JP2010203439A - Effusion cooled one-piece can combustor - Google Patents

Effusion cooled one-piece can combustor Download PDF

Info

Publication number
JP2010203439A
JP2010203439A JP2010041190A JP2010041190A JP2010203439A JP 2010203439 A JP2010203439 A JP 2010203439A JP 2010041190 A JP2010041190 A JP 2010041190A JP 2010041190 A JP2010041190 A JP 2010041190A JP 2010203439 A JP2010203439 A JP 2010203439A
Authority
JP
Japan
Prior art keywords
combustor
transition piece
aperture
inlet
apertures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010041190A
Other languages
Japanese (ja)
Inventor
Ronald James Chila
ロナルド・ジェームス・チラ
Kevin W Mcmahan
ケビン・ウェストン・マクマハン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2010203439A publication Critical patent/JP2010203439A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/005Combined with pressure or heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/46Combustion chambers comprising an annular arrangement of several essentially tubular flame tubes within a common annular casing or within individual casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03041Effusion cooled combustion chamber walls or domes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means for cooling a component of a gas turbine and effusion cooling of an one-piece can combustor. <P>SOLUTION: A combustor for an industrial turbine includes a single transition piece transitioning directly from a combustor head end to a turbine inlet. The transition piece includes an inner surface and an outer surface. The inner surface bounds an interior space for combusted gas flow from the combustor head end to the turbine inlet. The outer surface at least partially defines an area for compressor discharge air flow. The transition piece includes a plurality of apertures configured to allow the compressor discharge air to flow into the interior space. Each of the plurality of apertures extends from an inlet portion on the outer surface to an outlet portion on the inner surface. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、総括的に、ガスタービンの構成部品を冷却する手段に関し、より具体的には、単一構成缶型燃焼器の噴流冷却に関する。   The present invention relates generally to means for cooling gas turbine components, and more specifically to jet cooling of a single component can combustor.

ガスタービンは、タービン入口温度を最大値にまで引き上げることができる場合に極めて効率的に動作することができる。しかしながら、ここから燃焼ガスが発生してタービン入口に流入することになる燃焼室は、1500°Fを遙かに上回る動作温度に達し、長期にわたる使用期間において最先端の合金でさえこのような温度に耐えることはできない。従って、タービンの性能及び寿命は、極端な加熱条件に曝されるタービン構成部品に提供できる冷却の程度に大きく依存する。   A gas turbine can operate very efficiently if the turbine inlet temperature can be raised to a maximum value. However, the combustion chambers from which combustion gases are generated and flow into the turbine inlet reach operating temperatures well above 1500 ° F., even with the most advanced alloys over long periods of use. Cannot withstand. Thus, turbine performance and lifetime are highly dependent on the degree of cooling that can be provided to turbine components that are exposed to extreme heating conditions.

米国特許第7,082,766号公報US Pat. No. 7,082,766

圧縮機吐出空気を使用してタービン構成部品を冷却する一般的な概念は、当該技術分野で公知である。しかしながら、タービン設計の開発及び変形形態には、タービン構成部品向けの冷却機構が実装された特定の構造を必ずしも伴っていない。従って、新規に開発されたタービン設計に冷却機構を具現化させる必要性がある。   The general concept of cooling turbine components using compressor discharge air is known in the art. However, turbine design developments and variations do not necessarily involve a specific structure in which a cooling mechanism for turbine components is implemented. Accordingly, there is a need to implement a cooling mechanism in a newly developed turbine design.

以下は、本発明の幾つかの例示的な態様の基本的理解を提供するために本発明の簡易的な要約を提示している。この要約は、本発明の広範囲に及ぶ概要ではない。更に、この要約は、本発明の重要な要素を特定すること、及び本発明の技術的範囲を正確に説明することを意図するものではない。この要約の唯一の目的は、後述する詳細な説明の前置きとして本発明の幾つかの概念を簡易的な形態で示すことである。   The following presents a simplified summary of the invention in order to provide a basic understanding of some exemplary aspects of the invention. This summary is not an extensive overview of the invention. Furthermore, this summary is not intended to identify key elements of the invention or to accurately describe the scope of the invention. Its sole purpose is to present some concepts of the invention in a simplified form as a prelude to the more detailed description that is presented later.

本発明による上記及び他の態様を達成するために、燃焼器ヘッド端部からタービン入口に直接移行する単一移行部品を含む、産業用タービンための缶型燃焼器が提供される。移行部品は、圧縮機吐出空気流のための外部空間と、燃焼ガス流のための内部空間とを定める。移行部品は、外部空間の境界を定める外表面と内部空間の境界を定める内表面とを含む。移行部品は、圧縮機吐出空気流が内部空間に流入できるように構成された複数のアパーチャを含む。複数のアパーチャの各々は、外表面上の入口部分から内表面上の出口部分に延びる。   To achieve the above and other aspects in accordance with the present invention, a can combustor for an industrial turbine is provided that includes a single transition piece that transitions directly from the combustor head end to the turbine inlet. The transition piece defines an external space for the compressor discharge air flow and an internal space for the combustion gas flow. The transition piece includes an outer surface that defines an outer space boundary and an inner surface that defines an inner space boundary. The transition piece includes a plurality of apertures configured to allow the compressor discharge air flow to flow into the interior space. Each of the plurality of apertures extends from an inlet portion on the outer surface to an outlet portion on the inner surface.

本発明の別の態様によれば、産業用タービンエンジンは、燃焼セクションと、燃焼セクションの下流側にある空気吐出セクションと、燃焼セクションと空気吐出セクションとの間の移行領域と、燃焼器移行部品とを含む。燃焼器移行部品は、燃焼セクションと移行領域とを定める。移行部品は、燃焼ガス流を空気吐出セクションに対応するタービンの第1段に運ぶように適合され、圧縮機吐出空気流のための外部空間及び燃焼ガス流のための内部空間を定める。移行部品は、外部空間の境界を定める外表面と、内部空間の境界を定める内表面とを含み、圧縮機吐出空気流が内部空間に流入できるように構成された複数のアパーチャを含む。複数のアパーチャの各々は、外表面上の入口部分から内表面上の出口部分に延びる。   According to another aspect of the invention, an industrial turbine engine includes a combustion section, an air discharge section downstream of the combustion section, a transition region between the combustion section and the air discharge section, and a combustor transition component. Including. The combustor transition piece defines a combustion section and a transition region. The transition piece is adapted to carry the combustion gas stream to the first stage of the turbine corresponding to the air discharge section and defines an external space for the compressor discharge air stream and an internal space for the combustion gas stream. The transition piece includes an outer surface that defines an outer space boundary and an inner surface that defines an inner space boundary, and includes a plurality of apertures configured to allow compressor discharge airflow to flow into the inner space. Each of the plurality of apertures extends from an inlet portion on the outer surface to an outlet portion on the inner surface.

本発明を実施することができる単一構成缶型燃焼器の例示的な実施形態の概略断面図。1 is a schematic cross-sectional view of an exemplary embodiment of a single configuration can combustor in which the present invention can be practiced. 噴流孔を備えた移行部品の拡大斜視図。The expansion perspective view of the transition component provided with the jet hole. 移行部品の噴流孔を横断する断面図。Sectional drawing which crosses the jet hole of a transition component.

本発明の前述及び他の態様は、添付図を参照して以下の説明を読むと、本発明に関連する当業者には明らかになるであろう。   The foregoing and other aspects of the present invention will become apparent to those skilled in the art to which the present invention relates upon reading the following description with reference to the accompanying drawings.

本発明の1つ又はそれ以上の態様を組込んだ例示的な実施形態を説明し且つ図面において例示する。これらの図示した実施例は、本発明を限定することを意図するものではない。例えば、本発明の1つ又はそれ以上の態様は、他の実施形態において利用することができ、更に、他のタイプの装置においても利用することができる。   Illustrative embodiments incorporating one or more aspects of the invention are described and illustrated in the drawings. These illustrated embodiments are not intended to limit the invention. For example, one or more aspects of the present invention can be utilized in other embodiments and can also be utilized in other types of devices.

図1は、本発明を実施することができる単一構成の燃焼器10の実施形態を示す。この図示の例示的な実施形態は、缶型環状逆流燃焼器10であるが、本発明は、他のタイプの燃焼器にも適用可能である。燃焼器10は、空気と燃料とを限定された空間内で燃焼し、且つ結果として生じた燃焼ガスをベーンの固定列を通して吐出することによって、タービンの回転運動を駆動するのに必要なガスを発生する。動作中、圧縮機からの吐出空気は、燃焼器10の外側を通り過ぎると方向を反転し、タービンに向かう途中で再び燃焼器10に流入する。加圧空気及び燃料は燃焼室内で燃焼される。燃焼ガスは、移行部品120を介してタービンセクションに高速で流入する。吐出空気が、移行部品120の外表面上を流れるときに、燃焼器構成部品に対流冷却を提供する。   FIG. 1 illustrates an embodiment of a single configuration combustor 10 in which the present invention may be implemented. The illustrated exemplary embodiment is a can-type annular backflow combustor 10, but the invention is applicable to other types of combustors. The combustor 10 burns air and fuel in a limited space, and discharges the resulting combustion gas through a fixed train of vanes, thereby providing the gas necessary to drive the rotational motion of the turbine. appear. During operation, the discharge air from the compressor reverses direction as it passes the outside of the combustor 10 and flows again into the combustor 10 on the way to the turbine. Pressurized air and fuel are combusted in the combustion chamber. Combustion gas enters the turbine section at high speed via the transition piece 120. As discharge air flows over the outer surface of the transition piece 120, it provides convective cooling to the combustor components.

図1において、移行部品120は、円形の燃焼器ヘッド端部100からタービンアニュラスセクタ102(符号16で示すタービンの第1段に相当する)に単一構成で直接移行する。単一構成の移行部品120は、組立て又は製造を容易にするために、共に溶接又は接合される2つの半部分又は複数の構成部品から形成することができる。スリーブ129はまた、円形燃焼器ヘッド端部100から移行部品120の後方フレーム128に単一構成で直接移行する。単一構成のスリーブ129は、2つの半部分から形成され、組立てを容易にするため共に溶接又は接合することができる。スリーブ129と後方フレーム128との間の接合は、冷却アニュラス124に対して実質的に閉鎖した端部を形成する。また、「単一」とは、要素を接合するために何らかの適切な手段に基づいて共に接合された複数の部品、及び/又は単体構造、及び/又は単一構成、及び同様のものを意味する。   In FIG. 1, the transition piece 120 transitions directly from the circular combustor head end 100 to the turbine annulus sector 102 (corresponding to the first stage of the turbine, indicated at 16) in a single configuration. The single component transition piece 120 can be formed from two halves or multiple components that are welded or joined together to facilitate assembly or manufacture. The sleeve 129 also transitions directly from the circular combustor head end 100 to the rear frame 128 of the transition piece 120 in a single configuration. The single-piece sleeve 129 is formed from two halves and can be welded or joined together to facilitate assembly. The joint between the sleeve 129 and the rear frame 128 forms a substantially closed end with respect to the cooling annulus 124. Also, “single” means a plurality of parts and / or unitary structures and / or a single configuration, and the like, joined together based on any suitable means for joining the elements. .

図1において、移行部品120の外表面にわたって対流処理された吐出空気の環状流がある。例示的な実施形態において、吐出空気はスリーブ129を通って流れ、該スリーブ129が環状ギャップを形成して、高い伝熱係数を生成するよう流速を十分に高速にできるようにする。スリーブ129は、移行部品120を囲み、これらの間にフローアニュラス124を形成する。アニュラス124において移動する直交流冷却空気は、矢印で示すように上流側に流れ続ける。代替の実施形態において、スリーブ129は、燃焼器ヘッド端部100から後方フレーム128に完全には延びることができない。移行部品120の円形領域は、図2から図3においてより詳細に検討する。   In FIG. 1, there is an annular flow of discharged air that has been convectively treated over the outer surface of the transition piece 120. In an exemplary embodiment, the discharge air flows through a sleeve 129 that forms an annular gap that allows the flow rate to be sufficiently high to produce a high heat transfer coefficient. A sleeve 129 surrounds the transition piece 120 and forms a flow annulus 124 therebetween. The cross-flow cooling air moving in the annulus 124 continues to flow upstream as indicated by arrows. In an alternative embodiment, the sleeve 129 cannot extend completely from the combustor head end 100 to the rear frame 128. The circular area of the transition piece 120 will be discussed in more detail in FIGS.

従来の燃焼器において、燃焼器ライナ及びフロースリーブは一般に、移行部品及びスリーブそれぞれの上流側で見られる。しかしながら、図1の単一構成缶型燃焼器において、燃焼器ライナ及びフロースリーブは、より短い長さの燃焼器を提供するために排除されている。単一構成缶型燃焼器の主要な構成部品は、円形キャップ134、複数の燃料ノズル138を支持する端部カバー136、移行部品120、及びスリーブ129を含み、これらは当該技術分野で公知である。例えば、単一構成缶型燃焼器のより詳細な説明は、Widener他に付与された米国特許第7,082,766号に見られる。   In conventional combustors, the combustor liner and flow sleeve are generally found upstream of the transition piece and sleeve, respectively. However, in the single configuration can combustor of FIG. 1, the combustor liner and flow sleeve have been eliminated to provide a shorter length combustor. The major components of a single component can combustor include a circular cap 134, an end cover 136 that supports a plurality of fuel nozzles 138, a transition piece 120, and a sleeve 129, which are known in the art. . For example, a more detailed description of a single configuration can combustor can be found in US Pat. No. 7,082,766 issued to Widener et al.

図2は、分離した状態で、複数のアパーチャ又は噴流孔200と共に形成された単一構成の移行部品120の実施形態を示す。図2は、単に説明を簡単にする目的で燃焼器ヘッド端部100付近のアパーチャ200の1つの例示的な配列を示しており、この例示的な配列は、本発明の限定と解釈してはならない点に留意されたい。従って、アパーチャ200の形成は、移行部品120の他の選択領域にあるか、又はその領域にまで広がり、或いは外表面全体にわたることができる。アパーチャ200が形成される選択領域は、タービンの動作中に他の領域よりも相対的に高温になる傾向があり、従って、冷却を更に行うことで恩恵を受けることができる移行部品120上のスポットとすることができる。或いはまた、アパーチャ200は、円周方向に分散した様態で形成することができ、又は移行部品120の上流部分から下流部分に延びることができる。更に図2は、複数のアパーチャ200をパターン化することができる複数の可能な配列の1つのみを示している。例えばアパーチャ200は、互いの周囲で直交方向に配置することができる。別の実施例において、列をなした各アパーチャ200は、隣接する列のアパーチャに対し僅かにオフセットすることができる。配列のかかる多様性は、本発明の技術的範囲内にある。   FIG. 2 illustrates an embodiment of a single configuration transition piece 120 formed with a plurality of apertures or jets 200 in a separated state. FIG. 2 shows one exemplary arrangement of apertures 200 near the combustor head end 100 for ease of explanation only, which is not to be construed as a limitation of the present invention. Note that this is not possible. Thus, the formation of the aperture 200 can be in another selected region of the transition piece 120, or can extend to that region, or can span the entire outer surface. The selected area in which the aperture 200 is formed tends to be relatively hotter than other areas during turbine operation, and thus can be a spot on the transition piece 120 that can benefit from further cooling. It can be. Alternatively, the apertures 200 can be formed in a circumferentially distributed manner or can extend from an upstream portion to a downstream portion of the transition piece 120. Further, FIG. 2 shows only one of a plurality of possible arrangements in which a plurality of apertures 200 can be patterned. For example, the apertures 200 can be arranged orthogonally around each other. In another embodiment, each aperture 200 in a row can be slightly offset relative to the aperture in the adjacent row. Such diversity of sequences is within the scope of the present invention.

図3は、移行部品120の一部である壁300を通って形成されたアパーチャ200を通る断面図を示す。この場合もまた、説明を簡単にするために、限定数のアパーチャ200が移行部品120上に示されている。図3は、壁300の外表面300a及び内表面300bを示す。壁上の領域は、移行部品120の外部空間302であり、壁下の領域は、移行部品120の内部空間304である。上述のように、実施形態又は移行部品120の部分に応じて、スリーブ129は、移行部品120に隣接して存在する場合があり、又は存在しない場合もあり、従って、フローアニュラス124がこの領域に形成される場合、又は形成されない場合がある。スリーブ129が存在する場合、スリーブ129は、外部空間302の一部であり、フローアニュラス124は、スリーブ129と移行部品120との間に形成されることになる。   FIG. 3 shows a cross-sectional view through an aperture 200 formed through a wall 300 that is part of the transition piece 120. Again, a limited number of apertures 200 are shown on the transition piece 120 for ease of explanation. FIG. 3 shows the outer surface 300 a and the inner surface 300 b of the wall 300. The area on the wall is the external space 302 of the transition piece 120, and the area below the wall is the internal space 304 of the transition piece 120. As described above, depending on the embodiment or portion of the transition piece 120, the sleeve 129 may or may not be adjacent to the transition piece 120, so that the flow annulus 124 is in this region. It may or may not be formed. When sleeve 129 is present, sleeve 129 is part of outer space 302 and flow annulus 124 will be formed between sleeve 129 and transition piece 120.

図3の右側は、タービンの上流領域に相当し、図3の左側は、タービンの下流領域に相当する。従って、高温ガスから構成される流れHは、燃焼室から発生し、移行部品120の内部空間304の下流側に配向される。燃焼高温ガスよりも低温の圧縮吐出空気から構成される流れCは、圧縮機から発生するが、タービンの下流領域から移行部品120に接近し、移行部品120の外部空間302の上流側に移動し、これは、通常の缶型環状逆流燃焼器と同様である。   The right side of FIG. 3 corresponds to the upstream region of the turbine, and the left side of FIG. 3 corresponds to the downstream region of the turbine. Thus, a flow H composed of hot gas is generated from the combustion chamber and is directed downstream of the interior space 304 of the transition piece 120. The flow C composed of compressed discharge air having a temperature lower than that of the combustion hot gas is generated from the compressor, but approaches the transition part 120 from the downstream region of the turbine and moves to the upstream side of the outer space 302 of the transition part 120. This is the same as a normal can-type annular backflow combustor.

アパーチャ200は、壁300の外表面300aから内表面300bまで延びる。本発明は、壁300に垂直に形成されたアパーチャ200、及び壁300に角度θで形成されたアパーチャ200を含む。図3において、アパーチャ200は、該アパーチャ200の出口部分200bがアパーチャ200の入口部分200aに対して下流側又は後方になるように角度θで示される。一実施形態において、角度θは、アパーチャ200の長手方向軸線200c及び壁300の接線方向であり且つ下流側に向けられる方向202によって形成される。角度θは、30度の鋭角とすることができ、20から35度の範囲とすることができる。しかしながら、より小さな又はより大きな他の角度も企図される。図3において、下流側接線は左を指している。第2のアパーチャ200は実質的に円筒形であるが、アパーチャ200が壁300に垂直でない場合には、入口部分200a及び出口部分200bは楕円形を有することになる。しかしながら、アパーチャ200、400は、円形ではなく、例えば多角形などの断面を有することができる。   The aperture 200 extends from the outer surface 300a of the wall 300 to the inner surface 300b. The present invention includes an aperture 200 formed perpendicular to the wall 300 and an aperture 200 formed in the wall 300 at an angle θ. In FIG. 3, the aperture 200 is shown at an angle θ such that the outlet portion 200b of the aperture 200 is downstream or rearward with respect to the inlet portion 200a of the aperture 200. In one embodiment, the angle θ is formed by a longitudinal axis 200c of the aperture 200 and a direction 202 that is tangential to the wall 300 and directed downstream. The angle θ can be an acute angle of 30 degrees and can be in the range of 20 to 35 degrees. However, other smaller or larger angles are also contemplated. In FIG. 3, the downstream tangent points to the left. The second aperture 200 is substantially cylindrical, but if the aperture 200 is not perpendicular to the wall 300, the inlet portion 200a and the outlet portion 200b will have an elliptical shape. However, the apertures 200 and 400 are not circular, and may have a cross section such as a polygon.

アパーチャ200の別の変形形態は、入口部分200aの角度位置が、移行部品120の円周上の出口部分200bの角度位置と異なることができるものである。更にアパーチャ200の出口部分200bは、アパーチャ200の入口部分200aに対して上流側又は前方側とすることができ、これによりアパーチャ200の長手方向軸線と方向202との間に鈍角を生成する。   Another variation of the aperture 200 is that the angular position of the inlet portion 200 a can be different from the angular position of the outlet portion 200 b on the circumference of the transition piece 120. Further, the outlet portion 200b of the aperture 200 can be upstream or forward with respect to the inlet portion 200a of the aperture 200, thereby creating an obtuse angle between the longitudinal axis of the aperture 200 and the direction 202.

図3において、アパーチャ200は、入口部分から出口部分まで一定の直径を備えたほぼ円筒の幾何形状を有する。一実施形態において、直径は0.03インチとすることができ、或いは、0.02インチから0.04インチの範囲とすることができる。勿論、アパーチャ200の他の直径も企図される。例えば、アパーチャ200は、壁300を通して直径が漸次的に増加又は減少することができる。   In FIG. 3, the aperture 200 has a generally cylindrical geometry with a constant diameter from the inlet portion to the outlet portion. In one embodiment, the diameter can be 0.03 inches or in the range of 0.02 inches to 0.04 inches. Of course, other diameters of the aperture 200 are also contemplated. For example, the aperture 200 can gradually increase or decrease in diameter through the wall 300.

アパーチャ200は、レーザドリル加工又はコスト及び精度などの要因に基づいて選択された他の機械加工法によって、移行部品120の壁300を貫通して形成することができる。   The aperture 200 can be formed through the wall 300 of the transition piece 120 by laser drilling or other machining methods selected based on factors such as cost and accuracy.

図3において、流れCは、外表面300aを通り過ぎる間に熱を除去することによって、移行部品120の対流冷却を行う。アパーチャ又は噴流孔200によって生成される流れEは、移行部品120の全体又は選択領域において空気ジェットを提供し、これは、冷却空気がそこで内表面に接触するアパーチャ200を通過するときに移行部品120を冷却する。噴流冷却は浸出冷却の一形態である。壁300に垂直なもの以外のアパーチャは、長さの増大に起因して、壁に垂直なアパーチャに比べてより大きな内表面を有し、その結果、熱伝達が延長され、移行部品120のより大きな冷却を達成することができる。更に、冷却空気がアパーチャ200の出口部分200bから出た後、冷却空気の層又は膜が、移行部品120の壁300の内表面300bに隣接して形成される。内表面300b上のかかる冷却空気の層の形成は、移行部品120を更に冷却する。冷却空気により必要とされる方向の変化の程度が低減されるので、直角のアパーチャに比べ、角度付きアパーチャによってかかる層の形成が促進される。しかしながら本発明は、直角及び角度付きのアパーチャの2つの変形形態を含む。内表面上に形成された膜による冷却は、孔の大きさ及び角度が低減されるにつれて改善することができる。しかしながら、孔が小さくなるほど、不純物を遮断する傾向がより強くなる。相対的に、より大きな孔は、冷却空気ジェットによって高温ガスストリームの過度の浸透を引き起こし、タービンの効率を低減させる可能性がある。従って、かかる利点及び欠点は、噴流孔の幾何形状を決定する際に全体的に考慮する必要がある。   In FIG. 3, stream C provides convective cooling of the transition piece 120 by removing heat while passing the outer surface 300a. The flow E generated by the aperture or jet hole 200 provides an air jet in the entire or selected area of the transition piece 120, which passes through the aperture 200 where it contacts the inner surface. Cool down. Jet cooling is a form of leaching cooling. Apertures other than those perpendicular to the wall 300 have a larger inner surface compared to the apertures perpendicular to the wall due to the increased length so that heat transfer is extended and more of the transition piece 120 Great cooling can be achieved. Further, after cooling air exits the exit portion 200b of the aperture 200, a layer or film of cooling air is formed adjacent to the inner surface 300b of the wall 300 of the transition piece 120. Formation of such a layer of cooling air on the inner surface 300b further cools the transition piece 120. Since the degree of change in direction required by the cooling air is reduced, the formation of such a layer is facilitated by the angled aperture compared to the right angle aperture. However, the present invention includes two variations of right angle and angled apertures. Cooling by the film formed on the inner surface can be improved as the pore size and angle are reduced. However, the smaller the pores, the stronger the tendency to block impurities. In comparison, larger holes can cause excessive penetration of the hot gas stream by the cooling air jet, reducing turbine efficiency. Accordingly, such advantages and disadvantages need to be considered overall when determining the geometry of the jet holes.

上述の例示的な実施形態に関して本発明を説明してきた。本明細書を読み理解すると、修正及び代替形態が想起されるであろう。本発明の1つ又はそれ以上の態様を組み込む例示的な実施形態は、添付の請求項の技術的範囲内にある限り、かかる全ての修正及び代替を含むものとする。   The invention has been described with reference to the exemplary embodiments described above. Modifications and alternatives will occur to others upon reading and understanding this specification. Exemplary embodiments incorporating one or more aspects of the invention are intended to include all such modifications and alternatives as long as they are within the scope of the appended claims.

10 単一構成燃焼器
10 缶型環状逆流燃焼器
10 燃焼器(2)
10 燃焼器
100 円形燃焼器ヘッド端部(2)
100 燃焼器ヘッド端部(2)
102 タービンアニュラスセクタ
120 移行部品(29)
120 単一構成移行部品
120 単一構成移行部品
124 冷却アニュラス
124 フローアニュラス(3)
124 アニュラス
128 後方フレーム(3)
129 スリーブ(10)
129 単一構成スリーブ
134 円形キャップ
136 端部カバー
138 複数の燃料ノズル
200 噴流孔(2)
200 アパーチャ(23)
200 アパーチャの選択領域
200 複数のアパーチャ
200 各アパーチャ
200 限定数のアパーチャ
200 アパーチャを含む
200 第2のアパーチャ
200a 入口部分(2)
200a 入口部分(2)
200b 出口部分(2)
200b 出口部分(3)
200c 長手方向軸線
202 方向(2)
300 壁(11)
300a 外表面(3)
300b 内表面(4)
302 外部空間(3)
304 内部空間(2)
DESCRIPTION OF SYMBOLS 10 Single component combustor 10 Can-type annular backflow combustor 10 Combustor
10 Combustor 100 Circular Combustor Head End (2)
100 Combustor head end (2)
102 Turbine annulus sector 120 Transition parts (29)
120 single component transition part 120 single component transition part 124 cooling annulus 124 flow annulus (3)
124 Annulus 128 Rear frame (3)
129 sleeve (10)
129 Single configuration sleeve 134 Circular cap 136 End cover 138 Multiple fuel nozzles 200 Jet holes (2)
200 Aperture (23)
200 Aperture Selection Area 200 Multiple Apertures 200 Each Aperture 200 A Limited Number of Apertures 200 200 Including Apertures Second Aperture 200a Inlet Portion (2)
200a Entrance part (2)
200b Exit part (2)
200b Exit part (3)
200c Longitudinal axis 202 direction (2)
300 walls (11)
300a Outer surface (3)
300b inner surface (4)
302 External space (3)
304 Internal space (2)

Claims (15)

燃焼器ヘッド端部(100)からタービン入口(16)に直接移行する単一移行部品(120)を備えた産業用タービンの燃焼器であって、
前記移行部品(120)が、内表面(300b)と外表面(300a)とを含み、該内表面(300b)が、前記燃焼器ヘッド端部(100)から前記タービン入り口(16)への燃焼ガス流のための内部空間(304)の境界を定め、前記外表面(300a)が、圧縮機吐出空気流(C)のための領域(302)を少なくとも部分的に定め、前記移行部品が、前記圧縮機吐出空気流を前記内部空間(304)に流入可能にするよう構成された複数のアパーチャ(200)を含み、前記複数のアパーチャ(200)の各々が、前記外表面(300a)上の入口部分(200a)から前記内表面(300b)上の出口部分(200b)に延びている燃焼器。
An industrial turbine combustor with a single transition piece (120) that transitions directly from the combustor head end (100) to the turbine inlet (16),
The transition piece (120) includes an inner surface (300b) and an outer surface (300a), the inner surface (300b) burning from the combustor head end (100) to the turbine inlet (16). Demarcating an interior space (304) for gas flow, the outer surface (300a) at least partially defining a region (302) for compressor discharge air flow (C), and the transition piece comprises: A plurality of apertures (200) configured to allow the compressor discharge air stream to flow into the interior space (304), each of the plurality of apertures (200) being on the outer surface (300a); A combustor extending from an inlet portion (200a) to an outlet portion (200b) on the inner surface (300b).
前記入口部分(200a)及び前記出口部分(200b)の一方が、前記入口部分(200a)及び前記出口部分(200b)の他方よりも更に下流側に配置される、
請求項1記載の燃焼器。
One of the inlet part (200a) and the outlet part (200b) is disposed further downstream than the other of the inlet part (200a) and the outlet part (200b).
The combustor according to claim 1.
前記燃焼器は、燃焼ガス流(H)及び圧縮機吐出空気流(C)が対向する方向にあり、前記アパーチャ(200)を通る長手方向軸線(200c)が前記燃焼ガス流(H)の方向に対して鋭角(θ)を形成し且つ前記圧縮機吐出空気流(C)の方向に対して鈍角を形成するように構成された缶型環状逆流タイプである、
請求項2記載の燃焼器。
The combustor is in a direction in which the combustion gas flow (H) and the compressor discharge air flow (C) face each other, and a longitudinal axis (200c) passing through the aperture (200) is a direction of the combustion gas flow (H). A can-type annular backflow type configured to form an acute angle (θ) with respect to the direction of the compressor discharge air flow (C).
The combustor according to claim 2.
前記アパーチャ(200)を通る長手方向軸線(200c)が、前記外表面(300a)の下流側接線に対して鋭角(θ)を形成するような向きにされる、
請求項1記載の燃焼器。
The longitudinal axis (200c) passing through the aperture (200) is oriented to form an acute angle (θ) with respect to the downstream tangent of the outer surface (300a);
The combustor according to claim 1.
前記鋭角(θ)が、20°から35°の範囲にある、
請求項4記載の燃焼器。
The acute angle (θ) is in the range of 20 ° to 35 °,
The combustor according to claim 4.
前記複数のアパーチャ(200)が、前記入口部分(200a)から前記出口部分(200b)まで0.02インチから0.04インチの範囲にある一定の直径を有する、
請求項1記載の燃焼器。
The plurality of apertures (200) have a constant diameter ranging from 0.02 inches to 0.04 inches from the inlet portion (200a) to the outlet portion (200b);
The combustor according to claim 1.
前記アパーチャ(200)が、前記外表面(300a)に対して実質的に直角である、請求項1記載の燃焼器。   The combustor of any preceding claim, wherein the aperture (200) is substantially perpendicular to the outer surface (300a). 前記移行部品(120)が無接合である、
請求項1記載の燃焼器。
The transition piece (120) is unjoined;
The combustor according to claim 1.
燃焼セクションと、
前記燃焼セクションの下流側にある空気吐出セクションと、
前記燃焼セクションと前記空気吐出セクションとの間にある移行領域と、
前記燃焼セクション及び前記移行領域を定める燃焼器移行部品(120)と、
を含む産業用タービンエンジンにおいて、
前記移行部品(120)が、燃焼ガス流(H)を前記空気吐出セクションに対応するタービンの第1段に運ぶように適合され、
前記移行部品(120)が、内表面(300b)及び外表面(300a)を含み、
前記内表面(300b)が、燃焼器ヘッド端部からタービン入口までの前記燃焼ガス流(H)の内部空間(304)の境界を定め、
前記外表面(300a)が、圧縮機吐出空気流(C)のための領域(302)を少なくとも部分的に定め、
前記移行部品(120)が、前記圧縮機吐出空気流(C)が前記内部空間(304)内に流入できるように構成された複数のアパーチャ(200)を含み、
前記複数のアパーチャ(200)の各々が、前記外表面(300a)上の入口部分(200a)から前記内表面(300b)上の出口部分(200b)に延びている、
産業用タービンエンジン。
A combustion section;
An air discharge section downstream of the combustion section;
A transition region between the combustion section and the air discharge section;
A combustor transition piece (120) defining the combustion section and the transition region;
In industrial turbine engines including
The transition piece (120) is adapted to carry a combustion gas stream (H) to a first stage of a turbine corresponding to the air discharge section;
The transition piece (120) includes an inner surface (300b) and an outer surface (300a);
The inner surface (300b) delimits the internal space (304) of the combustion gas stream (H) from the combustor head end to the turbine inlet;
The outer surface (300a) at least partially defines a region (302) for the compressor discharge airflow (C);
The transition piece (120) includes a plurality of apertures (200) configured to allow the compressor discharge airflow (C) to flow into the interior space (304);
Each of the plurality of apertures (200) extends from an inlet portion (200a) on the outer surface (300a) to an outlet portion (200b) on the inner surface (300b).
Industrial turbine engine.
前記入口部分(200a)及び前記出口部分(200b)の一方が、前記入口部分(200a)及び前記出口部分(200b)の他方よりも更に下流側に配置される、
請求項9記載の産業用タービンエンジン。
One of the inlet part (200a) and the outlet part (200b) is disposed further downstream than the other of the inlet part (200a) and the outlet part (200b).
The industrial turbine engine according to claim 9.
前記燃焼器移行部品(120)が、燃焼ガス流(H)及び圧縮機吐出空気流(C)が対向する方向にあり、前記アパーチャ(200)を通る長手方向軸線(200c)が前記燃焼ガス流(H)の方向に対して鋭角(θ)を形成し且つ前記圧縮機吐出空気流(C)の方向に対して鈍角を形成するように構成された缶型環状逆流タイプである、
請求項10記載の産業用タービンエンジン。
The combustor transition component (120) is in a direction in which the combustion gas flow (H) and the compressor discharge air flow (C) face each other, and a longitudinal axis (200c) passing through the aperture (200) is the combustion gas flow. It is a can-type annular backflow type configured to form an acute angle (θ) with respect to the direction of (H) and to form an obtuse angle with respect to the direction of the compressor discharge air flow (C).
The industrial turbine engine according to claim 10.
前記アパーチャ(200)を通る長手方向軸線(200c)が、前記外表面(300a)の下流側接線に対して鋭角(θ)を形成するような向きにされる、
請求項9記載の産業用タービンエンジン。
The longitudinal axis (200c) passing through the aperture (200) is oriented to form an acute angle (θ) with respect to the downstream tangent of the outer surface (300a);
The industrial turbine engine according to claim 9.
鋭角(θ)が、20°から35°の範囲にある、
請求項12記載の産業用タービンエンジン。
The acute angle (θ) is in the range of 20 ° to 35 °,
The industrial turbine engine according to claim 12.
前記複数のアパーチャ(200)が、前記入口部分(200a)から前記出口部分(200b)まで0.02インチから0.04インチの範囲にある一定の直径を有する、
請求項9記載の産業用タービンエンジン。
The plurality of apertures (200) have a constant diameter ranging from 0.02 inches to 0.04 inches from the inlet portion (200a) to the outlet portion (200b);
The industrial turbine engine according to claim 9.
前記アパーチャ(200)が、前記外表面(300a)に対して実質的に直角である、
請求項9記載の産業用タービンエンジン。
The aperture (200) is substantially perpendicular to the outer surface (300a);
The industrial turbine engine according to claim 9.
JP2010041190A 2009-03-02 2010-02-26 Effusion cooled one-piece can combustor Pending JP2010203439A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/395,739 US8438856B2 (en) 2009-03-02 2009-03-02 Effusion cooled one-piece can combustor

Publications (1)

Publication Number Publication Date
JP2010203439A true JP2010203439A (en) 2010-09-16

Family

ID=42230018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010041190A Pending JP2010203439A (en) 2009-03-02 2010-02-26 Effusion cooled one-piece can combustor

Country Status (4)

Country Link
US (1) US8438856B2 (en)
EP (1) EP2226563B1 (en)
JP (1) JP2010203439A (en)
CN (1) CN101839481A (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9080770B2 (en) * 2011-06-06 2015-07-14 Honeywell International Inc. Reverse-flow annular combustor for reduced emissions
US8966910B2 (en) * 2011-06-21 2015-03-03 General Electric Company Methods and systems for cooling a transition nozzle
US9145778B2 (en) 2012-04-03 2015-09-29 General Electric Company Combustor with non-circular head end
US9506359B2 (en) 2012-04-03 2016-11-29 General Electric Company Transition nozzle combustion system
US9181813B2 (en) * 2012-07-05 2015-11-10 Siemens Aktiengesellschaft Air regulation for film cooling and emission control of combustion gas structure
US9400110B2 (en) 2012-10-19 2016-07-26 Honeywell International Inc. Reverse-flow annular combustor for reduced emissions
EP2743579A1 (en) * 2012-12-14 2014-06-18 Siemens Aktiengesellschaft Burner tip and burner
US9909432B2 (en) 2013-11-26 2018-03-06 General Electric Company Gas turbine transition piece aft frame assemblies with cooling channels and methods for manufacturing the same
EP2949871B1 (en) * 2014-05-07 2017-03-01 United Technologies Corporation Variable vane segment
US10203114B2 (en) 2016-03-04 2019-02-12 General Electric Company Sleeve assemblies and methods of fabricating same
US10228141B2 (en) 2016-03-04 2019-03-12 General Electric Company Fuel supply conduit assemblies
US10865992B2 (en) 2016-12-30 2020-12-15 General Electric Company Fuel injectors and methods of use in gas turbine combustor
US10851999B2 (en) 2016-12-30 2020-12-01 General Electric Company Fuel injectors and methods of use in gas turbine combustor
US10513987B2 (en) 2016-12-30 2019-12-24 General Electric Company System for dissipating fuel egress in fuel supply conduit assemblies
US10816208B2 (en) 2017-01-20 2020-10-27 General Electric Company Fuel injectors and methods of fabricating same
US10718523B2 (en) 2017-05-12 2020-07-21 General Electric Company Fuel injectors with multiple outlet slots for use in gas turbine combustor
US10502426B2 (en) 2017-05-12 2019-12-10 General Electric Company Dual fuel injectors and methods of use in gas turbine combustor
US10690349B2 (en) 2017-09-01 2020-06-23 General Electric Company Premixing fuel injectors and methods of use in gas turbine combustor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62131262U (en) * 1986-02-06 1987-08-19
JPH02183721A (en) * 1989-01-06 1990-07-18 Hitachi Ltd Gas turbine combustor
JPH0571736A (en) * 1991-09-12 1993-03-23 Ishikawajima Harima Heavy Ind Co Ltd Gas turbine combustion apparatus
JPH07190365A (en) * 1993-12-27 1995-07-28 Toshiba Corp Gas-turbine combustor
JP2006189252A (en) * 2001-08-29 2006-07-20 Hitachi Ltd Gas turbine combustor and method for operating gas turbine combustor
JP2007271256A (en) * 2006-03-30 2007-10-18 Snecma Constitution of dilution opening for combustion chamber wall surface of turbo machine
US20070271925A1 (en) * 2006-05-26 2007-11-29 Pratt & Whitney Canada Corp. Combustor with improved swirl
JP2008111651A (en) * 2006-10-02 2008-05-15 Hitachi Ltd Gas turbine combustor and method for supplying fuel to gas turbine combustor
JP2009041838A (en) * 2007-08-08 2009-02-26 Hitachi Ltd Gas turbine combustor equipped with burner, and spray air supplying method of the gas turbine combustor equipped with burner

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US788615A (en) 1904-04-08 1905-05-02 Ohio Fiber Machinery Co Wood-fiber-cutting machine.
GB1492049A (en) 1974-12-07 1977-11-16 Rolls Royce Combustion equipment for gas turbine engines
US4292810A (en) 1979-02-01 1981-10-06 Westinghouse Electric Corp. Gas turbine combustion chamber
GB2049152B (en) 1979-05-01 1983-05-18 Rolls Royce Perforate laminated material
JPH0660740B2 (en) * 1985-04-05 1994-08-10 工業技術院長 Gas turbine combustor
JPH0752014B2 (en) * 1986-03-20 1995-06-05 株式会社日立製作所 Gas turbine combustor
US4896510A (en) * 1987-02-06 1990-01-30 General Electric Company Combustor liner cooling arrangement
US5749229A (en) 1995-10-13 1998-05-12 General Electric Company Thermal spreading combustor liner
US5758504A (en) 1996-08-05 1998-06-02 Solar Turbines Incorporated Impingement/effusion cooled combustor liner
US6237344B1 (en) 1998-07-20 2001-05-29 General Electric Company Dimpled impingement baffle
CA2288557C (en) 1998-11-12 2007-02-06 Mitsubishi Heavy Industries, Ltd. Gas turbine combustor cooling structure
GB9926257D0 (en) 1999-11-06 2000-01-12 Rolls Royce Plc Wall elements for gas turbine engine combustors
GB2356924A (en) 1999-12-01 2001-06-06 Abb Alstom Power Uk Ltd Cooling wall structure for combustor
US6484505B1 (en) 2000-02-25 2002-11-26 General Electric Company Combustor liner cooling thimbles and related method
JP3846169B2 (en) * 2000-09-14 2006-11-15 株式会社日立製作所 Gas turbine repair method
US6427446B1 (en) 2000-09-19 2002-08-06 Power Systems Mfg., Llc Low NOx emission combustion liner with circumferentially angled film cooling holes
US6606861B2 (en) 2001-02-26 2003-08-19 United Technologies Corporation Low emissions combustor for a gas turbine engine
GB2373319B (en) 2001-03-12 2005-03-30 Rolls Royce Plc Combustion apparatus
US6568187B1 (en) 2001-12-10 2003-05-27 Power Systems Mfg, Llc Effusion cooled transition duct
US6640547B2 (en) * 2001-12-10 2003-11-04 Power Systems Mfg, Llc Effusion cooled transition duct with shaped cooling holes
US6761031B2 (en) 2002-09-18 2004-07-13 General Electric Company Double wall combustor liner segment with enhanced cooling
EP1426558A3 (en) * 2002-11-22 2005-02-09 General Electric Company Gas turbine transition piece with dimpled surface and cooling method for such a transition piece
US6681578B1 (en) 2002-11-22 2004-01-27 General Electric Company Combustor liner with ring turbulators and related method
US6964170B2 (en) 2003-04-28 2005-11-15 Pratt & Whitney Canada Corp. Noise reducing combustor
US7146815B2 (en) 2003-07-31 2006-12-12 United Technologies Corporation Combustor
US7036316B2 (en) * 2003-10-17 2006-05-02 General Electric Company Methods and apparatus for cooling turbine engine combustor exit temperatures
US7373778B2 (en) * 2004-08-26 2008-05-20 General Electric Company Combustor cooling with angled segmented surfaces
US7219498B2 (en) 2004-09-10 2007-05-22 Honeywell International, Inc. Waffled impingement effusion method
US7310938B2 (en) 2004-12-16 2007-12-25 Siemens Power Generation, Inc. Cooled gas turbine transition duct
US7082766B1 (en) * 2005-03-02 2006-08-01 General Electric Company One-piece can combustor
US7506512B2 (en) * 2005-06-07 2009-03-24 Honeywell International Inc. Advanced effusion cooling schemes for combustor domes
FR2892180B1 (en) * 2005-10-18 2008-02-01 Snecma Sa IMPROVING THE PERFOMANCE OF A COMBUSTION CHAMBER BY MULTIPERFORATING THE WALLS
US7303372B2 (en) 2005-11-18 2007-12-04 General Electric Company Methods and apparatus for cooling combustion turbine engine components
EP1832812A3 (en) 2006-03-10 2012-01-04 Rolls-Royce Deutschland Ltd & Co KG Gas turbine combustion chamber wall with absorption of combustion chamber vibrations
US7624577B2 (en) * 2006-03-31 2009-12-01 Pratt & Whitney Canada Corp. Gas turbine engine combustor with improved cooling
WO2007128329A1 (en) 2006-05-04 2007-11-15 Telefonaktiebolaget Lm Ericsson (Publ) Technique for interconnecting circuit-switched and packet-switched domains
US8171736B2 (en) * 2007-01-30 2012-05-08 Pratt & Whitney Canada Corp. Combustor with chamfered dome
DE102007018061A1 (en) 2007-04-17 2008-10-23 Rolls-Royce Deutschland Ltd & Co Kg Gas turbine combustion chamber wall
US8051663B2 (en) 2007-11-09 2011-11-08 United Technologies Corp. Gas turbine engine systems involving cooling of combustion section liners
US8161752B2 (en) 2008-11-20 2012-04-24 Honeywell International Inc. Combustors with inserts between dual wall liners
US20100170257A1 (en) 2009-01-08 2010-07-08 General Electric Company Cooling a one-piece can combustor and related method
US20100257863A1 (en) 2009-04-13 2010-10-14 General Electric Company Combined convection/effusion cooled one-piece can combustor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62131262U (en) * 1986-02-06 1987-08-19
JPH02183721A (en) * 1989-01-06 1990-07-18 Hitachi Ltd Gas turbine combustor
JPH0571736A (en) * 1991-09-12 1993-03-23 Ishikawajima Harima Heavy Ind Co Ltd Gas turbine combustion apparatus
JPH07190365A (en) * 1993-12-27 1995-07-28 Toshiba Corp Gas-turbine combustor
JP2006189252A (en) * 2001-08-29 2006-07-20 Hitachi Ltd Gas turbine combustor and method for operating gas turbine combustor
JP2007271256A (en) * 2006-03-30 2007-10-18 Snecma Constitution of dilution opening for combustion chamber wall surface of turbo machine
US20070271925A1 (en) * 2006-05-26 2007-11-29 Pratt & Whitney Canada Corp. Combustor with improved swirl
JP2008111651A (en) * 2006-10-02 2008-05-15 Hitachi Ltd Gas turbine combustor and method for supplying fuel to gas turbine combustor
JP2009041838A (en) * 2007-08-08 2009-02-26 Hitachi Ltd Gas turbine combustor equipped with burner, and spray air supplying method of the gas turbine combustor equipped with burner

Also Published As

Publication number Publication date
EP2226563B1 (en) 2024-02-07
EP2226563A3 (en) 2017-09-27
US8438856B2 (en) 2013-05-14
CN101839481A (en) 2010-09-22
US20100218502A1 (en) 2010-09-02
EP2226563A2 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
JP2010203439A (en) Effusion cooled one-piece can combustor
JP5911672B2 (en) Combustor liner for turbine engines
JP5224742B2 (en) Combustor liner and gas turbine engine assembly
US9435536B2 (en) Gas turbine combustor equipped with heat-transfer device
US8955330B2 (en) Turbine combustion system liner
JP2009085222A (en) Rear end liner assembly with turbulator and its cooling method
JP2010190216A (en) One-piece can combustor with heat transfer surface enhancing mechanism
JP2009156570A (en) Gas-turbine engine combustor, and method for supplying purge gas into combustion chamber of the combustor
JP2010159960A (en) Cooling of one-piece can combustor and method related to the same
JP2010249131A (en) Combined convection/effusion cooled one-piece can combustor
JPS6335897B2 (en)
JP2011064200A (en) Impingement cooled crossfire tube assembly
EP3077640B1 (en) Combustor quench aperture cooling
JP2014009937A (en) Transition duct for gas turbine
EP2230456A2 (en) Combustion liner with mixing hole stub
KR20060046516A (en) Airfoil insert with castellated end
US11098602B2 (en) Turbine vane equipped with insert support
EP3225917B1 (en) Gas turbine combustor with cross fire tube assembly
JP5535036B2 (en) Gas turbine combustor
JP2009079483A (en) Gas turbine combustor
JPS63143422A (en) Gas turbine combustor
JP2002327602A (en) Method of selectively arranging turbine nozzle and shroud, and gas turbine
JP2003130354A (en) Plate fin structure for gas turbine combustor, and gas turbine combustor
KR102000837B1 (en) Gas Turbine Blade
JP2022125942A (en) gas turbine engine combustor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140128

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140909