JPS62131927A - Cooling construction of gas turbine combustor tail pipe - Google Patents

Cooling construction of gas turbine combustor tail pipe

Info

Publication number
JPS62131927A
JPS62131927A JP27151185A JP27151185A JPS62131927A JP S62131927 A JPS62131927 A JP S62131927A JP 27151185 A JP27151185 A JP 27151185A JP 27151185 A JP27151185 A JP 27151185A JP S62131927 A JPS62131927 A JP S62131927A
Authority
JP
Japan
Prior art keywords
transition piece
tail pipe
wall
gas turbine
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27151185A
Other languages
Japanese (ja)
Inventor
Noriyuki Hayashi
則行 林
Satoshi Tsukahara
聡 塚原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27151185A priority Critical patent/JPS62131927A/en
Publication of JPS62131927A publication Critical patent/JPS62131927A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To cool efficiently and evenly a tail pipe, by mounting an external wall with a specified interval from the external surface of a combustor tail pipe and forming plural number of hole on the external wall. CONSTITUTION:An external wall 10 is installed with a specified interval from the external surface of the tail pipe of a combustor. Plural number of hole 11 are formed on the external wall 10. Holes 12 are formed on the tail pipe 1. Projected fins 13 are mounted to the external side area of the tail pipe 1 which is not covered with the external wall 10. The air supplied from the holes 11 flows inside the tail pipe 1 through the holes 12 after colliding with the tail pipe 1. Thus, the heat transfer rate of the tail pipe external side is improved and the tail pipe can be cooled evenly and efficiently.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、ガスタービン燃焼器の尾筒に係り、特に、燃
焼器出口ガス温度の高い高温ガスタービン燃焼器の尾筒
に好適な冷却構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a transition piece of a gas turbine combustor, and particularly relates to a cooling structure suitable for a transition piece of a high-temperature gas turbine combustor where the combustor exit gas temperature is high. .

〔発明の背景〕[Background of the invention]

ガスタービン発電システムの熱効率を向上きせる一手段
として、ガスタービン;燃焼器出口温度の高温化があり
、高温化に対する各要素の開発が進められている。尾筒
では、内部を流れる燃焼ガス温度が上昇するため、壁面
温度が上昇し、寿命、信頼性の低下を招く問題がある。
One way to improve the thermal efficiency of a gas turbine power generation system is to increase the temperature at the gas turbine combustor outlet, and development of various elements to cope with the increase in temperature is progressing. In the transition piece, the temperature of the combustion gas flowing inside the transition piece increases, which causes the wall surface temperature to rise, resulting in a problem of reduced lifespan and reliability.

マルチキャン形の燃焼器尾筒1は、第2図に示すように
、尾筒1の入口に相当するライナ2$11で断面積が最
大であジ、尾筒1の出口に相当するタービンノズル3側
で最小になる。断面平均流速は断面積に反比例するので
、尾筒1の出口に近くなるほど大きくなる。壁面温度を
支配する尾筒1の内側の熱伝達率αと流速Vとの間には
、α(X:V” の関係があり、指数nは正なので、尾筒1の内側の熱伝
達率は1尾筒1の入口で小ざく、尾筒1の出口で大きな
値になり、第3図のようになる。このような伝熱特性を
もった尾筒1では、従来、第4図に示すように、圧縮機
5からライナ2に流入する空気51を尾筒lとケーシン
グ6で形成される車室8に導き、尾筒1の外側を流れる
空気51によって全体を冷却し、出口近傍の熱伝達率の
大きい部分には小径の空気孔を設け、孔表面の強制対流
冷却と尾筒1の内面に沿って冷却空気を流して尾筒1の
近傍の燃焼ガス温度を降下させるフィルム冷却を施こし
てい九〇 しか1−1この冷却方式では、尾筒1に高温
部を生じており、高温化に対処できない。
As shown in FIG. 2, the multi-can type combustor transition piece 1 has the largest cross-sectional area at the liner 2, which corresponds to the inlet of the transition piece 1, and the turbine nozzle, which corresponds to the outlet of the transition piece 1. It is minimum on the 3rd side. Since the cross-sectional average flow velocity is inversely proportional to the cross-sectional area, it increases as it approaches the exit of the transition piece 1. There is a relationship α(X:V'' between the heat transfer coefficient α inside the transition piece 1, which controls the wall surface temperature, and the flow velocity V, and the index n is positive, so the heat transfer coefficient inside the transition piece 1 is The value becomes small at the inlet of the transition tube 1 and becomes large at the exit of the transition tube 1, as shown in Figure 3.In the transition tube 1 with such heat transfer characteristics, conventionally, the value is as shown in Figure 4. As shown, air 51 flowing into the liner 2 from the compressor 5 is guided into the casing 8 formed by the transition piece l and the casing 6, and the entire body is cooled by the air 51 flowing outside the transition piece 1. Small-diameter air holes are provided in areas with high heat transfer coefficients, and forced convection cooling of the hole surface and film cooling are performed to flow cooling air along the inner surface of the transition piece 1 to lower the combustion gas temperature near the transition piece 1. However, 1-1 This cooling method creates a high-temperature part in the transition piece 1, and cannot cope with high temperatures.

特開昭55−2:1400号公報では、冷却を強化、均
一化するために、尾筒1を二重構造とし、内側熱伝達率
の大きい部分では、外壁にあけ几空気孔からの生気を衝
突きせるインピ/ジメント冷却を行ない、他の部分では
、インビ/ジメント冷却後の空気を内、外壁で形成され
る流路を経て、ライナ2内に供給することにより1強制
対流冷却を行なっている。
In JP-A-55-2:1400, in order to strengthen and make the cooling uniform, the transition piece 1 has a double structure, and in the part where the inner heat transfer coefficient is high, the outer wall is made with a hole to allow the air to flow through the air hole. In other parts, forced convection cooling is performed by supplying the air after impingement cooling into the liner 2 through the flow path formed by the inner and outer walls. .

ガスタービンの全体性能を高める観点からみた尾筒冷却
方法の要求項目は、 (1)尾部冷却後に、ライナ2に供給できない空気量が
少ないこと、 (2)圧縮機5からタービンノズル3に至るまでの圧力
損失が小さいこと、 (3)尾筒1の壁温か均一となり、熱応力が小さいこと
、 がある。
From the perspective of improving the overall performance of the gas turbine, the requirements for the tail pipe cooling method are: (1) the amount of air that cannot be supplied to the liner 2 after cooling the tail is small; and (2) the flow from the compressor 5 to the turbine nozzle 3 is (3) The wall temperature of the transition piece 1 is uniform, and thermal stress is small.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、ガスタービン燃焼器の尾筒外側の熱伝
達率を高め、尾筒を効率よく均一に冷却する構造を提供
することKある。
An object of the present invention is to provide a structure that increases the heat transfer coefficient outside the transition piece of a gas turbine combustor and cools the transition piece efficiently and uniformly.

〔発明の擬製〕[Fake invention]

本発明では、尾筒1の内側の熱伝達率の大きい部分には
、冷却性能の高いインビンジメント冷却を施こし、他の
熱伝達率の小さい部分では、尾筒1の外側に突起フィン
を設けることにより、圧縮機5からライナ2に流れる空
気51による冷却性能を向上させ、尾筒1を均一に冷却
し、尾筒】の冷却に使用されt後に、ライナ2に供給さ
れない空気量を少なく押え、圧縮機5からタービンノズ
ル3に至る圧力損失を小ざくする。
In the present invention, impingement cooling with high cooling performance is applied to the inner part of the transition piece 1 where the heat transfer coefficient is high, and protruding fins are provided on the outside of the transition piece 1 to other parts where the heat transfer coefficient is small. This improves the cooling performance of the air 51 flowing from the compressor 5 to the liner 2, uniformly cools the transition piece 1, and reduces the amount of air that is used for cooling the transition piece and is not supplied to the liner 2. , the pressure loss from the compressor 5 to the turbine nozzle 3 is reduced.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第1図により説明する。尾筒1の出
口近傍には外壁10を設けている。外壁10には空気孔
11を複数個設け、空気流52は尾部IVc膏突する。
An embodiment of the present invention will be explained with reference to FIG. An outer wall 10 is provided near the exit of the transition piece 1. A plurality of air holes 11 are provided in the outer wall 10, and the air flow 52 passes through the tail portion IVc.

外壁10は空気孔11以外から空気が入らないように、
尾筒1に固定されている。空気孔11から供給された空
気は尾筒1に衝突(7た後、空気孔12を通って尾筒1
の内側へ流れ、壁近傍に低温の空気層を形成する。
The outer wall 10 is designed to prevent air from entering from other than the air holes 11.
It is fixed to the tail tube 1. The air supplied from the air hole 11 collides with the transition piece 1 (after hitting the transition piece 1), it passes through the air hole 12 and enters the transition piece 1.
flows inside the wall, forming a low-temperature air layer near the wall.

尾筒1の材料強度は温度に依存し、構造的には尾筒1壁
面の温度不均一が熱応力の原因となるため、尾筒1の強
度、信頓性を確保するには1尾筒]の壁温を均一に低下
きせる必要がある。これは、尾筒1の外側の熱伝達率分
布を内側と同様にすることにより達成される。第1図の
構造では、尾筒1の出口近傍に熱伝達率の大きいインビ
ンジメント冷却を用い、その適用範囲を限定することに
より、尾筒1の冷却だけに使用される空気量を少なくし
ている。残りの部分は冷却に必要な熱伝達率が比較的小
ざいため、尾筒1の外側に設置した突起フィン13の伝
熱面積の拡大と流れを乱すことによる熱伝達率の増大の
効果により、車室8を流れる空気51による対流熱伝達
で均一な冷却が可能となる。、(車室内は流れ方向が複
雑に変化するため直線フィンは好ましくない。また、ビ
ンフィンに比べ、直線フィンでは温度むらを生じゃすぐ
熱応力的にみても不利である。)突起フィンを設けたこ
とによる圧力損失の増加はわずかなものであり、ガスタ
ービン全体の熱効率にはほとんど影響しない。突起フィ
ンの形状は、円柱、多角柱、円錐、多角錐などが挙げら
れる。
The material strength of the transition tube 1 depends on the temperature, and structurally speaking, uneven temperature on the wall surface of the transition tube 1 causes thermal stress. Therefore, in order to ensure the strength and reliability of the transition tube 1, one transition tube is required. ] It is necessary to reduce the wall temperature uniformly. This is achieved by making the heat transfer coefficient distribution on the outside of the transition piece 1 similar to the inside. In the structure shown in Fig. 1, the amount of air used only for cooling the transition piece 1 is reduced by using impingement cooling with a high heat transfer coefficient near the exit of the transition piece 1 and limiting its application range. There is. Since the heat transfer coefficient required for cooling the remaining portion is relatively small, the effect of increasing the heat transfer coefficient by expanding the heat transfer area of the protruding fins 13 installed on the outside of the transition piece 1 and disturbing the flow, Convection heat transfer by the air 51 flowing through the vehicle compartment 8 enables uniform cooling. , (Straight fins are not preferable because the flow direction changes in a complicated manner inside the vehicle. Also, compared to bin fins, straight fins are disadvantageous in terms of thermal stress if they cause temperature unevenness.) Provided with protruding fins. The increase in pressure loss due to this is small and has little effect on the thermal efficiency of the gas turbine as a whole. Examples of the shape of the protruding fin include a cylinder, a polygonal prism, a cone, and a polygonal pyramid.

本発明のインビンジメント冷却部は冷却空気を尾筒空気
孔12から尾筒1内・\供給する第1図の構造だけでな
く、スリット状の通路14からガス側・\流して壁面・
\の入熱量を少なくする第5図の構造、インピンジメン
ト冷却後の空気を仝気通路15からタービン冷却空気通
路へ導いたり、他の機器での消費空気、例えば、石炭ガ
ス化炉の酸化空気として使用するために導く第6図の構
造が考えられる。 ・ 図中、4は燃料ノズル、7は外筒、14はスリット、5
0は燃焼ガス。
The impingement cooling section of the present invention not only has the structure shown in FIG.
The structure shown in Fig. 5 reduces the amount of heat input from the impingement, and the air after impingement cooling is guided from the air passage 15 to the turbine cooling air passage, and the air consumed by other equipment, such as oxidizing air in a coal gasifier, is The structure shown in FIG. 6 can be considered, leading to use as a.・ In the figure, 4 is the fuel nozzle, 7 is the outer cylinder, 14 is the slit, 5
0 is combustion gas.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高温化によるガスタービンの熱効率の
上昇を損うことなく1尾筒の壁温上昇を抑制することが
できる。
According to the present invention, it is possible to suppress an increase in the wall temperature of one tail tube without impairing the increase in thermal efficiency of the gas turbine due to the increase in temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の燃焼器尾筒の縦断面図、第
2図はマルチキャン形燃焼器尾筒の断面積変化を示す図
、第3図はマルチキャン形燃焼器尾筒の内側熱伝達率分
布図、第4図は従来の燃焼器の縦断面図、第5図、第6
図は本発明の尾筒のインビンジメント冷却部の変形例の
断面図である。 1・・・尾筒、10・・・外壁、11.12・・・空気
孔、13・・・突起フィン。
FIG. 1 is a longitudinal cross-sectional view of a combustor transition piece according to an embodiment of the present invention, FIG. 2 is a diagram showing changes in cross-sectional area of a multi-can type combustor transition piece, and FIG. 3 is a diagram showing changes in cross-sectional area of a multi-can type combustor transition piece. Figure 4 is a longitudinal cross-sectional view of a conventional combustor, Figures 5 and 6 are
The figure is a sectional view of a modified example of the impingement cooling section of the transition piece according to the present invention. 1... Tail piece, 10... Outer wall, 11.12... Air hole, 13... Projection fin.

Claims (1)

【特許請求の範囲】 1、圧縮機で加圧した圧縮空気と、別系統で加圧した燃
料とを燃焼器ライナに導き、前記燃焼器ライナ内で燃焼
を進行させ、ここで生成した燃焼ガスを尾筒を介してタ
ービンに導いて出力を得るガスタービンにおいて、 前記尾筒の外面から所定の間隔をおいて少なくとも前記
尾筒の一部をおおう外壁を設け、前記外壁に複数個の孔
を設け、前記圧縮空気の一部を流して前記尾筒の外面に
衝突させ、前記外壁でおおわれていない前記尾筒の外側
の一部に突起フィンを設けたことを特徴とするガスター
ビン燃焼器尾筒の冷却構造。
[Claims] 1. Compressed air pressurized by a compressor and fuel pressurized by a separate system are guided to a combustor liner, combustion proceeds within the combustor liner, and the combustion gas generated here In a gas turbine that obtains output by guiding the transition piece to a turbine through a transition piece, an outer wall is provided that covers at least a part of the transition piece at a predetermined distance from the outer surface of the transition piece, and a plurality of holes are formed in the outer wall. A gas turbine combustor tail, characterized in that a part of the compressed air is caused to flow and collide with an outer surface of the transition piece, and a protruding fin is provided on a part of the outside of the transition piece that is not covered by the outer wall. Cylindrical cooling structure.
JP27151185A 1985-12-04 1985-12-04 Cooling construction of gas turbine combustor tail pipe Pending JPS62131927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27151185A JPS62131927A (en) 1985-12-04 1985-12-04 Cooling construction of gas turbine combustor tail pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27151185A JPS62131927A (en) 1985-12-04 1985-12-04 Cooling construction of gas turbine combustor tail pipe

Publications (1)

Publication Number Publication Date
JPS62131927A true JPS62131927A (en) 1987-06-15

Family

ID=17501087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27151185A Pending JPS62131927A (en) 1985-12-04 1985-12-04 Cooling construction of gas turbine combustor tail pipe

Country Status (1)

Country Link
JP (1) JPS62131927A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116315A (en) * 1990-09-05 1992-04-16 Jisedai Koukuuki Kiban Gijutsu Kenkyusho:Kk Gas turbine combustion apparatus
US6595318B2 (en) * 1999-03-30 2003-07-22 Daimlerchrysler Ag Double-walled tail pipe for an exhaust pipe of a motor vehicle exhaust system
DE10239534A1 (en) * 2002-08-23 2004-04-22 Man Turbomaschinen Ag Hot gas leading gas manifold
US7340881B2 (en) 2002-12-12 2008-03-11 Hitachi, Ltd. Gas turbine combustor
EP2314839A1 (en) * 2009-10-19 2011-04-27 Deere & Company Device for cooling an exhaust gas stream
EP2770258A2 (en) 2013-02-20 2014-08-27 Mitsubishi Hitachi Power Systems, Ltd. Gas turbine combustor equipped with heat-transfer device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116315A (en) * 1990-09-05 1992-04-16 Jisedai Koukuuki Kiban Gijutsu Kenkyusho:Kk Gas turbine combustion apparatus
US6595318B2 (en) * 1999-03-30 2003-07-22 Daimlerchrysler Ag Double-walled tail pipe for an exhaust pipe of a motor vehicle exhaust system
DE10239534A1 (en) * 2002-08-23 2004-04-22 Man Turbomaschinen Ag Hot gas leading gas manifold
US6996992B2 (en) 2002-08-23 2006-02-14 Man Turbo Ag Gas collection pipe carrying hot gas
US7340881B2 (en) 2002-12-12 2008-03-11 Hitachi, Ltd. Gas turbine combustor
EP2314839A1 (en) * 2009-10-19 2011-04-27 Deere & Company Device for cooling an exhaust gas stream
EP2770258A2 (en) 2013-02-20 2014-08-27 Mitsubishi Hitachi Power Systems, Ltd. Gas turbine combustor equipped with heat-transfer device
US9435536B2 (en) 2013-02-20 2016-09-06 Mitsubishi Hitachi Power Systems, Ltd. Gas turbine combustor equipped with heat-transfer device

Similar Documents

Publication Publication Date Title
US5533864A (en) Turbine cooling blade having inner hollow structure with improved cooling
US4805397A (en) Combustion chamber structure for a turbojet engine
US9133717B2 (en) Cooling structure of turbine airfoil
US5215431A (en) Cooled turbine guide vane
KR950003747B1 (en) Gas turbine
US6089822A (en) Gas turbine stationary blade
US6974308B2 (en) High effectiveness cooled turbine vane or blade
US4622821A (en) Combustion liner for a gas turbine engine
US5383766A (en) Cooled vane
US4946346A (en) Gas turbine vane
KR880002469B1 (en) Combustion liner cooling scheme
US8307654B1 (en) Transition duct with spiral finned cooling passage
US6547525B2 (en) Cooled component, casting core for manufacturing such a component, as well as method for manufacturing such a component
US5352091A (en) Gas turbine airfoil
JP2001107704A (en) Coolable air foil, cooling circuit and cooling method for wall
WO2007099895A1 (en) Impingement cooling structure
US20090126335A1 (en) Cooling structure
KR20180104936A (en) Structure of duct for cooling brake
JP2003286863A (en) Gas turbine combustor and cooling method of gas turbine combustor
JP3523309B2 (en) Gas turbine combustor
JPS62131927A (en) Cooling construction of gas turbine combustor tail pipe
US4790140A (en) Liner cooling construction for gas turbine combustor or the like
JPH062502A (en) Stationary blade for gas turbine
JPH05156901A (en) Gas turbine cooling stationary blade
JPS62153504A (en) Shrouding segment