JPH0663648B2 - Gas turbine combustor - Google Patents

Gas turbine combustor

Info

Publication number
JPH0663648B2
JPH0663648B2 JP61288975A JP28897586A JPH0663648B2 JP H0663648 B2 JPH0663648 B2 JP H0663648B2 JP 61288975 A JP61288975 A JP 61288975A JP 28897586 A JP28897586 A JP 28897586A JP H0663648 B2 JPH0663648 B2 JP H0663648B2
Authority
JP
Japan
Prior art keywords
transition piece
cooling
flow
combustor
cooling fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61288975A
Other languages
Japanese (ja)
Other versions
JPS63143422A (en
Inventor
倫夫 黒田
和彦 熊田
信之 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61288975A priority Critical patent/JPH0663648B2/en
Publication of JPS63143422A publication Critical patent/JPS63143422A/en
Publication of JPH0663648B2 publication Critical patent/JPH0663648B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガスタービン燃焼器に係り、尾筒を冷却する
ために設けるフロースリーブ構造について、圧力損失を
最小とし、熱効率を向上できるように改良した燃焼器構
造に関するものである。
Description: TECHNICAL FIELD The present invention relates to a gas turbine combustor, and a flow sleeve structure provided for cooling a transition piece so as to minimize pressure loss and improve thermal efficiency. The present invention relates to an improved combustor structure.

〔従来技術〕[Prior art]

従来のガスタービン燃焼器尾筒の冷却構造は、特公昭54
−11443に記載のように、燃焼器尾筒の一部に冷却スリ
ーブを設け、この冷却スリーブに配列された複数の孔か
らの冷却用流体の噴流を尾筒表面に衝突させることによ
り冷却し、冷却後の流体は尾筒下流に設けた貫通孔から
主流ガスに合流させる構造となつていた。
The conventional cooling structure of the gas turbine combustor transition piece is
As described in -11443, a cooling sleeve is provided in a part of the combustor transition piece, and cooling is performed by causing a jet of cooling fluid from a plurality of holes arranged in the cooling sleeve to collide with the transition piece surface, The structure is such that the cooled fluid merges with the mainstream gas from a through hole provided downstream of the transition piece.

上記従来構造では、燃焼器尾筒の冷却に、冷却用流体の
一部を消費することになるため、燃焼器ライナの冷却に
供される冷却流体流量が減少し、この分、燃焼温度を上
げられないことになる。また、尾筒を冷却した後、主流
ガスに流入する冷却用流体は、主流ガスの高温部と混合
せず、低温部の二層状のままタービン部に流入すること
になり、タービン部の動翼及び静翼に悪影響を与えるこ
とになる。さらに冷却スリーブは、冷却効率を高めるた
め、尾筒に溶接で固定する方向が使われるが、尾筒と冷
却スリーブとの温度差による熱応力が高くなり、信頼性
低下の原因となる。
In the above conventional structure, since a part of the cooling fluid is consumed for cooling the combustor transition piece, the flow rate of the cooling fluid used for cooling the combustor liner is reduced, and the combustion temperature is increased accordingly. It will not be possible. Further, after cooling the transition piece, the cooling fluid flowing into the mainstream gas does not mix with the high temperature part of the mainstream gas and flows into the turbine part as it is in the two-layer structure of the low temperature part. And, it will adversely affect the stationary vanes. Further, the cooling sleeve is used in a direction to be fixed to the transition piece by welding in order to improve the cooling efficiency, but the thermal stress due to the temperature difference between the transition piece and the cooling sleeve becomes high, which causes a decrease in reliability.

上記従来例の改善案として、尾筒の外側の全面にフロー
スリーブを設け、尾筒に対してインピンジまたは対流に
よる冷却を行う構造がある。本改善案の場合、冷却効
率,信頼性の面で優れているが下記問題点がある。
As an improvement plan of the above conventional example, there is a structure in which a flow sleeve is provided on the entire outer surface of the transition piece to cool the transition piece by impingement or convection. This improvement plan is excellent in cooling efficiency and reliability, but has the following problems.

多缶式燃焼器の場合、周方向に複数個の燃焼器が配列さ
れる。通常のガスタービンにおいては、組立・分解の容
易性,部品の製作の容易性を考慮して6〜14個を配列
した例が多い。このため燃焼器間の周方向の間隙が制限
された構造とならざるを得ない。
In the case of the multi-can combustor, a plurality of combustors are arranged in the circumferential direction. In a typical gas turbine, there are many examples in which 6 to 14 are arranged in consideration of the ease of assembly / disassembly and the ease of manufacturing parts. Therefore, there is no choice but to have a structure in which the circumferential gap between the combustors is limited.

圧縮機からの冷却用流体のうち、一部はそのままフロー
スリーブの腹側から内部に入り、尾筒の腹側を冷却す
る。他は燃焼器間の隙間を通り、フロースリーブの外周
側に回り込み、背側のフロースリーブから内部に入り、
尾筒の背側を冷却する。この燃焼器間の隙間は、全面フ
ロースリーブ構造を採用することにより、さらに狭くな
り、この隙間を冷却用流体が通過するに伴い発生する圧
力損失のため、フロースリーブ外周部と内周部とに大き
な圧力差を生じることになる。この圧力差は、フロース
リーブから流入する冷却用流体の流量にアンバランスを
生じさせ、背側に高温部を発生させる。この冷却用流体
のアンバランスな流入を無くするには、内周部のフロー
スリーブの冷却用流体流入部の面積を外周部よりも小さ
くすることによつて可能ではあるが、燃焼器全体として
の圧力損失が増大し、ガスタービンの熱効率が低下する
ことになる。
A part of the cooling fluid from the compressor enters the inside of the flow sleeve from the ventral side, and cools the ventral side of the transition piece. Others pass through the gap between the combustors, wrap around to the outer peripheral side of the flow sleeve, enter inside from the flow sleeve on the back side,
Cool the back side of the transition piece. The gap between the combustors is further narrowed by adopting the full-flow sleeve structure, and due to the pressure loss generated as the cooling fluid passes through the gap, the gap between the outer periphery and the inner periphery of the flow sleeve is generated. A large pressure difference will be generated. This pressure difference causes an imbalance in the flow rate of the cooling fluid flowing from the flow sleeve, and causes a high temperature portion on the back side. In order to eliminate the unbalanced inflow of the cooling fluid, it is possible to make the area of the cooling fluid inflow portion of the flow sleeve in the inner peripheral portion smaller than that in the outer peripheral portion. The pressure loss will increase and the thermal efficiency of the gas turbine will decrease.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術では、尾筒の後流端に取付けた冷却スリー
ブの複数個の配列された孔から流れ込む冷却用流体は、
尾筒外壁に衝突して該尾筒を冷却した後、尾筒壁に設け
た貫通孔から主流ガス内に流れ込む構造となる。上記燃
焼器尾筒の冷却の為に冷却用流体の一部を消費すること
は、この分燃焼器ライナの冷却に供される冷却流体が減
少することになるため、燃焼器ライナのメタル温度を許
容温度に保つためには、燃焼ガス温度を下げざるを得な
くなる。
In the above prior art, the cooling fluid flowing from the plurality of arranged holes of the cooling sleeve attached to the rear end of the transition piece is
After colliding with the outer wall of the transition piece and cooling the transition piece, the structure is such that the transition piece flows into the mainstream gas from a through hole provided in the transition piece wall. Consuming a part of the cooling fluid for cooling the combustor transition piece reduces the cooling fluid used for cooling the combustor liner by this amount, so that the metal temperature of the combustor liner is reduced. In order to maintain the allowable temperature, the combustion gas temperature must be lowered.

さらに、冷却スリーブを通して、尾筒内に冷却用流体
を、所定の流速で流すためには冷却スリーブの外側と尾
筒の内側との間に、ある圧力差を持たせる必要があり、
この分、ガスタービンの効率が低下することになる。
Further, in order to flow the cooling fluid through the cooling sleeve into the transition piece at a predetermined flow rate, it is necessary to have a certain pressure difference between the outside of the cooling sleeve and the inside of the transition piece.
As a result, the efficiency of the gas turbine is reduced.

本発明は上述の事情に鑑みて為されたもので、その目的
とするところは、上記の圧力差による損失を最小ならし
めて当該ガスタービンの熱効率を向上せしめることが出
来、しかも尾筒及び燃焼器ライナのメタル温度を許容値
以下に保ち得る燃焼器を提供しようとするものである。
The present invention has been made in view of the above circumstances, and an object of the present invention is to minimize the loss due to the above pressure difference and improve the thermal efficiency of the gas turbine, and moreover, the transition piece and the combustor. An object of the present invention is to provide a combustor capable of keeping the metal temperature of the liner below an allowable value.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するための構成として、本発明に係る
ガスタービンの燃焼器は、燃焼器ライナとタービン部と
を連結する尾筒を冷却するため、該尾筒の外周側に対向
・離間せしめてフロースリーブを設置した構造のガスタ
ービン燃焼器において、(a)尾筒の下流側の区域内の
背側と腹側とに対向する部分のフロースリーブに噴孔を
配列して、該噴孔から噴出する冷却用流体を尾筒壁面に
衝突させてインピンジ冷却を行う構造とするとともに、
(b)尾筒壁面に衝突してインピンジ冷却を行った冷却
用流体を、該尾筒壁面に沿って流動せしめて対流冷却を
行う構造とし、(c)前記尾筒の下流側の両側面に対向
する部分のフロースリーブを切り欠いて開口部を設け、
冷却用流体の一部が上記開口部を通って尾筒壁に接触し
て対流冷却を行う構造とし、かつ、(d)開口を設けた
個所以外のフロースリーブと尾筒との間に冷却用流体を
流通せしめる構造としたことを特徴とする。
As a configuration for achieving the above object, the combustor of the gas turbine according to the present invention is arranged to face and separate from the outer peripheral side of the transition piece in order to cool the transition piece connecting the combustor liner and the turbine section. In a gas turbine combustor having a structure in which a flow sleeve is installed, (a) nozzle holes are arranged in a portion of the flow sleeve facing the back side and the abdominal side in the downstream region of the transition piece, In addition to having a structure for impingement cooling by colliding the jetting cooling fluid with the wall surface of the transition piece,
(B) A cooling fluid that impinges on the wall surface of the transition piece and is subjected to impingement cooling is caused to flow along the transition surface of the transition piece to perform convection cooling, and (c) both side surfaces on the downstream side of the transition piece. Notch the flow sleeve of the facing part to provide an opening,
Part of the cooling fluid passes through the opening and comes into contact with the wall of the transition piece for convection cooling, and (d) for cooling between the flow sleeve and the transition piece other than the location where the opening is provided. It is characterized by having a structure that allows fluid to flow.

上記の両側面の意味は次のごとくである。すなわち、前
述のごとく燃焼器の6〜14個が周方向に配列された場
合、該燃焼器の尾筒も円形に配列される。このように配
列された尾筒が相互に対向,隣接している面を側面とい
う。ここに、ある1個の尾筒を考えると、その両側にそ
れぞれ隣接する尾筒が位置しているので、上記の側面
は、各尾筒について2面ずつ存在する。これを両側面と
呼んだものである。
The meaning of the above-mentioned both sides is as follows. That is, when 6 to 14 combustors are arranged in the circumferential direction as described above, the tail cylinders of the combustors are also arranged in a circular shape. The side where the transition pieces arranged in this way face and adjoin each other is called the side surface. Considering a single transition piece here, since the adjacent transition pieces are located on both sides of the transition piece, there are two side surfaces for each transition piece. This is called both sides.

〔作用〕[Action]

上記の構成においては、圧縮機からの吐出空気である冷
却用流体を、最小の燃焼器圧縮損失を維持しつつ、燃焼
器ライナ及び尾筒の冷却のために最も効果的かつ有効に
利用できる様、尾筒の外側に所定の間隙を持たせたフロ
ースリーブを尾筒下流両側面を除いた全周に設けてある
(フロースリーブ、尾筒下流部分の両側面に対向する部
分は切り欠かれている)。このため、冷却用流体によ
り、尾筒の構造や尾筒内部の主流ガス温度・流速よつて
定まるメタル温度に合わせて、インピンジ冷却と対流冷
却とが併せて行なわれる。
In the above configuration, the cooling fluid, which is the discharge air from the compressor, can be used most effectively and effectively for cooling the combustor liner and the transition piece while maintaining the minimum combustor compression loss. , A flow sleeve having a predetermined gap outside the transition piece is provided on the entire circumference except both side surfaces on the downstream side of the transition piece (the flow sleeve and the portion opposed to both sides of the downstream portion of the transition piece are notched. Exist). Therefore, impingement cooling and convection cooling are performed by the cooling fluid in accordance with the structure of the transition piece and the metal temperature determined by the mainstream gas temperature and the flow velocity inside the transition piece.

このことにより、圧縮機からの燃焼用空気は、最小の圧
力損失で、全量,尾筒の冷却用流体として使用できるこ
とになり、高効率な尾筒冷却構造とすることができる。
As a result, all the combustion air from the compressor can be used as a fluid for cooling the transition piece with a minimum pressure loss, and a highly efficient transition piece cooling structure can be obtained.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

ガスタービンの燃焼器室は、燃焼器ライナ1、燃焼器ラ
イナーフロースリーブ2、燃焼器尾筒3、尾筒フロース
リーブ4、燃焼器外筒カバー5、燃焼器外筒6、吐出ケ
ーシング7、燃焼器ケーシング8、タービンケーシング
9、燃焼ノズル10、点火栓11、インナバーレル12
から構成される。
The combustor chamber of the gas turbine includes a combustor liner 1, a combustor liner flow sleeve 2, a combustor transition piece 3, a transition tube flow sleeve 4, a combustor outer tube cover 5, a combustor outer tube 6, a discharge casing 7, and combustion. Container casing 8, turbine casing 9, combustion nozzle 10, spark plug 11, inner barrel 12
Composed of.

圧縮機13からの吐出空気は、燃焼器室に流入後尾筒フ
ロースリーブ4に設けた開口部から尾筒3と尾筒フロー
スリーブ4との間に流入し、尾筒3を冷却しつつ、上流
側に流れ、燃焼器ライナフロースリーブ2に案内され
て、燃焼器ライナ1に設けた開口部から内部に流入す
る。燃焼器ライナ1内で燃料ノズル10からの燃料に、
11で着火して燃焼させ、生じた高温ガスは燃焼器ライ
ナ1、尾筒3の内部を通り、タービン14に導かれる。
尾筒3は燃焼器ライナ1とタービン14との遷移部材と
しての役目を持つため、燃焼器ライナ1との取合部の円
形状からタービン14取合部の扇形状まで滑らかな曲面
で継がる三次元的形状となる。このため、尾筒3の断面
積は第2図に示す様に、燃焼器ライナ1側からタービン
14に移るにつれ、減少しつつ変化する。この結果、尾
筒3内の高温主流ガスの流速が第2図に示す断面積の変
化と、形状による向きの変化とにより大きく変化するこ
とになり、尾筒3内の壁面に対する熱伝達率に影響する
ことになる。この熱伝達率と尾筒3の位置との関係を第
3図に示す。この内部主流ガス側の熱伝達率の違いは、
尾筒3の壁メタル温度のバラツキとなつて現われる。尾
筒3の壁メタル温度を許容温度以下の均一な値とするに
は、下流側を上流側に比較し、外部からの冷却をより強
化する必要がある。
The air discharged from the compressor 13 flows into the combustor chamber and then flows into the space between the transition piece 3 and the transition piece flow sleeve 4 from an opening provided in the transition piece flow sleeve 4, and cools the transition piece 3 while upstream. Flows toward the side, is guided by the combustor liner flow sleeve 2, and flows into the inside through the opening provided in the combustor liner 1. In the fuel from the fuel nozzle 10 in the combustor liner 1,
The high-temperature gas that is ignited and burned at 11 passes through the inside of the combustor liner 1 and the transition piece 3 and is guided to the turbine 14.
Since the transition piece 3 serves as a transition member between the combustor liner 1 and the turbine 14, the transition from the circular shape of the connecting portion with the combustor liner 1 to the fan shape of the connecting portion of the turbine 14 is connected with a smooth curved surface. It has a three-dimensional shape. Therefore, the cross-sectional area of the transition piece 3 decreases and changes as it moves from the combustor liner 1 side to the turbine 14, as shown in FIG. As a result, the flow velocity of the high-temperature mainstream gas in the transition piece 3 largely changes due to the change in the cross-sectional area shown in FIG. It will affect. The relationship between the heat transfer coefficient and the position of the transition piece 3 is shown in FIG. The difference in heat transfer coefficient on the internal mainstream gas side is
This appears as a variation in the temperature of the wall metal of the transition piece 3. In order to make the wall metal temperature of the transition piece 3 a uniform value below the allowable temperature, it is necessary to compare the downstream side with the upstream side and further strengthen the cooling from the outside.

第4図は第1図の燃焼器室のうち、尾筒部分の詳細を示
す拡大断面図である。圧縮機からの冷却用流体は、尾筒
フロースリーブ4に設けた開口部15,16,17か
ら、尾筒3の冷却のため、尾筒3と尾筒フロースリーブ
4との間に流れ込む構造となつている。尾筒フロースリ
ーブ4の開口部16は、尾筒3内の主流ガスの流速が大
で、特に尾筒3壁メタル温度が高くなる範囲に設ける。
この範囲は、尾筒フロースリーブ4に配列した複数個の
噴孔からの冷却用流体を尾筒3壁面に衝突させて、イン
ピンジ冷却を行わせる構造とする。
FIG. 4 is an enlarged cross-sectional view showing details of the transition piece portion of the combustor chamber shown in FIG. The cooling fluid from the compressor flows through the openings 15, 16, 17 provided in the transition piece flow sleeve 4 between the transition piece 3 and the transition piece flow sleeve 4 for cooling the transition piece 3. I'm running. The opening 16 of the transition piece flow sleeve 4 is provided in a range where the flow velocity of the mainstream gas in the transition piece 3 is high and particularly the temperature of the transition piece 3 wall metal is high.
This range has a structure in which impingement cooling is performed by causing cooling fluid from a plurality of injection holes arranged in the transition piece flow sleeve 4 to collide with the wall surface of the transition piece 3.

尾筒フロースリーブ4の開口部15は、尾筒側面部の開
口部17とともに、冷却用流体の残量を尾筒フロースリ
ーブ4内に導入する。開口部15及び17からの冷却用
流体は、開口部16からの冷却用流体と合流し、尾筒3
と尾筒フロースリーブ4との間を上流側(尾筒3内のガ
ス流方向に関して上流側の意、図において左上方)に向
けて尾筒壁面に沿って流れる。該尾筒3が前記の合流し
た冷却用流体の接触を受ける区域は対流冷却され、これ
により尾筒3の壁面のメタル温度が許容温度以下に保た
れる。
The opening 15 of the transition piece flow sleeve 4 introduces the remaining amount of the cooling fluid into the transition piece flow sleeve 4 together with the opening 17 on the side surface of the transition piece 4. The cooling fluid from the openings 15 and 17 merges with the cooling fluid from the opening 16 to form the transition piece 3
And the transition tube flow sleeve 4 flow toward the upstream side (the upstream side with respect to the gas flow direction in the transition tube 3, that is, the upper left side in the drawing) along the transition tube wall surface. The area where the transition piece 3 comes into contact with the merged cooling fluid is convectively cooled, so that the metal temperature of the wall surface of the transition piece 3 is kept below the allowable temperature.

圧縮機13からの冷却用流体は、燃焼器室に流入後、尾
筒フロースリーブ4の腹側の開口部15,16には直接
流入し、尾筒フロースリーブ4の側面に設けた開口部1
7には、周方向に配列された各尾筒フロースリーブ間の
隙を通過しつつ流入する。尾筒フロースリーブ4の背側
の開口部15,16には、各尾筒フロースリーブ4間の
隙間を通過して外周部に回り込んだ後、流入する。第5
図は、圧縮機からの冷却用流体の、尾筒フロースリーブ
4への流れと、尾筒フロースリーブ4の概念図を示し、
(A)は断面側面図、(B)は斜視図、(C)は平面図
である。
After flowing into the combustor chamber, the cooling fluid from the compressor 13 directly flows into the vent-side openings 15 and 16 of the transition piece flow sleeve 4, and the opening 1 provided on the side surface of the transition piece flow sleeve 4.
It flows into 7 while passing through the gaps between the transition sleeves arranged in the circumferential direction. The openings 15 and 16 on the back side of the transition piece flow sleeve 4 pass through the gaps between the transition piece flow sleeves 4 and wrap around to the outer peripheral portion, and then flow in. Fifth
The figure shows the flow of the cooling fluid from the compressor to the transition piece flow sleeve 4, and a conceptual diagram of the transition piece flow sleeve 4,
(A) is a sectional side view, (B) is a perspective view, and (C) is a plan view.

尾筒フロースリーブ4の両側面のタービン側部は切欠き
構造とする。この切欠き部に対する尾筒3の冷却は圧縮
機からの冷却用流体の流れに面しているため対流冷却が
行われる。さらに、本実施例においては圧縮機からの冷
却用流体が尾筒フロースリーブ4の外周部へ流れる流路
となるところの、周方向尾筒フロースリーブ4間の隙間
を広くすることができるため、燃焼器室内尾筒フロース
リーブ4の外周部と内周部との圧力差を小さくすること
ができ、この分、燃焼器としての圧力損失を最小にする
ことが可能となる。
The turbine side portions on both side surfaces of the transition piece flow sleeve 4 have a notch structure. The cooling of the transition piece 3 with respect to the notch portion is convection cooling because it faces the flow of the cooling fluid from the compressor. Furthermore, in the present embodiment, the gap between the circumferential direction transition tube flow sleeves 4 can be widened, which is a flow path for the cooling fluid from the compressor to the outer peripheral portion of the transition tube flow sleeve 4. The pressure difference between the outer peripheral portion and the inner peripheral portion of the combustor chamber tail pipe flow sleeve 4 can be reduced, and the pressure loss of the combustor can be minimized accordingly.

第6図は燃焼器各位置の圧力損失について、尾筒フロー
スリーブ4を尾筒3の全周に取付けた場合と、尾筒フロ
ースリーブ4の両側面を切欠いた場合との比較を示す。
この図表(第6図)により、両側面切欠構造は、全周構
造に比較して車室から尾筒フロースリーブ4までの圧力
損失を半減し得ることが理解される。
FIG. 6 shows a comparison of the pressure loss at each position of the combustor between the case where the transition piece flow sleeve 4 is attached to the entire circumference of the transition piece 3 and the case where both side surfaces of the transition piece flow sleeve 4 are notched.
From this chart (FIG. 6), it is understood that the notched structure on both side surfaces can reduce the pressure loss from the passenger compartment to the transition piece flow sleeve 4 by half as compared with the full circumference structure.

〔発明の効果〕〔The invention's effect〕

本発明によれば、高効率化のため高温化したガスタービ
ンにおいて、冷却用流体の圧力損失を最小ならしめ、し
かも尾筒及び燃焼器ライナのメタル温度を許容値以内に
保つことが出来、これによつて当該ガスタービンの効率
を向上せしめ得るという優れた実用的効果を奏する。
According to the present invention, in a gas turbine whose temperature has been increased for higher efficiency, the pressure loss of the cooling fluid can be minimized, and the metal temperatures of the transition piece and the combustor liner can be kept within an allowable value. Therefore, there is an excellent practical effect that the efficiency of the gas turbine can be improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例における燃焼器室の断面図で
ある。第2図は尾筒の断面積変化を示す図表、第3図は
尾筒の熱伝達率変化を示す図表である。第4図は尾筒ま
わりの詳細を示す部分断面図、第5図は尾筒の概念図、
第6図は燃焼器室内フロースリーブ構造の圧力損失を示
す図法である。 1……燃焼器ライナ、2……燃焼器ライナフロースリー
ブ、3……尾筒、4……尾筒フロースリーブ、5……燃
焼器外筒カバー、6……燃焼器外筒、7……吐出ケーシ
ング、8……燃焼器ケーシング、9……タービンケーシ
ング、10……燃料ノズル、11……点火栓、12……
インナバーレル、13……圧縮機、14……タービン、
15,16,17……尾筒フロースリーブ開口部。
FIG. 1 is a sectional view of a combustor chamber in one embodiment of the present invention. FIG. 2 is a chart showing changes in cross-sectional area of the transition piece, and FIG. 3 is a chart showing changes in heat transfer coefficient of the transition piece. FIG. 4 is a partial sectional view showing details around the transition piece, FIG. 5 is a conceptual view of the transition piece,
FIG. 6 is a diagram showing the pressure loss of the flow sleeve structure in the combustor chamber. 1 ... combustor liner, 2 ... combustor liner flow sleeve, 3 ... tail cylinder, 4 ... tail cylinder flow sleeve, 5 ... combustor outer cylinder cover, 6 ... combustor outer cylinder, 7 ... Discharge casing, 8 ... Combustor casing, 9 ... Turbine casing, 10 ... Fuel nozzle, 11 ... Spark plug, 12 ...
Inner barrel, 13 ... Compressor, 14 ... Turbine,
15, 16, 17 ... Tail tube flow sleeve opening.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】燃焼器ライナとタービン部とを連結する尾
筒を冷却するため、該尾筒の外周側に対向・離間せしめ
てフロースリーブを設置した構造のガスタービン燃焼器
において、(a)尾筒の下流側の区域内の背側と腹側と
に対向する部分のフロースリーブに噴孔を配列して、該
噴孔から噴出する冷却用流体を尾筒壁面に衝突させてイ
ンピンジ冷却を行う構造とするとともに、(b)尾筒壁
面に衝突してインピンジ冷却を行った冷却用流体を、該
尾筒壁面に沿って流動せしめて対流冷却を行う構造と
し、(c)前記尾筒の下流側の両側面に対向する部分の
フロースリーブを切り欠いて開口部を設け、冷却用流体
の一部が上記開口部を通って尾筒壁に接触して対流冷却
を行う構造とし、かつ、(d)開口を設けた個所以外の
フロースリーブと尾筒との間に冷却用流体を流通せしめ
る構造としたことを特徴とする、ガスタービン燃焼器。
1. A gas turbine combustor having a structure in which a flow sleeve is installed so as to face and be spaced from the outer peripheral side of the transition piece for cooling the transition piece connecting the combustor liner and the turbine section. Impingement cooling is performed by arranging the injection holes in the flow sleeve in the portion facing the back side and the abdomen side in the region on the downstream side of the transition piece and colliding the cooling fluid ejected from the injection hole with the transition piece wall surface. In addition to the structure, (b) a cooling fluid that impinges on the wall surface of the transition piece and is subjected to impingement cooling is caused to flow along the transition surface of the transition piece to perform convection cooling, (c) downstream of the transition piece The flow sleeve in the portion facing both side surfaces on the side is cut out to provide an opening, and a part of the cooling fluid passes through the opening and comes into contact with the transition piece wall for convective cooling, and ( d) Flow sleeves and tails except where openings are provided Characterized in that the structure allowed to flow cooling fluid between the gas turbine combustor.
JP61288975A 1986-12-05 1986-12-05 Gas turbine combustor Expired - Lifetime JPH0663648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61288975A JPH0663648B2 (en) 1986-12-05 1986-12-05 Gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61288975A JPH0663648B2 (en) 1986-12-05 1986-12-05 Gas turbine combustor

Publications (2)

Publication Number Publication Date
JPS63143422A JPS63143422A (en) 1988-06-15
JPH0663648B2 true JPH0663648B2 (en) 1994-08-22

Family

ID=17737220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61288975A Expired - Lifetime JPH0663648B2 (en) 1986-12-05 1986-12-05 Gas turbine combustor

Country Status (1)

Country Link
JP (1) JPH0663648B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101438106B1 (en) * 2011-12-30 2014-09-12 두산중공업 주식회사 Combustion apparatus for gas turbin

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3054420B2 (en) * 1989-05-26 2000-06-19 株式会社東芝 Gas turbine combustor
US7310938B2 (en) * 2004-12-16 2007-12-25 Siemens Power Generation, Inc. Cooled gas turbine transition duct
US7878002B2 (en) * 2007-04-17 2011-02-01 General Electric Company Methods and systems to facilitate reducing combustor pressure drops
JP5173720B2 (en) * 2008-10-01 2013-04-03 三菱重工業株式会社 Combustor connection structure and gas turbine
JP2010085052A (en) * 2008-10-01 2010-04-15 Mitsubishi Heavy Ind Ltd Combustor tail pipe, designing method therefor, and gas turbine
JP5272097B2 (en) * 2012-06-20 2013-08-28 三菱重工業株式会社 Design method for combustor transition
US9316155B2 (en) * 2013-03-18 2016-04-19 General Electric Company System for providing fuel to a combustor
CN108350809B (en) * 2015-11-05 2020-06-12 三菱日立电力系统株式会社 Combustion cylinder, gas turbine combustor, and gas turbine
JP6345331B1 (en) * 2017-11-20 2018-06-20 三菱日立パワーシステムズ株式会社 Combustion cylinder and combustor of gas turbine, and gas turbine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956618A (en) * 1982-09-27 1984-04-02 Toshiba Corp Transition piece for gas turbine
JPS59170622A (en) * 1983-03-16 1984-09-26 Hitachi Ltd Combustor for gas turbine
JPS62102029A (en) * 1985-10-30 1987-05-12 Toshiba Corp Gas turbine combustion unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956618A (en) * 1982-09-27 1984-04-02 Toshiba Corp Transition piece for gas turbine
JPS59170622A (en) * 1983-03-16 1984-09-26 Hitachi Ltd Combustor for gas turbine
JPS62102029A (en) * 1985-10-30 1987-05-12 Toshiba Corp Gas turbine combustion unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101438106B1 (en) * 2011-12-30 2014-09-12 두산중공업 주식회사 Combustion apparatus for gas turbin

Also Published As

Publication number Publication date
JPS63143422A (en) 1988-06-15

Similar Documents

Publication Publication Date Title
US6969233B2 (en) Gas turbine engine turbine nozzle segment with a single hollow vane having a bifurcated cavity
JP5080159B2 (en) Shroud hanger assembly and gas turbine engine
US6932568B2 (en) Turbine nozzle segment cantilevered mount
EP0911486B1 (en) Gas turbine stationary blade cooling
US5261223A (en) Multi-hole film cooled combustor liner with rectangular film restarting holes
US7008185B2 (en) Gas turbine engine turbine nozzle bifurcated impingement baffle
JP4433529B2 (en) Multi-hole membrane cooled combustor liner
US6494044B1 (en) Aerodynamic devices for enhancing sidepanel cooling on an impingement cooled transition duct and related method
JP4536723B2 (en) Cooling circuit for stationary ring of gas turbine
US5396763A (en) Cooled spraybar and flameholder assembly including a perforated hollow inner air baffle for impingement cooling an outer heat shield
US10386072B2 (en) Internally cooled dilution hole bosses for gas turbine engine combustors
EP2322857A1 (en) Heat shield panels
US9970355B2 (en) Impingement cooling arrangement
JPS6335897B2 (en)
JPH0752014B2 (en) Gas turbine combustor
JPS6119804B2 (en)
KR20010072291A (en) Gas turbine steam cooled vane
EP3090209A2 (en) A cooled grommet for a combustor wall assembly
JP6540357B2 (en) Static vane and gas turbine equipped with the same
EP2375160A2 (en) Angled seal cooling system
JP3590666B2 (en) Gas turbine combustor
EP0576435A1 (en) Gas turbine engine combustor.
JPH0663648B2 (en) Gas turbine combustor
EP2230456A2 (en) Combustion liner with mixing hole stub
US7011492B2 (en) Turbine vane cooled by a reduced cooling air leak

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term