JPH02183721A - Gas turbine combustor - Google Patents

Gas turbine combustor

Info

Publication number
JPH02183721A
JPH02183721A JP89346A JP34689A JPH02183721A JP H02183721 A JPH02183721 A JP H02183721A JP 89346 A JP89346 A JP 89346A JP 34689 A JP34689 A JP 34689A JP H02183721 A JPH02183721 A JP H02183721A
Authority
JP
Japan
Prior art keywords
inner cylinder
air
flow
combustion gas
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP89346A
Other languages
Japanese (ja)
Inventor
Satoshi Tsukahara
聰 塚原
Noriyuki Hayashi
則行 林
Yoji Ishibashi
石橋 洋二
Shunichi Anzai
安斉 俊一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP89346A priority Critical patent/JPH02183721A/en
Publication of JPH02183721A publication Critical patent/JPH02183721A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)

Abstract

PURPOSE:To prevent the generation of thermal stress and heighten cooling performance by fixing good heat conductive material particles on an inner cylinder air side surface to make it coarse. CONSTITUTION:Air compressed by a compressor is supplied to a combustor part through a compressor diffuser 6, air allowed to flow in the circumference of a tail cylinder 2 is allowed to flow between a guide cylinder 5 and an inner cylinder body 1 to flow into the inside of the inner cylinder body through an air hole. In the inside of the inner cylinder a fuel supplied from a combustion nozzle 3 is mixed with the air to burn so as to produce high temperature combustion gas. The combustion gas is introduced in a turbine through the inside of the tail cylinder 2 to be exhausted after expansion. The inner cylinder body 1, and the tail cylinder 2 are heated because high temperature combustion gas is allowed to flow in their insides, but cooled with the use of air flowing on their periphery, a condition to fix cooling promotion bodies on the inner cylindrical main body 1 is made for a coarse surface body 7, and a condition to fix them on the tail cylinder 2 is made for a coarse surface body 8. A cooling effect by the air allowed to flow between the guide cylinder 5 and the inner cylinder body 1 can be heightened by the improvement of heat transfer coefficient with the use of the coarse surface bodies 7, 8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガスタービン燃焼器に係り、特に、冷却手段を
改良した高温燃焼器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gas turbine combustor, and more particularly to a high temperature combustor with improved cooling means.

〔従来の技術〕[Conventional technology]

従来のガスタービン燃焼器の内筒の冷却構造は、特公昭
57−57687号公報に記載のように、燃焼ガス側表
面に低温の空気層を形成して燃焼ガスからの入熱を抑制
し、空気側の表面は衝突冷却によって放熱を促進する構
造となっている。その構造を第4図を用いて説明する。
As described in Japanese Patent Publication No. 57-57687, a conventional cooling structure for the inner cylinder of a gas turbine combustor suppresses heat input from the combustion gas by forming a low-temperature air layer on the combustion gas side surface. The air-side surface has a structure that promotes heat dissipation through impingement cooling. Its structure will be explained using FIG.

燃焼ガス側表面に低温の空気層を形成するためのリップ
9を設け、内筒本体1に設けた小孔10を通して、内筒
本体1とリップ9によって形成される冷却空気通路14
に冷却空気を供給し、この冷却空気を内筒本体1のガス
側表面に沿って流し、高温の燃焼ガスが直接。
A cooling air passage 14 formed by the inner cylinder body 1 and the lip 9 is provided with a lip 9 for forming a low-temperature air layer on the combustion gas side surface, and passes through a small hole 10 provided in the inner cylinder body 1.
This cooling air is flowed along the gas side surface of the inner cylinder main body 1, and the high temperature combustion gas is directly supplied to the cylinder.

壁面に接しないようにして入熱を抑制している。Heat input is suppressed by avoiding contact with walls.

また、ガスから放射伝熱によって伝わった熱を放熱する
作用もある。一方、内筒本体1の外側では入熱量の大部
分を放熱している。この放熱性能を高めるために、内筒
本体1の外周にカバー壁12を設け、カバー壁の小孔1
3から流入する空気を内筒本体1に衝突させている。衝
突した空気は内筒本体1の小孔10を通して、再度、冷
却空気として使用される。内筒本体1とカバー壁12と
は接続部材15によって接続されている。
It also has the effect of radiating heat transferred from the gas by radiant heat transfer. On the other hand, most of the heat input is radiated outside the inner cylinder main body 1. In order to improve this heat dissipation performance, a cover wall 12 is provided on the outer periphery of the inner cylinder body 1, and small holes 1 in the cover wall are provided.
Air flowing in from 3 is made to collide with the inner cylinder body 1. The collided air passes through the small holes 10 of the inner cylinder main body 1 and is used again as cooling air. The inner cylinder main body 1 and the cover wall 12 are connected by a connecting member 15.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は温度の高い内筒本体1と温度の低いカバ
ー壁12とを接続部材15で接続していることにより、
熱膨張差による熱応力が発生して製品寿命が短くなるこ
と、外筒4とカバー壁12の間を流れる空気の対流冷却
を利用できないことにより、小孔13から流入する空気
流速を高めて衝突冷却することになり、圧力損失が大き
くなるという問題があった。
The above-mentioned conventional technology connects the inner cylinder main body 1, which has a high temperature, and the cover wall 12, which has a low temperature, by a connecting member 15.
The product life is shortened due to thermal stress due to the difference in thermal expansion, and convection cooling of the air flowing between the outer cylinder 4 and the cover wall 12 cannot be used, so the air flow velocity flowing in from the small holes 13 is increased and collisions occur. There was a problem in that the pressure loss would increase due to cooling.

本発明の目的は熱応力の発生を防止して冷却性能の高い
構造を提供することにある。
An object of the present invention is to provide a structure with high cooling performance by preventing the occurrence of thermal stress.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために良熱伝導物質の微小粒子を内
筒空気側表面に固着して粗面化したものである。
In order to achieve the above object, fine particles of a good heat conductive material are fixed to the air-side surface of the inner cylinder to make the surface rough.

さらに、微小粒子を固着するために溶射法を用いたもの
である。
Furthermore, a thermal spraying method is used to fix the fine particles.

〔作用〕[Effect]

内筒空気側表面に固着した微小粒子は金属の表面積を増
す。一方、金属表面凹凸高さが小さい場合には近傍流れ
の減速割合が小さい。従って、近傍流れの減速による熱
伝達率の減少よりも表面積増加による効果の方が大きく
なって熱伝達率が大きくなる。また、内筒本体を他の温
度の異なる部材と接合していないので、熱応力は内筒本
体の温度分布によって発生する値だけとなり、低く抑え
ることができる。
The microparticles that adhere to the air-side surface of the inner cylinder increase the surface area of the metal. On the other hand, when the height of the metal surface unevenness is small, the deceleration rate of the nearby flow is small. Therefore, the effect of increasing the surface area is greater than the decrease in heat transfer coefficient due to the deceleration of the nearby flow, and the heat transfer coefficient increases. Further, since the inner cylinder main body is not joined to other members having different temperatures, the thermal stress is only a value generated by the temperature distribution of the inner cylinder main body, and can be suppressed to a low level.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。ガス
タービンでは図示しない圧縮機によって加圧された空気
が圧縮機デイフユーザ6を通って燃焼器部に供給され、
尾筒2の周囲を流れた空気は案内筒5と内筒本体1との
間を流れ、内筒本体1に設けた図示しない空気孔を通っ
て内筒本体1の内部へはいる。内筒内部では燃料ノズル
3から供給される燃料が空気と混合して燃焼し、高温の
燃焼ガスを生成する。この燃焼ガスは尾筒2の内側を通
って図示しないタービンに導かれ、膨張した後に排出さ
れる。
An embodiment of the present invention will be described below with reference to FIG. In the gas turbine, air pressurized by a compressor (not shown) is supplied to a combustor section through a compressor differential user 6,
The air that has flowed around the transition piece 2 flows between the guide tube 5 and the inner cylinder main body 1, and enters the inside of the inner cylinder main body 1 through an air hole (not shown) provided in the inner cylinder main body 1. Inside the inner cylinder, fuel supplied from the fuel nozzle 3 mixes with air and burns, producing high-temperature combustion gas. This combustion gas passes through the inside of the transition piece 2, is guided to a turbine (not shown), and is discharged after being expanded.

内筒本体1.及び、尾筒2は内側を高温の燃焼ガスが流
れるために加熱されるが、その外周を流れる空気を用い
て冷却しており、本発明の冷却促進体を内筒本体1に固
着した状態が粗表面体7であり、尾筒2に固着した状態
が粗表面体8である。
Inner cylinder body 1. The transition piece 2 is heated because high-temperature combustion gas flows inside, but it is cooled using air flowing around its outer periphery. The rough surface body 7 is the rough surface body 7, and the rough surface body 8 is the rough surface body 8 that is fixed to the transition piece 2.

内筒本体1の具体的な構造を第2図により説明する。内
筒本体1の燃焼ガス側表面に冷却空気をフィルム状に流
すためにリップ9を設け、小孔10から流入する空気を
壁面に沿って流し、高温燃焼ガスが壁面と、直接、接し
ないようにするとともに、放射伝熱によって加熱された
壁面と空気との温度差によって対流冷却も行なっている
。内筒本体1の外側は案内筒5との間を内筒に供給され
る空気が全量流れており、内筒に供給される冷却空気が
流れる小孔10の近傍を除く表面に良熱伝導体の微小粒
子を固着して粗表面体7を形成している。
The specific structure of the inner cylinder main body 1 will be explained with reference to FIG. A lip 9 is provided on the combustion gas side surface of the inner cylinder body 1 to allow cooling air to flow in a film form, and the air flowing in from the small holes 10 is flowed along the wall surface so that the high temperature combustion gas does not come into direct contact with the wall surface. At the same time, convection cooling is also performed by the temperature difference between the wall surface heated by radiation heat transfer and the air. The entire amount of air supplied to the inner cylinder flows between the outer side of the inner cylinder main body 1 and the guide cylinder 5, and a good thermal conductor is formed on the surface except for the vicinity of the small hole 10 through which cooling air supplied to the inner cylinder flows. The rough surface body 7 is formed by fixing the fine particles.

粗表面体7は従来から燃焼ガス側の遮熱に用いられてい
るセラミックコーティングと同程度で熱伝達が促進され
るので、20μm以上が良い。材質は熱伝導率が大きく
、線膨張係数が内筒金属に近いものが望ましいため、従
来のセラミックスコーティングの金属側に用いられるM
CrAQY合金、又は、内筒と同−金属を用いる。微小
粒子を固着する方法はプラズマ溶射である。従って、内
筒形状にかかわらず、成形が完了した後に施行が可能で
ある。
Since the rough surface body 7 promotes heat transfer to the same extent as a ceramic coating conventionally used for heat shielding on the combustion gas side, the rough surface body 7 preferably has a thickness of 20 μm or more. It is desirable that the material has a high thermal conductivity and a coefficient of linear expansion close to that of the inner cylinder metal, so M is used on the metal side of conventional ceramic coatings.
Use CrAQY alloy or the same metal as the inner cylinder. Plasma spraying is a method for fixing microparticles. Therefore, regardless of the shape of the inner cylinder, the process can be performed after molding is completed.

他の実施例を第3図により説明する。内筒本体1の内部
に冷却空気通路16を設けた構造においても、空気流路
側表面に粗表面体7を固着することが可能であり、冷却
空気通路16の内部での冷却効果と空気流路側表面での
冷却効果のなかの後者の効果を高めることができる。
Another embodiment will be explained with reference to FIG. Even in a structure in which the cooling air passage 16 is provided inside the inner cylinder main body 1, it is possible to fix the rough surface body 7 to the surface on the air passage side, thereby achieving a cooling effect inside the cooling air passage 16 and improving the air passage side. The latter of the cooling effects on the surface can be enhanced.

また、粗表面体7をプラズマ溶射によって固着するだけ
であり、内筒本体1と温度の異なる部材を接続すること
がないため熱応力を低減できる。
Further, since the rough surface body 7 is simply fixed by plasma spraying, and there is no need to connect members having different temperatures from the inner cylinder main body 1, thermal stress can be reduced.

さらに、粗表面体7をプラズマ溶射によって固着するだ
けであるので、任意形状、任意材質への適用が可能であ
る。
Furthermore, since the rough surface body 7 is simply fixed by plasma spraying, it can be applied to any shape and any material.

〔発明の効果〕〔Effect of the invention〕

本発明によれば案内筒と内筒本体との間を流れる空気に
よる冷却効果を、粗表面体による熱伝達率向上により、
高めることができる。
According to the present invention, the cooling effect of the air flowing between the guide cylinder and the inner cylinder body is improved by improving the heat transfer coefficient by the rough surface body.
can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の断面図、第2図は内筒本体
の部分断面図、第3図は本発明の他の実施例の断面図、
第4図は従来構造の部分断面図である。 猶
FIG. 1 is a sectional view of one embodiment of the present invention, FIG. 2 is a partial sectional view of the inner cylinder main body, and FIG. 3 is a sectional view of another embodiment of the present invention.
FIG. 4 is a partial sectional view of a conventional structure. grace

Claims (1)

【特許請求の範囲】 1、燃料を供給する燃料ノズルと、前記燃料を圧縮機か
ら供給される空気と反応させて燃焼ガスを生成する内筒
と、前記燃焼ガスをタービンに導く尾筒から成るガスタ
ービン燃焼器において、前記内筒、前記尾筒の少なくと
も一方の空気側メタル表面に熱伝導率の大きい微小粒子
を固着したことを特徴とするガスタービン燃焼器。 2、特許請求項第1項の前記微小粒子をプラズマ溶射に
よつて固着したことを特徴とするガスタービン燃焼器。
[Claims] 1. Consisting of a fuel nozzle that supplies fuel, an inner cylinder that reacts the fuel with air supplied from a compressor to generate combustion gas, and a transition piece that guides the combustion gas to a turbine. A gas turbine combustor, characterized in that fine particles with high thermal conductivity are fixed to an air-side metal surface of at least one of the inner tube and the transition tube. 2. A gas turbine combustor characterized in that the fine particles according to claim 1 are fixed by plasma spraying.
JP89346A 1989-01-06 1989-01-06 Gas turbine combustor Pending JPH02183721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP89346A JPH02183721A (en) 1989-01-06 1989-01-06 Gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP89346A JPH02183721A (en) 1989-01-06 1989-01-06 Gas turbine combustor

Publications (1)

Publication Number Publication Date
JPH02183721A true JPH02183721A (en) 1990-07-18

Family

ID=11471293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP89346A Pending JPH02183721A (en) 1989-01-06 1989-01-06 Gas turbine combustor

Country Status (1)

Country Link
JP (1) JPH02183721A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658527A (en) * 1992-06-24 1994-03-01 Niigata Eng Co Ltd Cooling structure for burner
JP2010203439A (en) * 2009-03-02 2010-09-16 General Electric Co <Ge> Effusion cooled one-piece can combustor
JP2010210229A (en) * 2009-03-06 2010-09-24 General Electric Co <Ge> Injection device for turbomachine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658527A (en) * 1992-06-24 1994-03-01 Niigata Eng Co Ltd Cooling structure for burner
JP2010203439A (en) * 2009-03-02 2010-09-16 General Electric Co <Ge> Effusion cooled one-piece can combustor
JP2010210229A (en) * 2009-03-06 2010-09-24 General Electric Co <Ge> Injection device for turbomachine

Similar Documents

Publication Publication Date Title
US4872312A (en) Gas turbine combustion apparatus
US11085644B2 (en) Internally cooled dilution hole bosses for gas turbine engine combustors
US5483794A (en) Multi-hole film cooled afterburner combustor liner
US2510645A (en) Air nozzle and porting for combustion chamber liners
CA1209355A (en) Combustor liner
JP3414806B2 (en) Gas turbine combustor
JP4083717B2 (en) Combustor insulation shield panel and combination of insulation shield panel and shell
US20100077764A1 (en) Structures with adaptive cooling
CA2333932A1 (en) Impingement and film cooling for gas turbine combustor walls
JPH031582B2 (en)
US7146816B2 (en) Effusion momentum control
US5220150A (en) Plasma spray torch with hot anode and gas shroud
CN113188154B (en) Flame tube with cooling structure
US5581994A (en) Method for cooling a component and appliance for carrying out the method
CA3049156A1 (en) Burner tip comprising an air passage system and a fuel passage system for a burner and method for its production
US2914915A (en) Radiantly cooled inlet
JPH02183721A (en) Gas turbine combustor
JPS6064129A (en) Combustion device for combustion turbine
JPS62131927A (en) Cooling construction of gas turbine combustor tail pipe
CN211176790U (en) Upper air inlet burner with heat radiation structure
CN211084132U (en) Fuel nozzle, combustion chamber, and gas turbine
JPH04116315A (en) Gas turbine combustion apparatus
JPS62111132A (en) Tail cylinder cooling construction for gas turbine
JPH074660A (en) Combustion heater
JPH03195821A (en) Gas turbine combustor