JPS63143422A - Gas turbine combustor - Google Patents

Gas turbine combustor

Info

Publication number
JPS63143422A
JPS63143422A JP28897586A JP28897586A JPS63143422A JP S63143422 A JPS63143422 A JP S63143422A JP 28897586 A JP28897586 A JP 28897586A JP 28897586 A JP28897586 A JP 28897586A JP S63143422 A JPS63143422 A JP S63143422A
Authority
JP
Japan
Prior art keywords
cooling
tail pipe
flow sleeve
transition piece
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28897586A
Other languages
Japanese (ja)
Other versions
JPH0663648B2 (en
Inventor
Michio Kuroda
黒田 倫夫
Kazuhiko Kumada
和彦 熊田
Nobuyuki Iizuka
飯塚 信之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61288975A priority Critical patent/JPH0663648B2/en
Publication of JPS63143422A publication Critical patent/JPS63143422A/en
Publication of JPH0663648B2 publication Critical patent/JPH0663648B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To improve the thermal efficiency of a gas turbine and to hold the metal temperature of each of tail pipes and combustor liners at an allowable value or less, by a method wherein a flow sleeve having a given gap outside of the tail pipe is mounted throughout except both sides located down a line from the tail pipe, and impinge cooling and convection cooling are effected according to a metal temperature. CONSTITUTION:An opening part 16 of a tail pipe flow sleeve 4 is mounted in a range where a velocity of flow of main flow gas in a tail pipe 4 is high and the metal temperature of the wall of the tail pipe 3 is increased. A portion in this range has a structure where fluid for cooling being injected through a plurality of injection nozzles formed in the tail pipe flow sleeve 4 is made to collide against the wall surface of the tail pipe 3 to effect impinge-cooling. An opening part 15 of the tail pipe flow sleeve 4 introduces a remaining amount of the fluid for cooling to the tail pipe flow sleeve 4 in association with an opening part 17 of the side of the tail pipe. The fluid for cooling through the opening parts 15 and 17 is joined with the fluid for cooling through the opening part 16, and flows through a gap between the tail pipe 3 and the tail pipe flow sleeve 4 toward the upper stream side. The tail pipe 3 in this range is convection-cooled by the flow to hold the metal temperature of the wall of the tail pipe 3 at an allowable temperature or less.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガスタービン燃焼器に係り、尾筒を冷却する
ために設けるフロースリーブ構造について、圧力損失を
最小とし、熱効率を向上できるように改良した燃焼器構
造に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a gas turbine combustor, and relates to a flow sleeve structure provided for cooling a transition piece, so as to minimize pressure loss and improve thermal efficiency. This invention relates to an improved combustor structure.

〔従来技術〕[Prior art]

従来のガスタービン燃焼器尾筒の冷却構造は、特公昭5
4−11443に記載のように、燃焼器尾筒の一部に冷
却スリーブを設け、この冷却スリーブに配列された複数
の孔からの冷却用流体の噴流を尾筒表面に衝突させるこ
とにより冷却し、冷却後の流体は尾筒下流に設けた貫通
孔がら主流ガスに合流させる構造となっていた。
The cooling structure of the conventional gas turbine combustor transition piece was
4-11443, a cooling sleeve is provided in a part of the combustor transition piece, and cooling is achieved by colliding jets of cooling fluid from a plurality of holes arranged in the cooling sleeve against the surface of the transition piece. The structure was such that the cooled fluid merged with the mainstream gas through a through hole provided downstream of the transition piece.

上記従来構造では、燃焼器尾筒の冷却に、冷却用流体の
一部を消費することになるため、燃焼器ライナの冷却に
供される冷却流体流量が減少し、この分、燃焼温度を上
げられないことになる。また、尾筒を冷却した後、主流
ガスに流入する冷却用流体は、主流ガスの高温部と混合
せず、低温部の二層状のままタービン部に流入すること
になり。
In the conventional structure described above, a portion of the cooling fluid is consumed to cool the combustor transition piece, so the flow rate of the cooling fluid used to cool the combustor liner decreases, which increases the combustion temperature. You will not be able to do so. Furthermore, after cooling the transition piece, the cooling fluid that flows into the mainstream gas does not mix with the high-temperature part of the mainstream gas, but instead flows into the turbine part while remaining in the two-layered state of the low-temperature part.

タービン部の動翼及び静翼に悪影響を与えることになる
6さらに冷却スリーブは、冷却効率を高めるため、尾筒
に溶接で固定する方法が使われるが、尾筒と冷却スリー
ブとの温度差による熱応力が高くなり、俗調性低下の原
因となる。
This will have a negative effect on the rotor blades and stationary blades of the turbine section.6Furthermore, in order to improve cooling efficiency, the cooling sleeve is fixed to the transition piece by welding, but due to the temperature difference between the transition piece and the cooling sleeve, Thermal stress increases, causing a decline in snobbery.

上記従来例の改善案として、尾筒の外側の全面にフロー
スリーブを設け1尾筒に対してインピンジまたは対流に
よる冷却を行う構造がある1本改善案の場合、冷却効率
、信頼性の面で優れているが下記問題点がある。
As an improvement plan to the above conventional example, in the case of a single improvement plan in which a flow sleeve is provided on the entire outer surface of the transition tube and a structure is provided in which one transition tube is cooled by impingement or convection, there are problems in terms of cooling efficiency and reliability. It's good, but it has the following problems.

多缶式燃焼器の場合1周方向に複数個の燃焼器が配列さ
れる9通常のガスタービンにおいては、組立・分解の容
易性9部品の製作の容易性を考慮して6〜14個を配列
した例が多い。このため燃焼器間の周方向の間隙が制限
された構造とならざるを得ない。
In the case of a multi-can combustor, multiple combustors are arranged in one circumferential direction.9 In a normal gas turbine, 6 to 14 combustors are arranged in consideration of the ease of assembly and disassembly9. There are many examples of arrays. For this reason, the structure must be such that the circumferential gap between the combustors is limited.

圧縮機からの冷却用流体のうち、一部はそのまま腹側の
フロースリーブから内部に入り、腹側の尾筒を冷却する
。他は燃焼器間の隙間を通り、フロースリーブの外周側
に回り込み、背側のフロースリーブから内部に入り、背
側の尾筒を冷却する。
A portion of the cooling fluid from the compressor enters the inside through the flow sleeve on the ventral side and cools the transition piece on the ventral side. The other part passes through the gap between the combustors, wraps around the outer circumference of the flow sleeve, enters the interior through the flow sleeve on the back side, and cools the tail piece on the back side.

この燃焼器間の隙間は、全面フロースリーブ構造を採用
することにより、さらに狭くなり、この隙間を冷却用流
体が通過するに件い発生する圧力損失のため、フロース
リーブ外周部と内周部とに大きな圧力差を生じることに
なる。この圧力差は、フロースリーブから流入する冷却
用流体の流量にアンバランスを生じさせ、背側に高温部
を発生させる。この冷却用流体のアンバランスな流入を
無くするには、内周部のフロースリーブの冷却用流体流
入部の面積を外周部よりも小さくすることによって可能
ではあるが、燃焼器全体としての圧力損失が増大し、ガ
スタービンの熱効率が低下することになる。
The gap between the combustors is further narrowed by adopting a full-surface flow sleeve structure, and due to the pressure loss that occurs when the cooling fluid passes through this gap, the outer and inner circumference of the flow sleeve This will result in a large pressure difference. This pressure difference causes an imbalance in the flow rate of the cooling fluid flowing in from the flow sleeve, creating a high temperature area on the back side. Although it is possible to eliminate this unbalanced inflow of cooling fluid by making the area of the cooling fluid inlet of the flow sleeve in the inner periphery smaller than that in the outer periphery, the pressure loss of the combustor as a whole is increases, and the thermal efficiency of the gas turbine decreases.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術では、尾筒の後流端に取付けた冷却スリー
ブの複数個の配列された孔から流れ込む冷却用流体は、
尾筒外壁に衝突して該尾筒を冷却した後、尾筒壁に設け
た貫通孔から主流ガス内に流れ込む構造となる。上記燃
焼器尾筒の冷部の為に冷却用流体の一部を消費すること
は、この全燃焼器ライナの冷却に供される冷却用流体が
減少することになるため、燃焼器ライナのメタル温度を
許容温度に保つためには、燃焼ガス温度を下げざるを得
なくなる。
In the above conventional technology, the cooling fluid flows from a plurality of arranged holes in the cooling sleeve attached to the trailing end of the transition piece.
After colliding with the outer wall of the transition tube and cooling the transition tube, the gas flows into the mainstream gas through a through hole provided in the wall of the transition tube. Consuming a part of the cooling fluid for the cold part of the combustor transition piece means that the cooling fluid available for cooling the entire combustor liner is reduced, so the combustor liner metal In order to maintain the temperature at an acceptable level, the combustion gas temperature has to be lowered.

さらに、冷却スリーブを通して、尾筒内に冷却用流体を
、所定の流速で流すためには、冷却スリーブの外側と尾
筒の内側との間に、ある圧力差を持たせる必要があり、
この分、ガスタービンの効率が低下することになる。
Furthermore, in order to flow the cooling fluid into the transition piece through the cooling sleeve at a predetermined flow rate, it is necessary to create a certain pressure difference between the outside of the cooling sleeve and the inside of the transition piece.
The efficiency of the gas turbine decreases by this amount.

本発明は上述の事情に鑑みて為されたもので、その目的
とするところは、上記の圧力差による損失を最小ならし
めて当該ガスタービンの熱効率を向上せしめることが出
来、しかも尾筒及び燃焼器ライナのメタル温度を許容値
以下に保ち得る燃焼器を提供しようとするものである。
The present invention has been made in view of the above-mentioned circumstances, and its purpose is to minimize the loss due to the pressure difference described above, improve the thermal efficiency of the gas turbine, and further improve the thermal efficiency of the transition piece and combustor. The objective is to provide a combustor that can maintain the liner metal temperature below a permissible value.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、尾筒外壁からある間隙を持たせたスロース
リーブを、尾筒下流側両側面を除く全周に設け、尾筒の
冷却としてこのフロースリーブを利用し1尾筒内主流ガ
スの流速が大きくて尾筒のメタル温度が特に高くなる尾
筒後流部背側、腹側部は、フロースリーブに配列した複
数個の孔からの冷却用流体の噴流によるインピンジ冷却
を行わせ、その上流側の比較的メタル温度の高くならな
い範囲は、フロースリーブと尾筒との間に冷却用流体を
所定の流速で流すことによる対流冷却を行わせ、尾筒下
流両側面のフロースリーブのない範囲は、圧縮機からの
吐出空気の流れによる対流冷却となる様にすることによ
り、達成される。
The above purpose is to provide a slow sleeve with a certain gap from the outer wall of the transition tube around the entire circumference except for both downstream side surfaces of the transition tube, and to use this flow sleeve to cool the transition tube. The dorsal and ventral parts of the trailing part of the tail piece, where the metal temperature of the tail piece is particularly high due to the large temperature, are cooled by impingement cooling by jets of cooling fluid from multiple holes arranged in the flow sleeve. The area on the side where the metal temperature does not become relatively high is cooled by convection by flowing cooling fluid at a predetermined flow rate between the flow sleeve and the transition piece, and the area on both downstream sides of the transition piece where there is no flow sleeve is This is achieved by providing convective cooling by the flow of discharge air from the compressor.

〔作用〕[Effect]

上記の構成においては、圧縮機からの吐出空気である冷
却用流体を、最小の燃焼器圧力損失を維持しつつ、燃焼
器ライナ及び尾筒の冷却のために最も効果的かつ有効に
利用できる様1尾筒の外側に所定の間隙を持たせたフロ
ースリーブを尾筒下流両側面を除いた全周に設けた構造
であるため、冷却用流体は尾筒の構造や尾筒内部の主流
ガス温度・流速よって定まるメタル温度に合わせて、イ
ンピンジ冷却と対流冷却とが併せて行なわれる。
In the above configuration, the cooling fluid, which is the discharge air from the compressor, can be used most effectively and effectively for cooling the combustor liner and transition piece while maintaining the minimum combustor pressure loss. 1. Since the structure has a flow sleeve with a predetermined gap on the outside of the transition tube around the entire circumference except for both downstream sides of the transition tube, the cooling fluid is controlled by the structure of the transition tube and the temperature of the mainstream gas inside the transition tube. - Impingement cooling and convection cooling are performed together according to the metal temperature determined by the flow velocity.

このことにより、圧縮機からの燃焼用空気は、最小の圧
力損失で、全量2尾筒の冷却用流体として使用できるこ
とになり、高効率な尾筒冷却構造とすることができる。
As a result, the combustion air from the compressor can be used as a cooling fluid for the two transition tubes with minimum pressure loss, resulting in a highly efficient transition tube cooling structure.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

ガスタービンの燃焼器室は、燃焼器ライナ1、燃焼器ラ
イナーフロースリーブ2、燃焼器尾@3゜尾筒フロース
リーブ4、燃焼器外筒カバー5.燃焼器外筒6、吐出ケ
ーシング7、燃焼器ケーシング8、タービンケーシング
9、燃料ノズル10、点火栓11、インナバーレル12
から構成される。
The combustor chamber of the gas turbine consists of a combustor liner 1, a combustor liner flow sleeve 2, a combustor tail@3° transition pipe flow sleeve 4, a combustor outer cylinder cover 5. Combustor outer cylinder 6, discharge casing 7, combustor casing 8, turbine casing 9, fuel nozzle 10, spark plug 11, inner barrel 12
It consists of

圧縮機13からの吐出空気は、燃焼器室に流入後尾筒フ
ロースリーブ4に設けた開口部から尾筒3と尾筒フロー
スリーブ4との間に流入し、尾筒3を冷却しつつ、上流
側に流れ、燃焼器ライナフロースリーブ2に案内されて
、燃焼器ライナ1に設けた開口部から内部に流入する。
After the discharge air from the compressor 13 flows into the combustor chamber, it flows between the transition piece 3 and the transition piece flow sleeve 4 through an opening provided in the transition piece flow sleeve 4, cools the transition piece 3, and flows upstream. It flows to the side, is guided by the combustor liner flow sleeve 2, and flows into the interior through an opening provided in the combustor liner 1.

燃焼器ライナ1内で燃料ノズル10からの燃焼を点火栓
11で着火して燃焼させ、生じた高温ガスは燃焼器ライ
ナ11尾筒3の内部を通り、タービン14に漂かれる1
尾筒3は燃焼器ライン1とタービン14との遷移部材と
しての役目を持つため、燃焼器ライン1との取合部の円
形状からタービン14取合部の扇形状まで滑らかな曲面
で継がる三次元的形状となる。このため、尾筒3の断面
積は第2図に示す様に、燃焼器ライナ1側からタービン
14に移るにつれ、減少しつつ変化する。この結果、尾
筒3内の高温主流ガスの流速が第2図に示す断面積の変
化と、形状による向きの変化とにより大きく変化するこ
とになり、尾筒3内の壁面に対する熱伝達率に影響する
ことになる。この熱伝達率と尾筒3の位置との関係を第
3図に示す。この内部主流ガス側の熱伝達率の違いは、
尾筒3の壁メタル温度のバラツキとなって現われる。尾
筒3の壁メタル温度を許容温度以下の均一な値とするに
は、下流側を上流側に比較し、外部からの冷却をより強
化する必要がある。
Combustion from the fuel nozzle 10 is ignited and combusted in the combustor liner 1 by the ignition plug 11, and the generated high-temperature gas passes through the combustor liner 11 and the inside of the transition piece 3, and is floated to the turbine 14.
Since the transition piece 3 serves as a transition member between the combustor line 1 and the turbine 14, it has a smooth curved surface that connects the circular shape of the joint with the combustor line 1 to the fan shape of the joint of the turbine 14. It becomes a three-dimensional shape. Therefore, as shown in FIG. 2, the cross-sectional area of the transition piece 3 decreases and changes as it moves from the combustor liner 1 side to the turbine 14. As a result, the flow velocity of the high-temperature mainstream gas inside the transition piece 3 changes greatly due to the change in cross-sectional area shown in Figure 2 and the change in direction due to the shape, and the heat transfer coefficient to the wall inside the transition piece 3 changes. It will have an impact. The relationship between this heat transfer coefficient and the position of the transition piece 3 is shown in FIG. This difference in heat transfer coefficient on the internal mainstream gas side is
This appears as variations in the temperature of the wall metal of transition tube 3. In order to keep the wall metal temperature of the transition piece 3 at a uniform value below the allowable temperature, it is necessary to further strengthen cooling from the outside compared to the upstream side on the downstream side.

第4図は第1図の燃焼器室のうち、尾筒部分の詳細を示
す拡大断面図である。圧縮機からの冷却用流体は、尾筒
フロースリーブ4に設けた開口部15.16.17から
、尾筒3の冷却のため1尾筒3と尾筒フロースリーブ4
との間に流れ込む構造となっている1尾筒フロースリー
ブ4の開口部16は、尾筒3内の主流ガスの流速が大で
、特に尾筒3壁メタル温度が高くなる範囲に設ける。こ
の範囲は、尾筒フロースリーブ4に配列した複数個の噴
孔からの冷却用流体を尾筒3壁面に衝突させて、インピ
ンジ冷却を行わせる構造とする。
FIG. 4 is an enlarged sectional view showing details of a transition piece portion of the combustor chamber shown in FIG. 1. FIG. Cooling fluid from the compressor flows through openings 15, 16, 17 provided in the transition piece flow sleeve 4 to the transition piece 3 and the transition piece flow sleeve 4 for cooling the transition piece 3.
The opening 16 of the single transition tube flow sleeve 4, which is structured to flow between the transition tube 3 and the transition tube 3, is provided in a range where the flow velocity of the mainstream gas in the transition tube 3 is high and the temperature of the transition tube 3 wall metal is particularly high. In this range, cooling fluid from a plurality of nozzle holes arranged in the transition piece flow sleeve 4 collides with the wall surface of the transition piece 3 to perform impingement cooling.

尾筒フロースリーブ4の開口部15は、尾筒側面部の開
口部17とともに、冷却用流体の残量を尾筒フロースリ
ーブ4内に導入する。開口部15及び17からの冷却用
流体は、開口部16からの冷却用流体と合流し1尾筒3
と尾筒フロースリーブ4との間を上流側(図において左
上方)に向けて流れる。この範囲の尾筒3は、この流れ
によって対流冷却され、尾筒3壁メタル温度を許容温度
以下に保つ。
The opening 15 of the transition piece flow sleeve 4, together with the opening 17 on the side of the transition piece, introduces the remaining amount of the cooling fluid into the transition piece flow sleeve 4. The cooling fluid from the openings 15 and 17 merges with the cooling fluid from the opening 16 to form the transition tube 3.
and the transition piece flow sleeve 4 toward the upstream side (upper left in the figure). The transition piece 3 in this range is convectively cooled by this flow, and the temperature of the wall metal of the transition piece 3 is kept below the permissible temperature.

圧縮機13からの冷却用流体は、燃焼器室に流入後1尾
筒フロースリーブ4の腹側の開口部15゜16には直接
流入し、尾筒フロースリーブ4の側面に設けた開口部1
7には、周方向に配列された各尾筒フロースリーブ間の
隙を通過しつつ流入する。尾筒フロースリーブ4の背側
の開口部15゜16には、各尾筒フロースリーブ4間の
隙間を通過して外周部に回り込んだ後、流入する。第5
図は、圧縮機からの冷却用流体の、尾筒フロースリーブ
4への流れと、尾筒フロースリーブ4の概念図を示し、
(A)は断面側面図、(B)は斜視図、(c)は平面図
である。
After the cooling fluid from the compressor 13 enters the combustor chamber, it directly flows into the openings 15 and 16 on the ventral side of the transition piece flow sleeve 4, and the cooling fluid flows directly into the openings 15 and 16 on the ventral side of the transition piece flow sleeve 4.
7, the fluid flows through gaps between the transition pipe flow sleeves arranged in the circumferential direction. It flows into the openings 15 and 16 on the back side of the transition piece flow sleeve 4 after passing through the gaps between the transition piece flow sleeves 4 and wrapping around the outer periphery. Fifth
The figure shows the flow of cooling fluid from the compressor to the transition piece flow sleeve 4 and a conceptual diagram of the transition piece flow sleeve 4,
(A) is a cross-sectional side view, (B) is a perspective view, and (c) is a plan view.

尾筒フロースリーブ4の両側面のタービン側部は切欠き
構造とする。この切欠き部に対する尾筒3の冷却は圧縮
機からの冷却用流体の流れに而しているため対流冷却が
行われる。さらに、本実施例においては圧縮機からの冷
却用流体が尾筒フロースリーブ4の外周部へ流れる流路
となるところの、周方向尾筒フロースリーブ4間の隙間
を広くすることができるため、燃焼器室内尾筒フロース
リーブ4の外周部と内周部との圧力差をiJzさくする
ことができ、この分、燃焼器としての圧力損失を最小に
することが可能となる。
The turbine side portions on both sides of the transition piece flow sleeve 4 have a notched structure. Since the transition piece 3 is cooled in this notch by the flow of cooling fluid from the compressor, convection cooling is performed. Furthermore, in this embodiment, the gap between the circumferential transition piece flow sleeves 4, which serves as a flow path through which the cooling fluid from the compressor flows to the outer periphery of the transition piece flow sleeve 4, can be widened. The pressure difference between the outer peripheral part and the inner peripheral part of the transition tube flow sleeve 4 in the combustor chamber can be reduced by iJz, and the pressure loss as a combustor can be minimized accordingly.

第6図は燃焼器ライナの圧力損失について、尾筒フロー
スリーブ4を尾筒3の全周に取付けた場合と、尾筒フロ
ースリーブ4の両側面を切欠いた、場合との比較を示す
、この図表(第6図)により。
Figure 6 shows a comparison of pressure loss in the combustor liner between the case where the transition piece flow sleeve 4 is installed around the entire circumference of the transition piece 3 and the case where both sides of the transition piece flow sleeve 4 are cut out. According to the diagram (Figure 6).

両側面切欠構造は、全周構造に比較して車室から尾筒フ
ロースリーブ4までの圧力損失を半減し得ることが理解
される。
It is understood that the double-side notch structure can reduce the pressure loss from the vehicle compartment to the transition piece flow sleeve 4 by half compared to the full circumferential structure.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高効率化のため高温化したガスタービ
ンにおいて、冷却用流体の圧力損失を最小ならしめ、し
かも尾筒及び燃焼器ライナのメタル温度を許容値以内に
保つことが出来、これによって当該ガスタービンの効率
を向上せしめ得るという優れた実用的効果を奏する。
According to the present invention, it is possible to minimize the pressure loss of the cooling fluid in a gas turbine whose temperature has become high in order to improve efficiency, and to maintain the metal temperature of the transition piece and combustor liner within an allowable value. This has an excellent practical effect of improving the efficiency of the gas turbine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における燃焼器室の断面図で
ある。第2図は尾筒の断面積変化を示す図表、第3図は
尾筒の熱伝達率変化を示す図表である。第4図は尾筒ま
わりの詳細を示す部分断面図、第5図は尾筒の概念図、
第6図は燃焼器室内フロースリーブ構造の圧力損失を示
す図表である。 1・・・燃焼器ライナ、2・・・燃焼器ライナフロース
リーブ、3・・・尾筒、4・・・尾筒フロースリーブ、
5・・・燃焼器外筒カバー、6・・・燃焼器外筒、7・
・・吐出ケーシング、8・・・燃焼器ケーシング、9・
・・タービンケーシング、10・・・燃料ノズル、11
・・・点火栓、12・・・インナバーレル、13・・・
圧縮機、14・・・タービン、15,16.17・・・
尾筒フロースリーブ開口部。
FIG. 1 is a sectional view of a combustor chamber in one embodiment of the present invention. FIG. 2 is a chart showing changes in the cross-sectional area of the transition piece, and FIG. 3 is a chart showing changes in the heat transfer coefficient of the transition piece. Figure 4 is a partial sectional view showing details around the transition piece, Figure 5 is a conceptual diagram of the transition piece,
FIG. 6 is a chart showing the pressure loss of the flow sleeve structure inside the combustor. 1... Combustor liner, 2... Combustor liner flow sleeve, 3... Transition piece, 4... Transition piece flow sleeve,
5... Combustor outer cylinder cover, 6... Combustor outer cylinder, 7.
...Discharge casing, 8...Combustor casing, 9.
... Turbine casing, 10 ... Fuel nozzle, 11
...Spark plug, 12...Inner barrel, 13...
Compressor, 14... Turbine, 15, 16.17...
Tail tube flow sleeve opening.

Claims (1)

【特許請求の範囲】[Claims] 1、燃焼器ライナとタービン部とを連結する尾筒を冷却
するため、該尾筒の外周側に対向・離間せしめてフロー
スリーブを設置した構造のガスタービン燃焼器において
、(a)尾筒の下流側の区域内の背側と腹側とに対向す
る部分のフロースリーブに噴孔を配列して、該噴孔から
噴出する冷却用流体を尾筒壁面に衝突させてインピンジ
冷却を行う構造とするとともに、衝突した冷部用流体が
下流側に流れて対流冷却を行う構造とし、(b)前記尾
筒の下流側の両側面に対向する部分のフロースリーブを
切り欠いて冷却用流体による対流冷却を行う構造とし、
(c)フロースリーブの上記以外の部分は、該フロース
リーブと尾筒との間に冷却用流体を流通せしめる構造と
したことを特徴とする、ガスタービン燃焼器。
1. In a gas turbine combustor having a structure in which a flow sleeve is installed facing and spaced apart from the outer circumferential side of the transition piece in order to cool the transition piece that connects the combustor liner and the turbine section, (a) Nozzle holes are arranged in the flow sleeve in a portion facing the dorsal side and the ventral side in the downstream area, and the cooling fluid jetted from the nozzle holes collides with the wall surface of the transition tube to perform impingement cooling. At the same time, the collided cold section fluid flows downstream to perform convection cooling, and (b) the flow sleeves at the portions facing both downstream sides of the transition piece are cut out to perform convection cooling by the cooling fluid. The structure is such that
(c) A gas turbine combustor characterized in that a portion of the flow sleeve other than the above is structured to allow cooling fluid to flow between the flow sleeve and the transition piece.
JP61288975A 1986-12-05 1986-12-05 Gas turbine combustor Expired - Lifetime JPH0663648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61288975A JPH0663648B2 (en) 1986-12-05 1986-12-05 Gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61288975A JPH0663648B2 (en) 1986-12-05 1986-12-05 Gas turbine combustor

Publications (2)

Publication Number Publication Date
JPS63143422A true JPS63143422A (en) 1988-06-15
JPH0663648B2 JPH0663648B2 (en) 1994-08-22

Family

ID=17737220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61288975A Expired - Lifetime JPH0663648B2 (en) 1986-12-05 1986-12-05 Gas turbine combustor

Country Status (1)

Country Link
JP (1) JPH0663648B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031015A (en) * 1989-05-26 1991-01-07 Toshiba Corp Gas turbine combustion device
US7310938B2 (en) * 2004-12-16 2007-12-25 Siemens Power Generation, Inc. Cooled gas turbine transition duct
JP2008267799A (en) * 2007-04-17 2008-11-06 General Electric Co <Ge> Method and device for facilitating reduction of combustor pressure drop
WO2010038505A1 (en) * 2008-10-01 2010-04-08 三菱重工業株式会社 Connecting structure for combustor, combustor tail pipe, method of designing combustor tail pipe, and gas turbine
JP2010084704A (en) * 2008-10-01 2010-04-15 Mitsubishi Heavy Ind Ltd Combustor connection structure and gas turbine
JP2012180843A (en) * 2012-06-20 2012-09-20 Mitsubishi Heavy Ind Ltd Design method of combustor tail pipe
JP2014181902A (en) * 2013-03-18 2014-09-29 General Electric Co <Ge> System for providing fuel to combustor
JP6345331B1 (en) * 2017-11-20 2018-06-20 三菱日立パワーシステムズ株式会社 Combustion cylinder and combustor of gas turbine, and gas turbine
JPWO2017077955A1 (en) * 2015-11-05 2018-07-26 三菱日立パワーシステムズ株式会社 Combustion cylinder, gas turbine combustor, and gas turbine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101438106B1 (en) * 2011-12-30 2014-09-12 두산중공업 주식회사 Combustion apparatus for gas turbin

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956618A (en) * 1982-09-27 1984-04-02 Toshiba Corp Transition piece for gas turbine
JPS59170622A (en) * 1983-03-16 1984-09-26 Hitachi Ltd Combustor for gas turbine
JPS62102029A (en) * 1985-10-30 1987-05-12 Toshiba Corp Gas turbine combustion unit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956618A (en) * 1982-09-27 1984-04-02 Toshiba Corp Transition piece for gas turbine
JPS59170622A (en) * 1983-03-16 1984-09-26 Hitachi Ltd Combustor for gas turbine
JPS62102029A (en) * 1985-10-30 1987-05-12 Toshiba Corp Gas turbine combustion unit

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031015A (en) * 1989-05-26 1991-01-07 Toshiba Corp Gas turbine combustion device
US7310938B2 (en) * 2004-12-16 2007-12-25 Siemens Power Generation, Inc. Cooled gas turbine transition duct
JP2008267799A (en) * 2007-04-17 2008-11-06 General Electric Co <Ge> Method and device for facilitating reduction of combustor pressure drop
US8448451B2 (en) 2008-10-01 2013-05-28 Mitsubishi Heavy Industries, Ltd. Height ratios for a transition piece of a combustor
JP2010084704A (en) * 2008-10-01 2010-04-15 Mitsubishi Heavy Ind Ltd Combustor connection structure and gas turbine
KR101132853B1 (en) * 2008-10-01 2012-04-03 미츠비시 쥬고교 가부시키가이샤 Combustor connection structure, combustor transition piece, design method of the combustor transition piece and gas turbine
WO2010038505A1 (en) * 2008-10-01 2010-04-08 三菱重工業株式会社 Connecting structure for combustor, combustor tail pipe, method of designing combustor tail pipe, and gas turbine
JP2010085052A (en) * 2008-10-01 2010-04-15 Mitsubishi Heavy Ind Ltd Combustor tail pipe, designing method therefor, and gas turbine
JP2012180843A (en) * 2012-06-20 2012-09-20 Mitsubishi Heavy Ind Ltd Design method of combustor tail pipe
JP2014181902A (en) * 2013-03-18 2014-09-29 General Electric Co <Ge> System for providing fuel to combustor
JPWO2017077955A1 (en) * 2015-11-05 2018-07-26 三菱日立パワーシステムズ株式会社 Combustion cylinder, gas turbine combustor, and gas turbine
JP6345331B1 (en) * 2017-11-20 2018-06-20 三菱日立パワーシステムズ株式会社 Combustion cylinder and combustor of gas turbine, and gas turbine
WO2019097947A1 (en) * 2017-11-20 2019-05-23 三菱日立パワーシステムズ株式会社 Combustion cylinder for gas turbine, combustor, and gas turbine
JP2019095109A (en) * 2017-11-20 2019-06-20 三菱日立パワーシステムズ株式会社 Combustion cylinder of gas turbine, combustor and gas turbine
CN111108327A (en) * 2017-11-20 2020-05-05 三菱日立电力系统株式会社 Combustion cylinder of gas turbine, combustor and gas turbine
CN111108327B (en) * 2017-11-20 2021-09-14 三菱动力株式会社 Combustion cylinder of gas turbine, combustor and gas turbine
US11774101B2 (en) 2017-11-20 2023-10-03 Mitsubishi Heavy Industries, Ltd. Combustion tube and combustor for gas turbine, and gas turbine

Also Published As

Publication number Publication date
JPH0663648B2 (en) 1994-08-22

Similar Documents

Publication Publication Date Title
US7448215B2 (en) Combustion chamber for a gas turbine engine
JP4433529B2 (en) Multi-hole membrane cooled combustor liner
EP0471437B1 (en) Gas turbine engine combustor
US5261223A (en) Multi-hole film cooled combustor liner with rectangular film restarting holes
CA1113262A (en) Combustor construction
JP4156245B2 (en) Slot-cooled combustor liner
US7506512B2 (en) Advanced effusion cooling schemes for combustor domes
US5396763A (en) Cooled spraybar and flameholder assembly including a perforated hollow inner air baffle for impingement cooling an outer heat shield
US4380906A (en) Combustion liner cooling scheme
EP1010944B1 (en) Cooling and connecting device for a liner of a gas turbine engine combustor
US7549290B2 (en) Acoustic damper
US6227798B1 (en) Turbine nozzle segment band cooling
US5233828A (en) Combustor liner with circumferentially angled film cooling holes
CA2891014C (en) Combustor heat shield
JP4540792B2 (en) Venturi tube for swirl cup package of gas turbine combustor with internal water injection
JPS6335897B2 (en)
JPH0752014B2 (en) Gas turbine combustor
KR20010085488A (en) Combustor liner cooling thimbles and related method
JP2010203439A (en) Effusion cooled one-piece can combustor
EP2375160A2 (en) Angled seal cooling system
KR20010072291A (en) Gas turbine steam cooled vane
JP3590666B2 (en) Gas turbine combustor
EP2230456A2 (en) Combustion liner with mixing hole stub
JPS63143422A (en) Gas turbine combustor
JPS621174B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term