JPS62102029A - Gas turbine combustion unit - Google Patents

Gas turbine combustion unit

Info

Publication number
JPS62102029A
JPS62102029A JP24361885A JP24361885A JPS62102029A JP S62102029 A JPS62102029 A JP S62102029A JP 24361885 A JP24361885 A JP 24361885A JP 24361885 A JP24361885 A JP 24361885A JP S62102029 A JPS62102029 A JP S62102029A
Authority
JP
Japan
Prior art keywords
cylinder
inner cylinder
gas turbine
combustion
tail
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24361885A
Other languages
Japanese (ja)
Other versions
JPH0726734B2 (en
Inventor
Hajime Shiomi
肇 塩見
Yukio Shibuya
幸生 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60243618A priority Critical patent/JPH0726734B2/en
Publication of JPS62102029A publication Critical patent/JPS62102029A/en
Publication of JPH0726734B2 publication Critical patent/JPH0726734B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve a cooling characteristic at a tail cylinder of a combustion unit by a method wherein a double cylinder structure is composed of a tail cylinder, an outer circumference of the tail cylinder and an inner cylinder of the tail cylinder and the annular part is formed to have a cooling passage communicated with combustion air passage. CONSTITUTION:A gas turbine combustion unit 10 is constructed such that a combustion air passage 17 is formed between an outer cylinder 15 of a linear and an inner cylinder 16, and then a combustion chamber 18 is defined within the inner cylinder 16 of the liner. The tail cylinder 20 is fixed to the rear end part of the inner cylinder. Hot combustion gas is guided into the inner cylinder of the tail cylinder 21 to show a hot gas temperature. However, a double cylinder structure is constructed by the outer cylinder 22 and the inner cylinder 21 for the tail cylinder 20, cooling passage 23 is formed within it and it is accelerated when the cooling air is guided from an injecting chamber into the cooling passage 23. As a result, an efficiency of radiation at the surface of the inner cylinder of the tail cylinder is improved, a rate of thermal conduction at the surface of the inner cylinder of the tail cylinder is made superior and the inner cylinder 21 of the tail cylinder is positively cooled. Therefore, it is possible to decrease the temperature in the tail cylinder 20 less than an allowable temperature.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はガスタービン発電プラントに用いられるガスタ
ービン燃焼器に係り、特に燃焼器尾部の冷)J+構造の
改良に関づる。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a gas turbine combustor used in a gas turbine power plant, and more particularly to an improvement in the cold J+ structure of the combustor tail.

〔発明の技術的青用とその問題点〕[Technical uses of inventions and their problems]

ガスタービン発電プラントはガスタービンと同軸に設置
Jられた圧縮機の駆動によって+1縮された吐出空気を
ガスタービン燃焼器に燃焼用空気として案内し、燃焼器
内で燃r1とと6に燃焼さけ、その燃焼ガスを燃焼器内
筒からガスタービンに案内してガスタービンを駆動さけ
、仕事をするようになっている。
In a gas turbine power generation plant, the discharge air compressed by +1 by the drive of the compressor installed coaxially with the gas turbine is guided to the gas turbine combustor as combustion air, and is combusted into fuel r1 and r6 in the combustor. The combustion gas is guided from the combustor inner cylinder to the gas turbine to drive the gas turbine and do work.

従来のガスタービン燃焼器1は第3図に承り構造を有し
、圧縮機2とガスタービン3との間に複数個設けられ、
圧縮112からの吐出チャンバ4内に収容される。ガス
タービン燃焼器1は外筒5と内筒6とを備え、その間に
燃焼用空気流路7が形成される一方、内筒6に燃焼室8
が画成され、この燃焼室8で燃料が燃焼用空気と混合し
て燃焼ヒしめられる。
A conventional gas turbine combustor 1 has a receiving structure as shown in FIG. 3, and a plurality of combustors are provided between a compressor 2 and a gas turbine 3.
It is housed in the discharge chamber 4 from the compression 112. The gas turbine combustor 1 includes an outer cylinder 5 and an inner cylinder 6, between which a combustion air passage 7 is formed, and a combustion chamber 8 is formed in the inner cylinder 6.
is defined, and in this combustion chamber 8, fuel is mixed with combustion air and combusted.

燃v1の燃焼による燃焼ガスは燃焼器尾筒9内を通って
ガスタービン3の入口に案内され、このガスタービン3
を駆動させ、仕事をするようになっている。
Combustion gas resulting from the combustion of fuel v1 passes through the combustor transition pipe 9 and is guided to the inlet of the gas turbine 3.
It is designed to drive and do work.

ところで、ガスタービン燃焼器1の尾YA 9は内筒の
後端部に嵌合して板ばね笠で弾性保持され、圧縮11.
2で圧縮された吐出空気により冷却される構造となって
いる。しかしながら、この尾筒冷却構造では、尾筒9外
表面を圧縮機吐出空気の対流により冷却させる対流冷却
が主流であり、この冷W構造の尾筒9を例えば1300
℃級以上の高温ガスタービン燃焼器に備えた場合、高温
燃焼ガスに晒される尾筒9の温度は尾筒材料の技術的対
応温度(約800℃)を超えてしまい、ガスタービン燃
焼器の耐久性や信頼性を低下させる恐れがあった。
By the way, the tail YA 9 of the gas turbine combustor 1 fits into the rear end of the inner cylinder and is elastically held by a leaf spring cap, and is compressed 11.
It has a structure in which it is cooled by compressed discharge air. However, in this transition tube cooling structure, convection cooling is mainstream in which the outer surface of the transition tube 9 is cooled by convection of compressor discharge air.
When equipped with a high-temperature gas turbine combustor of ℃ class or higher, the temperature of the transition piece 9 exposed to high-temperature combustion gas exceeds the technically compatible temperature of the transition piece material (approximately 800 degrees Celsius), which reduces the durability of the gas turbine combustor. There was a risk that the quality and reliability of the product would deteriorate.

〔発明の目的〕[Purpose of the invention]

本発明は上述した事情を考慮してなされたもので、燃焼
器尾筒の冷却性能を向上させ、高温ガスタービンに適用
しても、充分な耐久性と信頼性をN持することができる
ガスタービン燃焼器を提供することを目的とする。
The present invention has been made in consideration of the above-mentioned circumstances, and it improves the cooling performance of the combustor transition piece, and enables gas to maintain sufficient durability and reliability even when applied to high-temperature gas turbines. The purpose is to provide a turbine combustor.

〔発明の概要〕[Summary of the invention]

上述した目的を達成するために、本発明はライナー外筒
とライナー内筒との間に燃焼用空気流路を形成し、上記
ライナー内局内に燃焼室を画成し、燃焼ガスを案内する
尾筒を上記ライナー内筒に設けたガスタービン用燃焼器
において、上記尾筒は尾筒外筒と尾筒内筒とから二重筒
構造に構成され、その環状部分を、前記燃焼用空気流路
に通じる冷却流路に形成したことを特徴とするものであ
る。
To achieve the above-mentioned objects, the present invention forms a combustion air flow path between a liner outer cylinder and a liner inner cylinder, defines a combustion chamber within the liner inner cylinder, and includes a tail for guiding combustion gas. In a gas turbine combustor in which a cylinder is provided in the inner cylinder of the liner, the transition piece has a double cylinder structure consisting of an outer cylinder and an inner cylinder, and the annular portion thereof is connected to the combustion air flow path. It is characterized by being formed in a cooling flow path leading to.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明に係るガスタービン燃焼器の一実施例につ
いて第1図および第2図を参照して説明する。
Hereinafter, an embodiment of a gas turbine combustor according to the present invention will be described with reference to FIGS. 1 and 2.

本発明に係るガスタービン燃焼器10は圧縮機11と発
電機12を駆動さけるガスタービン13との間に設けら
れ、圧縮機11からの吐出チャンバを画成づる図示しな
いヂャンバケーシング内に収容される。このヂ1?ンバ
ケーシングは圧縮機11とガスタービン13の各ケーシ
ングを一体あるいは一体的に連結するととらに、ガスタ
ービン燃焼器10【ユチャンバケーシング内の周方向に
?!2数個、例えば10fl!aあるいは14個配置さ
れる。
A gas turbine combustor 10 according to the present invention is provided between a compressor 11 and a gas turbine 13 that drives a generator 12, and is housed in a chamber casing (not shown) that defines a discharge chamber from the compressor 11. Ru. This one? The chamber casing connects the casings of the compressor 11 and the gas turbine 13 integrally or integrally, and also connects the gas turbine combustor 10 [in the circumferential direction within the chamber casing? ! Two or more pieces, for example 10fl! A or 14 pieces are arranged.

各ガスタービン燃焼器101.、を燃焼器本体を構成す
るライナー外筒15ど内筒16とから二重筒構造に形成
され、その環状空間が燃焼用空気流路17として画成さ
れる。ライナー内筒16内には燃焼室18が画成され、
この燃焼室18内に燃t!1と燃焼用空気とが供給され
て燃焼せしめられる。
Each gas turbine combustor 101. , is formed into a double cylinder structure from a liner outer cylinder 15 and an inner cylinder 16 constituting the combustor main body, and the annular space thereof is defined as a combustion air flow path 17. A combustion chamber 18 is defined within the liner inner cylinder 16,
There is combustion inside this combustion chamber 18! 1 and combustion air are supplied to cause combustion.

一方、ガスタービン燃焼器10の内筒後端部には尾筒2
0が装着される。尾筒20は尾筒内筒21と尾筒外筒2
2とを有し、この間の環状空間が冷却流路23として画
成される。冷IJI流路23内には補強を兼ねた?l2
rl1枚の冷7J1用フイン24が数羽状に配設され、
冷却流路23内の伝熱面積(熱交模面積ンを増大さゼ、
放熱を促進さびるようになっている。尾筒内筒21は燃
焼器本体のライナー内筒18の後端部に遊嵌され、板ば
ね等で弾性保持される。尾筒内筒21内は燃焼室18で
燃焼せしめられた燃焼ガスをガスタービン13の人口に
導く案内路25として形成される。
On the other hand, a transition piece 2 is provided at the rear end of the inner cylinder of the gas turbine combustor 10.
0 is installed. The transition tube 20 includes a transition tube inner tube 21 and a transition tube outer tube 2.
2, and an annular space therebetween is defined as a cooling flow path 23. Is there reinforcement in the cold IJI flow path 23? l2
RL1 cold 7J1 fins 24 are arranged in several feathers,
The heat transfer area (heat exchange area) in the cooling channel 23 is increased,
Promote heat dissipation to prevent rust. The transition cylinder inner cylinder 21 is loosely fitted into the rear end of the liner inner cylinder 18 of the combustor main body, and is elastically held by a leaf spring or the like. The inside of the transition tube inner cylinder 21 is formed as a guide path 25 that guides the combustion gas combusted in the combustion chamber 18 to the gas turbine 13 .

尾筒20に形成される冷却流路23は片端側が流入口2
3aとして形成され、その流出側は燃焼n1空気流路1
7に1m口し、尾筒内筒21内を通る燃焼ガスと熱交換
された冷uj用吐出空気を燃焼用空気流路17に案内し
ている。
One end of the cooling channel 23 formed in the transition piece 20 has an inlet 2.
3a, the outflow side of which is the combustion n1 air flow path 1
7, and guides the cool uj discharge air, which has undergone heat exchange with the combustion gas passing through the transition pipe inner cylinder 21, to the combustion air flow path 17.

また、R部外筒22には第1図に示づように多数の冷2
Jl空気孔27を例えば周方向に複数列あるいはランダ
ムに必要に応じて穿設してもよい。多数の冷1(I空気
孔を形成した場合には、燃焼器の冷却性能h10に基い
て、尾筒の冷却流路23内の軸方向の流路断面積が適宜
定められる。
In addition, the R section outer cylinder 22 has a large number of cold cylinders as shown in FIG.
The Jl air holes 27 may be provided, for example, in a plurality of rows or randomly in the circumferential direction as required. When a large number of cooling 1 (I) air holes are formed, the axial cross-sectional area of the cooling passage 23 of the transition piece is determined as appropriate based on the cooling performance h10 of the combustor.

次に、ガスタービン燃焼器10の作用について説明する
Next, the operation of the gas turbine combustor 10 will be explained.

ガスタービン発電プラントの1F縮機11の駆動により
圧縮された高圧の叶11J1空気は叶出ヂI/ンバ内に
吐出され、この吐出チャンバから一部は冷JJI流路2
3に、残りは燃焼用空気流路17に案内される。燃焼用
空気流路17に案内された空気は続いてライナー内筒1
6内の燃焼室18に導かれ、この燃焼室18に別途案内
される燃料と混合して燃焼に供され、高温の燃焼ガスと
なる。この燃焼ガスは尾筒内0I21内に形成される案
内路25を通ってガスタービン13に導かれる。燃焼ガ
スがガスタービン13を通過する際に、膨張して仕事を
し、発電機12を回転駆vJさUる。ガスタービン13
で仕事をした燃焼ガスは排気される。
The high-pressure air 11J1 compressed by the drive of the 1F compressor 11 of the gas turbine power generation plant is discharged into the airflow chamber, and a portion of the air from this discharge chamber flows into the cold JJI flow path 2.
3, the remainder is guided to the combustion air flow path 17. The air guided to the combustion air flow path 17 is then passed through the liner inner cylinder 1.
The fuel is introduced into the combustion chamber 18 in the combustion chamber 6, mixed with fuel separately introduced into the combustion chamber 18, and subjected to combustion, resulting in high-temperature combustion gas. This combustion gas is guided to the gas turbine 13 through a guide path 25 formed within the transition piece 0I21. When the combustion gas passes through the gas turbine 13, it expands and does work, driving the generator 12 to rotate. gas turbine 13
The combustion gas that has done work is exhausted.

一方、尾筒内筒21内は高温の燃焼ガスが案内されるた
め、高温となるが、尾筒20は尾筒外筒22と内筒21
とから二重筒構造に形成され、内部に冷却流路23が形
成されており、冷却用空気は吐出ブVンバから冷却流路
23内に案内される際に加速され、流速が例えば約10
m/secから約40 m/secに増大する。その結
果、尾筒内筒表面の放熱効率が向上し、尾筒内筒表面の
熱伝達率が良好となり、尾筒内IFi121は積極的に
冷却される。
On the other hand, the inside of the transition tube inner cylinder 21 becomes high temperature because high-temperature combustion gas is guided, but the transition tube 20 is connected to the transition tube outer cylinder 22 and the inner cylinder 21.
It is formed into a double cylinder structure, and a cooling passage 23 is formed inside, and the cooling air is accelerated when guided into the cooling passage 23 from the discharge cylinder, and the flow velocity is, for example, about 10
m/sec to approximately 40 m/sec. As a result, the heat dissipation efficiency of the transition tube inner tube surface is improved, the heat transfer coefficient of the transition tube inner tube surface is improved, and the transition tube inner IFi 121 is actively cooled.

このため、冷!Jl流路23による冷却用空気の圧力に
、i失は増大するが、尾筒20の金属温度を許容温度以
下に下げることができる。
Because of this, cold! Although the i loss increases due to the pressure of the cooling air generated by the Jl flow path 23, the metal temperature of the transition piece 20 can be lowered to below the allowable temperature.

ざらに、伝熱面積を増大さぜるために、冷却流路23に
冷7.II用フイン24を設()たり、多数の小孔27
を穿設してインピンジ冷却させることにより、尾筒内筒
表面の放熱効率をより一層向上させることができ、この
ガスタービン燃焼器10を高温ガスタービンに適用して
も、尾筒内筒21の湿度を既存の燃焼用材料でも充分に
耐え得る温度以下、例えば約700℃まで下げることが
できる。
Generally speaking, in order to increase the heat transfer area, the cooling channel 23 is provided with a cold 7. II fins 24 are installed (), and a large number of small holes 27 are installed.
By drilling and impingement cooling, the heat dissipation efficiency of the transition tube inner cylinder surface can be further improved, and even if this gas turbine combustor 10 is applied to a high-temperature gas turbine, the transition tube inner cylinder 21 Humidity can be lowered to a temperature that can be sufficiently withstood by existing combustion materials, for example, to about 700°C.

なお、本発明の一実施例ではライナー外筒を尾筒側に延
長させ、このライナー外筒内に尾筒外筒を挿入し、重ね
合せ部が形成される例について説明したが、ライナー外
筒と尾筒外筒との間に軸方向の間隙を形成するようにし
ても、あるいはR筒外部をライナー外筒に一体あるいは
一体的に連結してもよい。
In one embodiment of the present invention, the liner outer cylinder is extended toward the transition tube side, and the transition tube outer cylinder is inserted into this liner outer cylinder to form an overlapping part. An axial gap may be formed between the liner outer cylinder and the transition cylinder outer cylinder, or the outside of the R cylinder may be integrally or integrally connected to the liner outer cylinder.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように本発明に係るガスタービン燃焼器は
、ライナー内筒に設番ノられる尾筒は尾筒外筒ど尾筒内
筒とから二重筒構造に形成され、その環状部分を、燃焼
用空気流路に通じる冷却1通路に形成したから、吐出チ
トンバ内に吐出された圧縮空気は冷却通路内を通るとき
、加速されて熱伝達効率を向上さけ、尾筒内筒表面を積
極的かつ有効的に冷u1する。尾筒内筒表面を冷却した
圧縮空気は燃焼用空気流路内に案内されるので、尾筒内
筒表面は常時新しい冷却用圧縮空気により冷却され、燃
焼器尾部の冷却性能を向上させることができ、このガス
タービン燃焼器を高温ガスタービンに適用しても、充分
な耐久性と信頼性を確保することができる。
As described above, in the gas turbine combustor according to the present invention, the transition piece numbered in the liner inner cylinder is formed into a double-tube structure consisting of the transition cylinder outer cylinder and the transition cylinder inner cylinder, and the annular part thereof is Since the cooling passage is formed in the first cooling passage leading to the combustion air flow passage, when the compressed air discharged into the discharge chitonbum passes through the cooling passage, it is accelerated to improve the heat transfer efficiency and to actively attack the inner cylinder surface of the transition cylinder. Cool u1 in a targeted and effective manner. The compressed air that has cooled the inner cylinder surface of the transition cylinder is guided into the combustion air flow path, so the inner cylinder surface of the transition cylinder is constantly cooled by fresh compressed air for cooling, improving the cooling performance of the combustor tail. Even when this gas turbine combustor is applied to a high-temperature gas turbine, sufficient durability and reliability can be ensured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るガスタービン燃焼器の一実施例を
示す尾筒構造の部分的断面図、第2図は第1図の■−■
線に沿う図、第3図はガスタービンに取付けられるガス
タービン燃焼器を示づ図である。 10・・・ガスタービン燃焼器、11・・・圧縮機、1
3・・・ガスタービン、15・・・ライナー外筒、16
・・・ライナー内筒、17・・・燃焼用空気流路、18
・・・燃焼室、20・・・尾筒、21・・・尾筒内筒、
22・・・尾筒外筒、23・・・冷却流路、24・・・
冷却用フィン、25・・・燃焼ガス案内路、27・・・
冷7JI空気孔。 出願人代理人   波 多 野   久羊 2 図 塾3 副
FIG. 1 is a partial sectional view of a transition piece structure showing an embodiment of a gas turbine combustor according to the present invention, and FIG. 2 is a partial cross-sectional view of a transition piece structure shown in FIG.
The line view, FIG. 3, is a view showing a gas turbine combustor attached to a gas turbine. 10... Gas turbine combustor, 11... Compressor, 1
3... Gas turbine, 15... Liner outer cylinder, 16
... Liner inner cylinder, 17 ... Combustion air flow path, 18
... Combustion chamber, 20... Transition tube, 21... Transition tube inner tube,
22... Tail tube outer cylinder, 23... Cooling channel, 24...
Cooling fin, 25... Combustion gas guide path, 27...
Cold 7JI air vent. Applicant's agent Hisashi Hatano 2 Zujuku 3 Deputy

Claims (1)

【特許請求の範囲】 1、ライナー外筒とライナー内筒との間に燃焼用空気流
路を形成し、上記ライナー内筒内に燃焼室を画成し、燃
焼ガスを案内する尾筒を上記ライナー内筒に設けたガス
タービン用燃焼器において、上記尾筒は尾筒外筒と尾筒
内筒とから二重筒構造に構成され、その環状部分を、前
記燃焼用空気流路に通じる冷却流路に形成したことを特
徴とするガスタービン燃焼器。 2、尾筒外筒と尾筒内筒とにより形成される冷却流路に
複数枚の冷却用フィンを放射状に配設した特許請求の範
囲第1項に記載のガスタービン燃焼器。 3、尾筒外筒には冷却空気孔が多数穿設され、尾筒内筒
をインピンジ冷却可能に構成した特許請求の範囲第1項
に記載のガスタービン燃焼器。
[Scope of Claims] 1. A combustion air flow path is formed between the liner outer cylinder and the liner inner cylinder, a combustion chamber is defined in the liner inner cylinder, and a transition piece for guiding combustion gas is formed as above. In a gas turbine combustor installed in a liner inner cylinder, the transition piece has a double cylinder structure consisting of an outer transition cylinder and an inner cylinder, and its annular portion is connected to a cooling air passageway that communicates with the combustion air flow path. A gas turbine combustor characterized by being formed in a flow path. 2. The gas turbine combustor according to claim 1, wherein a plurality of cooling fins are arranged radially in a cooling passage formed by the transition tube outer cylinder and the transition tube inner cylinder. 3. The gas turbine combustor according to claim 1, wherein the transition tube outer cylinder is provided with a large number of cooling air holes so that the transition tube inner cylinder can be impinged cooled.
JP60243618A 1985-10-30 1985-10-30 Gas turbine combustor Expired - Lifetime JPH0726734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60243618A JPH0726734B2 (en) 1985-10-30 1985-10-30 Gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60243618A JPH0726734B2 (en) 1985-10-30 1985-10-30 Gas turbine combustor

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP8138786A Division JP3069522B2 (en) 1996-05-31 1996-05-31 Gas turbine combustor
JP13878596A Division JPH08303781A (en) 1996-05-31 1996-05-31 Gas turbine combustor

Publications (2)

Publication Number Publication Date
JPS62102029A true JPS62102029A (en) 1987-05-12
JPH0726734B2 JPH0726734B2 (en) 1995-03-29

Family

ID=17106498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60243618A Expired - Lifetime JPH0726734B2 (en) 1985-10-30 1985-10-30 Gas turbine combustor

Country Status (1)

Country Link
JP (1) JPH0726734B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143422A (en) * 1986-12-05 1988-06-15 Hitachi Ltd Gas turbine combustor
JPH05141269A (en) * 1992-01-20 1993-06-08 Hitachi Ltd Gas turbine combustor
JP2010159753A (en) * 2009-01-07 2010-07-22 General Electric Co <Ge> Method and apparatus for enhancing cooling of transition duct in gas turbine engine
CN112832929A (en) * 2021-03-05 2021-05-25 中国科学院力学研究所 Method for designing cooling structure for equal inner wall surface temperature of rocket engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52135907A (en) * 1976-05-08 1977-11-14 Kawasaki Heavy Ind Ltd Combustion unit in gas turbine
JPS5411443A (en) * 1977-06-29 1979-01-27 Hitachi Maxell Silver oxide cell
JPS5581232A (en) * 1978-12-15 1980-06-19 Hitachi Ltd Method of cooling combustor for gas turbine
US4288980A (en) * 1979-06-20 1981-09-15 Brown Boveri Turbomachinery, Inc. Combustor for use with gas turbines
JPS5956618A (en) * 1982-09-27 1984-04-02 Toshiba Corp Transition piece for gas turbine
JPS59115826U (en) * 1983-01-26 1984-08-04 株式会社日立製作所 Gas turbine combustor cooling system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52135907A (en) * 1976-05-08 1977-11-14 Kawasaki Heavy Ind Ltd Combustion unit in gas turbine
JPS5411443A (en) * 1977-06-29 1979-01-27 Hitachi Maxell Silver oxide cell
JPS5581232A (en) * 1978-12-15 1980-06-19 Hitachi Ltd Method of cooling combustor for gas turbine
US4288980A (en) * 1979-06-20 1981-09-15 Brown Boveri Turbomachinery, Inc. Combustor for use with gas turbines
JPS5956618A (en) * 1982-09-27 1984-04-02 Toshiba Corp Transition piece for gas turbine
JPS59115826U (en) * 1983-01-26 1984-08-04 株式会社日立製作所 Gas turbine combustor cooling system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143422A (en) * 1986-12-05 1988-06-15 Hitachi Ltd Gas turbine combustor
JPH0663648B2 (en) * 1986-12-05 1994-08-22 株式会社日立製作所 Gas turbine combustor
JPH05141269A (en) * 1992-01-20 1993-06-08 Hitachi Ltd Gas turbine combustor
JP2010159753A (en) * 2009-01-07 2010-07-22 General Electric Co <Ge> Method and apparatus for enhancing cooling of transition duct in gas turbine engine
CN112832929A (en) * 2021-03-05 2021-05-25 中国科学院力学研究所 Method for designing cooling structure for equal inner wall surface temperature of rocket engine

Also Published As

Publication number Publication date
JPH0726734B2 (en) 1995-03-29

Similar Documents

Publication Publication Date Title
US11421598B2 (en) Staggered heat exchanger array with side curtains
US6217279B1 (en) Device for sealing gas turbine stator blades
US8763363B2 (en) Method and system for cooling fluid in a turbine engine
US9625152B2 (en) Combustor heat shield for a gas turbine engine
US9557060B2 (en) Combustor heat shield
US8414255B2 (en) Impingement cooling arrangement for a gas turbine engine
CN1270066C (en) Gas turbine and method for operating gas turbine
JPH06102963B2 (en) Gas turbine air cooling blade
JP2009085222A (en) Rear end liner assembly with turbulator and its cooling method
JPS60142021A (en) Gas turbine engine
JP4890142B2 (en) Cooled shroud assembly and shroud cooling method
GB2290833A (en) Turbine blade cooling
JP2002534627A (en) Recuperator for gas turbine engine
RU2405940C1 (en) Turbine blade
US8522557B2 (en) Cooling channel for cooling a hot gas guiding component
KR20040045359A (en) Gas turbine transition piece with dimpled surface and related method
JPS62102029A (en) Gas turbine combustion unit
JPH05163959A (en) Turbine stationary blade
JP4867203B2 (en) gas turbine
KR20220053803A (en) Array impingement jet cooling structure with wavy channel
JP3069522B2 (en) Gas turbine combustor
US20060137324A1 (en) Inner plenum dual wall liner
JP3182343B2 (en) Gas turbine vane and gas turbine
US2354698A (en) Gas turbine
JP2001107703A (en) Gas turbine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term