱交換器(3)側に
は貯湯水の温度を検出する検出手段を設けており、該検
出手段による検出温度と前記設定給湯温度とを基に、前
記マイクロコンピュータにより、前記圧縮機(1)を発
停制御するようにしている。
は貯湯水の温度を検出する検出手段を設けており、該検
出手段による検出温度と前記設定給湯温度とを基に、前
記マイクロコンピュータにより、前記圧縮機(1)を発
停制御するようにしている。
次に、上記冷暖房給湯機の給湯運転について説明する。
前記運転モード選択手段(16)により給湯運転を選択
すると、前記第1及び第2四路切換弁(5)(8)が切
換えられて第2図に示す給湯サイクルが形成されると同
時に、前記第1電動膨張弁(9)が前記吸入冷媒を過熱
状態とするように制御される。この結果、循環冷媒が高
沸点冷媒リッチ(封入当初)の組成比となり、低い高圧
圧力で高い凝縮温度が得られるのである。即ち、全体に
高温の給湯水が得られるのである。
すると、前記第1及び第2四路切換弁(5)(8)が切
換えられて第2図に示す給湯サイクルが形成されると同
時に、前記第1電動膨張弁(9)が前記吸入冷媒を過熱
状態とするように制御される。この結果、循環冷媒が高
沸点冷媒リッチ(封入当初)の組成比となり、低い高圧
圧力で高い凝縮温度が得られるのである。即ち、全体に
高温の給湯水が得られるのである。
しかして、前記切換スイッチ(15)を低温側の設定給
湯温度(tl)側に切換えると、前記3方電磁弁(44
)の通電が遮断されて、前記中間吐出弁(43)の背面
に高圧が作用して前記中間吐出孔(42)が閉鎖され、
前記圧縮機(4)が全容量運転されるのである。
湯温度(tl)側に切換えると、前記3方電磁弁(44
)の通電が遮断されて、前記中間吐出弁(43)の背面
に高圧が作用して前記中間吐出孔(42)が閉鎖され、
前記圧縮機(4)が全容量運転されるのである。
この結果、第4図に示すように、前記給湯側熱交換器(
3)における放熱量が前記圧縮機(4)の全容量運転に
見合う火熱ff1(Ql)となるのである。かくして、
大きな放熱量で迅速に貯湯水を加熱できるのであり、こ
の貯湯水が前記低温側設定給湯温度(tl)に達すると
、前記圧縮機(1)が停止されるのである。
3)における放熱量が前記圧縮機(4)の全容量運転に
見合う火熱ff1(Ql)となるのである。かくして、
大きな放熱量で迅速に貯湯水を加熱できるのであり、こ
の貯湯水が前記低温側設定給湯温度(tl)に達すると
、前記圧縮機(1)が停止されるのである。
一方、前記切換スイッチ(15)を高温側の設定給湯温
度(t2)側に切換えると、前記3方電磁弁(44)が
励磁されて、前記中間吐出弁(43)が開放され、前記
圧縮機(1)が部分容量運転に切換えられるのである。
度(t2)側に切換えると、前記3方電磁弁(44)が
励磁されて、前記中間吐出弁(43)が開放され、前記
圧縮機(1)が部分容量運転に切換えられるのである。
そうすると、前記圧縮機(1)の能力が低下するから1
.それに応じて前記給湯側熱交換器(3)での放熱量も
減少するのである(熱mQ2)。かくして、この熱ff
1(Q2)を単位時間に放熱するために必要な凝縮冷媒
と前記貯湯水との温度差(Δt2)は、放熱量が(Ql
)の場合の所要温度差(Δtl)よりも小さくなるので
”ある。
.それに応じて前記給湯側熱交換器(3)での放熱量も
減少するのである(熱mQ2)。かくして、この熱ff
1(Q2)を単位時間に放熱するために必要な凝縮冷媒
と前記貯湯水との温度差(Δt2)は、放熱量が(Ql
)の場合の所要温度差(Δtl)よりも小さくなるので
”ある。
このように前記所要温度差が小さくなるから、高温側設
定給湯温度(t2)の設定上限温度を低 ゛層側設
定給湯温度(tl)に対して、(tl−t2)だけ高く
設定できるのである。換言すると、高温側設定給湯温度
(tl)を(tl−t2)だけ前記圧縮機(4)の高圧
制御に規定されて定まる上限の前記凝縮温度(10)に
近付けて高温側に設定することができるのである。
定給湯温度(t2)の設定上限温度を低 ゛層側設
定給湯温度(tl)に対して、(tl−t2)だけ高く
設定できるのである。換言すると、高温側設定給湯温度
(tl)を(tl−t2)だけ前記圧縮機(4)の高圧
制御に規定されて定まる上限の前記凝縮温度(10)に
近付けて高温側に設定することができるのである。
かくして、給湯能力は低下するが、従来に比して更に高
温の給湯が行えるのである。
温の給湯が行えるのである。
尚、この場合も、貯湯水の温度が前記設定給湯温度(t
2)に達すると、前記圧縮機(4)は停止される。
2)に達すると、前記圧縮機(4)は停止される。
尚、上記実施例においては、前記制御手段をマイクロコ
ンピュータを用いて構成したが、第5図に示すように、
サーモスタットから成る前記切換スイッチ(15)の高
温側切換接点(a)に、高温側設定給湯温度で動作する
サーモスタット(30)と前記圧縮機(4)駆動用の電
磁開閉器(31)との直列回路と、前記3方電磁弁(4
4)のとの並列回路を接続する一方、 前記切換スイッチ(15)の低温側切換接点(b)に、
低温側接点温度で動作するサーモスタッ)(32)と前
記電磁開閉器(31)との直列回路を接続するごとくし
て、シーケンス回路により構成してもよい。
ンピュータを用いて構成したが、第5図に示すように、
サーモスタットから成る前記切換スイッチ(15)の高
温側切換接点(a)に、高温側設定給湯温度で動作する
サーモスタット(30)と前記圧縮機(4)駆動用の電
磁開閉器(31)との直列回路と、前記3方電磁弁(4
4)のとの並列回路を接続する一方、 前記切換スイッチ(15)の低温側切換接点(b)に、
低温側接点温度で動作するサーモスタッ)(32)と前
記電磁開閉器(31)との直列回路を接続するごとくし
て、シーケンス回路により構成してもよい。
また、循環冷媒の組成比を変更するための手段は上記し
た実施例のものに限定されるものではない。
た実施例のものに限定されるものではない。
また、前記圧縮機(4)は回転圧縮機に限ることな(あ
らゆるタイプの圧縮機を用いることができる。また、容
量制御手段も前記した手段に限られるものではない。
らゆるタイプの圧縮機を用いることができる。また、容
量制御手段も前記した手段に限られるものではない。
(発明の効果 )
以上のどと(、本発明においては、給湯運転時に、高温
給湯を行う場合には積極的に前記圧縮機(4)の能力を
低下させて、前記給湯側熱交換器での放熱量を減少させ
るようにしたから、冷媒回路に封入する混合冷媒に高沸
点冷媒の組成比が殊更に高いものを用いなくても、設定
給湯温度をより高く設定でき、従来に比してより温度の
高い給湯が行えるのである。
給湯を行う場合には積極的に前記圧縮機(4)の能力を
低下させて、前記給湯側熱交換器での放熱量を減少させ
るようにしたから、冷媒回路に封入する混合冷媒に高沸
点冷媒の組成比が殊更に高いものを用いなくても、設定
給湯温度をより高く設定でき、従来に比してより温度の
高い給湯が行えるのである。
第1図〜第4図は本発明の一実施例の説明図で1第1図
はクレーム対応図、第2図は冷媒回路図1第3図は電気
回路図、第4図は運転状態説明図、第5図は他の実施例
の電気回路図である・(1)・・・・・室外側熱交換器 (2)・・・・・室内側熱交換器 (3)・・・・・給湯側熱交換器 (4)・・・・・圧縮機 (7)・・・・・切換機構
はクレーム対応図、第2図は冷媒回路図1第3図は電気
回路図、第4図は運転状態説明図、第5図は他の実施例
の電気回路図である・(1)・・・・・室外側熱交換器 (2)・・・・・室内側熱交換器 (3)・・・・・給湯側熱交換器 (4)・・・・・圧縮機 (7)・・・・・切換機構
Claims (1)
- (1)室外側熱交換器(1)、室内側熱交換器(2)及
び給湯側熱交換器(3)と圧縮機(4)とを切換機構(
7)を介して接続してなる冷媒回路に、高沸点冷媒と低
沸点冷媒との混合冷媒を封入し、給湯運転時に、循環冷
媒の組成比を変更して、該冷媒中の高沸点冷媒の組成比
を高くする如くした冷暖房給湯機であって、前記圧縮機
(4)に、該圧縮機(4)の部分容量運転を可能とする
容量制御手段を設ける一方、給湯運転における設定給湯
温度を高低に切換える切換手段(15)と、該切換手段
(15)が高温側の設定給湯温度に切換えられた時に、
前記容量制御手段をオン動作して前記圧縮機(4)を部
分容量運転させる制御手段とを設けたことを特徴とする
冷暖房給湯機。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15096585A JPS6210570A (ja) | 1985-07-08 | 1985-07-08 | 冷暖房給湯機 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15096585A JPS6210570A (ja) | 1985-07-08 | 1985-07-08 | 冷暖房給湯機 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6210570A true JPS6210570A (ja) | 1987-01-19 |
JPH044512B2 JPH044512B2 (ja) | 1992-01-28 |
Family
ID=15508307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15096585A Granted JPS6210570A (ja) | 1985-07-08 | 1985-07-08 | 冷暖房給湯機 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6210570A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016050735A (ja) * | 2014-09-01 | 2016-04-11 | リンナイ株式会社 | ヒートポンプシステム |
JP2016050733A (ja) * | 2014-09-01 | 2016-04-11 | リンナイ株式会社 | ヒートポンプシステム |
JP2016050732A (ja) * | 2014-09-01 | 2016-04-11 | リンナイ株式会社 | ヒートポンプシステム |
-
1985
- 1985-07-08 JP JP15096585A patent/JPS6210570A/ja active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016050735A (ja) * | 2014-09-01 | 2016-04-11 | リンナイ株式会社 | ヒートポンプシステム |
JP2016050733A (ja) * | 2014-09-01 | 2016-04-11 | リンナイ株式会社 | ヒートポンプシステム |
JP2016050732A (ja) * | 2014-09-01 | 2016-04-11 | リンナイ株式会社 | ヒートポンプシステム |
Also Published As
Publication number | Publication date |
---|---|
JPH044512B2 (ja) | 1992-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2504437B2 (ja) | 空調機 | |
JPS6325471A (ja) | 空気調和装置 | |
JPH0432669A (ja) | ヒートポンプシステムとその制御方法 | |
JPS6210570A (ja) | 冷暖房給湯機 | |
JPH0735938B2 (ja) | ヒートポンプ式冷房給湯機 | |
JP2003106694A (ja) | 空気調和機 | |
JPH01127866A (ja) | 冷暖同時形多室用空気調和機 | |
JP2001174089A (ja) | 多室形空気調和機 | |
JPS6224197Y2 (ja) | ||
JP2000346489A (ja) | 空気調和システム | |
JPS6346350B2 (ja) | ||
JPS6330929Y2 (ja) | ||
JPH086203Y2 (ja) | 空気調和機 | |
JPS6015084Y2 (ja) | 冷凍装置 | |
JPH03164668A (ja) | ヒートポンプ装置 | |
JPH0431505Y2 (ja) | ||
JPH0233108Y2 (ja) | ||
JPH0311664Y2 (ja) | ||
JP2001248933A (ja) | 空気調和機 | |
JPH0633910B2 (ja) | ヒ−トポンプ式冷凍装置 | |
JPS5825232Y2 (ja) | ヒ−トポンプ式空気調和装置 | |
JP2001041602A (ja) | 空気調和機 | |
JP2001263798A (ja) | 冷暖房給湯装置とその制御方法 | |
JPH11257787A (ja) | 吸収式冷熱発生装置 | |
JPS591969A (ja) | 空気調和機 |