JPS62153504A - Shrouding segment - Google Patents

Shrouding segment

Info

Publication number
JPS62153504A
JPS62153504A JP29453785A JP29453785A JPS62153504A JP S62153504 A JPS62153504 A JP S62153504A JP 29453785 A JP29453785 A JP 29453785A JP 29453785 A JP29453785 A JP 29453785A JP S62153504 A JPS62153504 A JP S62153504A
Authority
JP
Japan
Prior art keywords
shroud segment
segment
cooling
rotor blade
shroud
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29453785A
Other languages
Japanese (ja)
Inventor
Yoshihiro Yuya
油谷 好浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP29453785A priority Critical patent/JPS62153504A/en
Publication of JPS62153504A publication Critical patent/JPS62153504A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To aim at the improvement of turbine efficiency by placing within a shrouding segment a sheet metal provided with cooling orifices, and then providing a cooling passage on the moving-blade side peripheral wall. CONSTITUTION:Within a shrouding segment 11 is placed a sheet metal 17 provided with a plurality of cooling orifices 16 so that it is opposite to the moving- blade side peripheral wall 18 at a prescribed distance. On the moving-blade side peripheral wall 18 is provided a cooling passage 24 which connects the inside of the shrouding segment 11 and the upper stream side from a moving blade 14. Hereby, the moving-blade side peripheral wall can be efficiently cooled with only a small quantity of air, and accordingly, the efficiency of a turbine can be improved.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はシュラウドセグメントに係り、特に高温ガスタ
ービンに適した空冷式のシュラウドセグメントに関Jる
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a shroud segment, and more particularly to an air-cooled shroud segment suitable for high temperature gas turbines.

〔発明の技術的前頭とその問題点] 一般に、タービンのシュラウドセグメントは、タービン
ケーシング内面に動翼の外周端に近接するように円周状
に3!設されてシュラウドリングを形成し、動翼先端部
からの主流ガスの漏洩を最小にすると共に高温ガスから
タービンケーシングへの熱伝達を防止しケーシングの熱
変形を防いでいる。このため、上記シュラウドセグメン
トは高温ガスに直接晒されるので、タービンの入口温度
が高くなる程その冷却に注意を払う必要がある。
[Technical front of the invention and its problems] In general, the shroud segment of a turbine is arranged circumferentially on the inner surface of the turbine casing so as to be close to the outer peripheral end of the rotor blade. The shroud ring is installed to minimize leakage of mainstream gas from the tips of the rotor blades, prevent heat transfer from high temperature gas to the turbine casing, and prevent thermal deformation of the casing. For this reason, the shroud segments are directly exposed to high-temperature gas, so the higher the turbine inlet temperature, the more careful attention must be paid to cooling the shroud segments.

従来のシュラウドセグメントは、全く冷却しない方式と
、シュラウドセグメント内部に冷却空気を導きセグメン
トを内側より冷却する方式とに大別される。ところが、
前者の場合、シュラウドセグメントのメタル4度が主流
ガス温度近くまで−ヒ昇するためガス温度を高くするこ
とができず、高出力を得ることができないという問題が
あった。
Conventional shroud segments are broadly classified into two types: those that do not cool the segment at all, and those that cool the segment from the inside by introducing cooling air into the shroud segment. However,
In the former case, there was a problem in that the metal temperature of the shroud segment rose to near the mainstream gas temperature, making it impossible to raise the gas temperature and thus making it impossible to obtain high output.

また、後者の場合の一形式として、第6図に示したよう
に、シュラウドセグメント1の上流側壁1aと下流側壁
1bとにそれぞれ開孔2a、2bを設け、セグメントの
内部空間3に冷却空気へを尋人する形式がある。ところ
が、この形式は上記内部空間3に冷却空気Aをただ流し
ているだけなので、冷却空気Aの流速が遅くセグメント
内壁面から冷却空気への熱伝達率が低くなり、主流ガス
の温度を上げた場合、シュラウドセグメント1のメタル
温度を所定の温度に保つためには大量の冷却1空気が必
要になるという問題があった。また、他の形式として、
第7図に示したように、箱形のシュラウドセグメント4
の外側開口5からピグメント内に箱形のインサート6を
半径方向に挿入し、タービンケーシング7からシュラウ
ドセグメント4内に導かれる冷却空気Aをインサート6
の開孔8からセグメント内壁面に吹きつけてインビンジ
メント冷却を行なうと共にその冷却した空気をシュラウ
ドセグメント4の下流側壁4bの開孔9よリセグメント
外に排出する形式がある(特開昭57−59030 号
公報参照)。この形式によれば、少ない吊の冷却空気で
シュラウドセグメント4のメタル温度を所定の温度に保
つことができるが、上記インサート6を挿入するために
シュラウドセグメント4に広い開口5を設ける必要があ
るので、シュラウドセグメント4を上流側と下流側より
挟んでタービンケーシング7内面に固定するフック10
のツメ間隔が大きくなりタービンケーシング7が軸方向
の大きくなるという問題があった。また、上記インサー
ト6を箱形に形成する必要があるのでシュラウドセグメ
ント4が複雑になるという問題があり、さらに上記開口
5を小さくするためにインサート6を2分割するとイン
サート6自体の構造が複雑になるという問題があった。
In the latter case, as shown in FIG. 6, openings 2a and 2b are provided in the upstream wall 1a and the downstream wall 1b of the shroud segment 1, respectively, to allow cooling air to flow into the internal space 3 of the segment. There is a form of interrogation. However, in this type, the cooling air A is simply flowed into the internal space 3, so the flow rate of the cooling air A is slow, and the heat transfer rate from the inner wall surface of the segment to the cooling air is low, increasing the temperature of the mainstream gas. In this case, there was a problem in that a large amount of cooling air was required to maintain the metal temperature of the shroud segment 1 at a predetermined temperature. Also, in other formats,
As shown in FIG. 7, the box-shaped shroud segment 4
A box-shaped insert 6 is inserted radially into the pigment through the outer opening 5 of the insert 6, and cooling air A guided from the turbine casing 7 into the shroud segment 4 is inserted into the pigment.
There is a method in which impingement cooling is performed by blowing air onto the inner wall surface of the segment through the opening 8 of the shroud segment 4, and the cooled air is discharged to the outside of the resegment through the opening 9 of the downstream side wall 4b of the shroud segment 4 (Japanese Patent Application Laid-Open No. 1983-1999). (See Publication No. 59030). According to this type, the metal temperature of the shroud segment 4 can be maintained at a predetermined temperature with a small amount of suspended cooling air, but it is necessary to provide a wide opening 5 in the shroud segment 4 in order to insert the insert 6. , a hook 10 that secures the shroud segment 4 to the inner surface of the turbine casing 7 by sandwiching it from the upstream and downstream sides.
There was a problem in that the spacing between the claws became large and the turbine casing 7 became large in the axial direction. In addition, since the insert 6 needs to be formed into a box shape, there is a problem that the shroud segment 4 becomes complicated.Furthermore, if the insert 6 is divided into two in order to make the opening 5 smaller, the structure of the insert 6 itself becomes complicated. There was a problem.

〔発明の目的〕[Purpose of the invention]

そこで、本発明の目的は上述した従来技術が有する問題
点を解消し、主流ガス温度が高温の場合にも使用できる
ように高い冷却効率を有すると共に構造が簡単でコンパ
クトな空冷式のシュラウドセグメントを提供するもので
ある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the problems of the prior art described above, and to provide an air-cooled shroud segment that has high cooling efficiency, has a simple structure, and is compact so that it can be used even when the mainstream gas temperature is high. This is what we provide.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、本発明は、タービンケーシ
ング内面に動翼の外周端に近接するように円周状に連設
される中空状のシュラウドセグメントにおいて、上記シ
ュラウドセグメントの内部空間には複数の冷却孔を有す
る薄板がシュラウドセグメントの動翼側周壁と所定の間
隙を有して対向するように周方向に設けられ、上記動翼
側周壁には上記内部空間とvJ翼の上流側とを連通ずる
冷却路が形成されたもので、シュラウドセグメントを効
率的に冷却するようにしたものである。
In order to achieve the above object, the present invention provides a hollow shroud segment that is circumferentially connected to the inner surface of a turbine casing so as to be close to the outer peripheral end of the rotor blade, and in which a plurality of hollow shroud segments are provided in the inner space of the shroud segment. A thin plate having cooling holes is provided in the circumferential direction so as to face the rotor blade side circumferential wall of the shroud segment with a predetermined gap, and the rotor blade side circumferential wall communicates the internal space with the upstream side of the vJ blade. A cooling path is formed to efficiently cool the shroud segment.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明によるシュラウドセグメントの実施例を第
1図乃至第5図を参照して説明する。
Embodiments of the shroud segment according to the present invention will be described below with reference to FIGS. 1 to 5. FIG.

第1図において符号11はシュラウドセグメントを示し
、このシュラウドセグメント11は断面略C字状に形成
され、タービンケーシング12と一体にケーシング内面
に突出する断面略T字状の周状のフック13に嵌合さ机
る。そして、このシュラウドセグメント11が複数円周
状に連設されることによりタービンケーシング12内面
には動翼14の外周端と近接するシュラウドリング(図
示せず)が形成される。また、上記フック13に嵌合さ
れるシュラウドセグメント11には断面矩形の内部空間
15が形成され、この内部空間15には複数の冷却孔1
6を有する薄板17が動翼14と相対するシュラウドセ
グメント11の周壁18(以下動翼側周壁という)と所
定の間隙を有して対向するように設けられている。上記
薄板17は、シュラウドセグメント11の内壁面11a
に周方向に形成された一対の溝19にセグメント端面か
ら周方向に挿入され、すみ肉溶接20によりシュラウド
セグメント11に固定されている。また、第2図に示し
たように、上記シュラウドセグメント11の端面21に
はセグメントの断面形状と同じ略C字状の満22が形成
され、この溝22にシール材(図示せず)を嵌め込むこ
とによりセグメントとセグメントとの連接部における主
流ガスの漏洩を防止している。さらに、シュラウドセグ
メント11の動翼側周壁18には、内部空間15と動翼
14の上流側の主流ガス流路23とを連通ずる冷却路2
4が複数穿設され、この冷却路24は、第3図に示した
ように、動翼14の回転方向Xに合わせて斜めに穿設さ
れている。
In FIG. 1, reference numeral 11 indicates a shroud segment, and this shroud segment 11 is formed with a substantially C-shaped cross section, and is fitted into a circumferential hook 13 with a substantially T-shaped cross section that protrudes from the inner surface of the casing integrally with the turbine casing 12. Combined. By arranging a plurality of shroud segments 11 in a circumferential manner, a shroud ring (not shown) is formed on the inner surface of the turbine casing 12 and is close to the outer peripheral end of the rotor blade 14 . Further, an internal space 15 having a rectangular cross section is formed in the shroud segment 11 that is fitted into the hook 13, and this internal space 15 has a plurality of cooling holes 1.
6 is provided so as to face a peripheral wall 18 of the shroud segment 11 facing the rotor blade 14 (hereinafter referred to as the rotor blade side peripheral wall) with a predetermined gap therebetween. The thin plate 17 is an inner wall surface 11a of the shroud segment 11.
It is inserted in the circumferential direction from the segment end face into a pair of grooves 19 formed in the circumferential direction, and is fixed to the shroud segment 11 by fillet welding 20. Further, as shown in FIG. 2, a substantially C-shaped groove 22 having the same cross-sectional shape as the segment is formed on the end surface 21 of the shroud segment 11, and a sealing material (not shown) is fitted into this groove 22. This prevents leakage of mainstream gas at the joints between the segments. Further, in the rotor blade side circumferential wall 18 of the shroud segment 11, a cooling passage 2 is provided which communicates the internal space 15 with the mainstream gas flow passage 23 on the upstream side of the rotor blade 14.
A plurality of cooling passages 4 are bored, and the cooling passages 24 are bored diagonally in accordance with the rotating direction X of the rotor blades 14, as shown in FIG.

一方、上記シュラウドセグメント11が嵌合するフック
13には冷却空気供給用の冷却路25がタービンケーシ
ング12側から上記内部空間15に向けて形成されてお
り、圧縮機から吐出される冷却空気Aはタービンケーシ
ング内の通路(図示せず)を経て上記冷却路25よりシ
ュラウドセグメント11内に供給される。
On the other hand, a cooling passage 25 for supplying cooling air is formed in the hook 13 into which the shroud segment 11 is fitted, from the turbine casing 12 side toward the internal space 15, and the cooling air A discharged from the compressor is It is supplied into the shroud segment 11 from the cooling passage 25 through a passage (not shown) in the turbine casing.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

冷却空気Aはフック13の冷却路25よりシュラウドセ
グメント11の内部空間15に供給され、セグメントの
内壁面11aを冷却し、さらに薄板17の冷却孔16か
ら動翼側周壁18に向けて吹きつけられ動翼側周壁内面
18aをインピンジメン1〜冷却する。また、動翼側周
壁18をインビンジメント冷U+ シた冷却空気は、動
翼側周壁の冷却路24より動翼14上流側の主流ガス流
路23に放出される。この冷却空気は、動翼回転方向X
と同方向の周方向速度成分をもって放出され、動翼14
と動翼側周壁18との間隙を流れて動翼側周壁外面18
bをフィルム冷却したのち主流ガスBに混合する。
Cooling air A is supplied to the internal space 15 of the shroud segment 11 from the cooling passage 25 of the hook 13, cools the inner wall surface 11a of the segment, and is further blown from the cooling hole 16 of the thin plate 17 toward the rotor blade side circumferential wall 18 to cool the rotor blade side peripheral wall 18. The inner surface 18a of the blade side circumferential wall is cooled by impingement 1. Further, the cooling air that impinges on the rotor blade side circumferential wall 18 is discharged from the cooling passage 24 of the rotor blade side circumferential wall to the mainstream gas flow path 23 on the upstream side of the rotor blade 14 . This cooling air is
is emitted with a circumferential velocity component in the same direction as the rotor blade 14.
It flows through the gap between the rotor blade side circumferential wall 18 and the rotor blade side circumferential wall outer surface 18.
B is film-cooled and then mixed into the mainstream gas B.

このように、高温の主流ガスBと接触してメタル温度が
上昇するシュラウドセグメントのFJI 黄銅周壁の内
面18aに熱伝達率が高く冷却効率が高いインビンジメ
ント冷却を施し、さらに直接の受熱面である動翼側周壁
外面18bにフィルム冷却を施すようにしたので、受熱
部である#J翼側周壁18のみを効率良く冷却でき、ざ
らに上記フィルム冷却空気は動1114と動翼側周壁1
8との間隙を流れるので、動翼先端部からの主流ガスの
漏洩を減少させることができる。また、冷却の必要な部
分のみを冷却するので少量の冷却空気で十分な冷却を行
なうことができ、圧縮機から導かれる冷却空気量の低減
によりタービン効率の低下を減少させることができる。
In this way, the inner surface 18a of the FJI brass peripheral wall of the shroud segment, where the metal temperature rises when it comes into contact with the high-temperature mainstream gas B, is subjected to impingement cooling, which has a high heat transfer coefficient and high cooling efficiency, and is also a direct heat-receiving surface. Since film cooling is applied to the outer surface 18b of the rotor blade side circumferential wall, only the #J blade side circumferential wall 18, which is the heat receiving part, can be efficiently cooled.
8, it is possible to reduce leakage of mainstream gas from the tips of the rotor blades. In addition, since only the portions that require cooling are cooled, sufficient cooling can be achieved with a small amount of cooling air, and by reducing the amount of cooling air introduced from the compressor, a decrease in turbine efficiency can be reduced.

また、薄板17はシュラウドセグメント11の受熱部か
らタービンケーシング12への輻射熱を遮るので、ター
ビンケーシングの輻射熱による温度上背を抑えることが
できる。
Further, since the thin plate 17 blocks radiant heat from the heat receiving portion of the shroud segment 11 to the turbine casing 12, it is possible to suppress the temperature rise due to the radiant heat of the turbine casing.

このため、上述のシュラウドセグメント11を用いれば
主流ガス温度をさらに上界させることが可能となり、タ
ービン効率の向上を図ることができる。
Therefore, if the above-mentioned shroud segment 11 is used, it becomes possible to further raise the temperature of the mainstream gas, and it is possible to improve the turbine efficiency.

第4図および第5図は本発明の他の実施例を示したもの
で、シュラウドセグメント11の周方向中央部のセグメ
ント内壁面11aおよび動翼側周壁内面18aには補強
用のり126が固着されている。また、シュラウドセグ
メント11の内部空間15に設けられる冷却孔を有する
薄板17は2枚に分けられ、薄板17aおよび17bは
シュラウドセグメント11の周方向両端面からセグメン
ト内に組み付けられる。
4 and 5 show another embodiment of the present invention, in which a reinforcing glue 126 is fixed to the segment inner wall surface 11a at the circumferential center of the shroud segment 11 and the inner surface 18a of the rotor blade side peripheral wall. There is. Further, the thin plate 17 having cooling holes provided in the internal space 15 of the shroud segment 11 is divided into two pieces, and the thin plates 17a and 17b are assembled into the shroud segment 11 from both end faces in the circumferential direction.

従って、本実施例によれば、内部空間15を形成するよ
うにシュラウドセグメント11を断面略C字状に形成し
てもリブ26が設けられているのでセグメント本体に強
度的問題が生じることはなく、前述の実施例と同様の効
果を得ることができる。
Therefore, according to this embodiment, even if the shroud segment 11 is formed to have a substantially C-shaped cross section so as to form the internal space 15, there will be no strength problem in the segment body because the rib 26 is provided. , it is possible to obtain the same effects as in the above-mentioned embodiments.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明はシュラウドセ
グメントの内部空間に複数の冷却孔を有する薄板をセグ
メントの動翼側周壁と所定の間隙を有して対向するよう
に周方向に設け、動翼側周壁にセグメントの内部空間と
動翼の上流側とを連通ずる冷却路を穿設したので、シュ
ラウドセグメントの受熱部である動翼側周壁のみを少量
の冷却空気で効率よく冷却できる。また、圧縮機から抽
気される冷却空気量が低減するのでタービン効率の低下
を減少させることができ、さらに動翼側周壁外面を流れ
るフィルム冷却空気はシュラウドリングとl!I3翼先
端部との間の主流ガスの漏洩を減少させるので、タービ
ン効率を向上させることができる。また、薄板によりシ
ュラウドセグメント受熱部からタービンケーシングへの
輻射熱が遮られるので、タービンケーシングの温度上界
を抑えケーシングの熱変形を防ぐことができる。このた
め、主流ガス温度をさらに上背さけてタービン効率の向
上を図ることができ、高い冷1J1効率をイ1すると共
に構造が筒中でコンパクトな空冷式のシュラウドセグメ
ン[へを得ることができる。
As is clear from the above description, the present invention provides a thin plate having a plurality of cooling holes in the inner space of a shroud segment in the circumferential direction so as to face the circumferential wall on the rotor blade side of the segment with a predetermined gap, and Since a cooling path is provided in the peripheral wall to communicate the internal space of the segment with the upstream side of the rotor blade, only the rotor blade side peripheral wall, which is the heat receiving part of the shroud segment, can be efficiently cooled with a small amount of cooling air. In addition, since the amount of cooling air extracted from the compressor is reduced, it is possible to reduce the decrease in turbine efficiency, and furthermore, the film cooling air flowing on the outer surface of the rotor blade side circumferential wall is connected to the shroud ring and l! Since the leakage of mainstream gas between the I3 blade tip and the I3 blade tip is reduced, turbine efficiency can be improved. Further, since the thin plate blocks radiant heat from the shroud segment heat receiving portion to the turbine casing, the upper limit of the temperature of the turbine casing can be suppressed and thermal deformation of the casing can be prevented. Therefore, it is possible to improve the turbine efficiency by further lowering the mainstream gas temperature, and it is possible to obtain an air-cooled shroud segment with a compact structure in the cylinder while achieving high cooling 1J1 efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるシュラウドセグメントの一実施例
を示す側面断面図、第2図は上記シュラウドセグメント
の斜視図、第3図は上記シュラウドセグメントの正面断
面図、第4図は本発明によるシュラウドセグメントの他
の実施例を示す側面断面図、第5図は上記シュラウドセ
グメントの斜視図、第6図および第7図は従来のシュラ
ウドセグメントを示す側面断面図である。 11・・・シュラウドセグメント、12・・・タービン
ケーシング、13・・・フック、14・・・動翼、15
・・・内部空間、16・・・冷却孔、17・・・薄板、
18・・・シュラウドセグメントのvJ翼側周壁、20
・・・すみ肉溶接、23・・・主流ガス流路、24・・
・冷用路、Δ・・・冷1J1効率、B・・・主流ガス。 出願人代理人  佐  藤  −雄 第3図 第4図 第5図 第7図
FIG. 1 is a side sectional view showing one embodiment of the shroud segment according to the present invention, FIG. 2 is a perspective view of the shroud segment, FIG. 3 is a front sectional view of the shroud segment, and FIG. 4 is a shroud according to the present invention. FIG. 5 is a perspective view of the shroud segment, and FIGS. 6 and 7 are side sectional views showing conventional shroud segments. DESCRIPTION OF SYMBOLS 11... Shroud segment, 12... Turbine casing, 13... Hook, 14... Moving blade, 15
...Internal space, 16...Cooling hole, 17...Thin plate,
18... vJ wing side circumferential wall of shroud segment, 20
... Fillet welding, 23... Mainstream gas flow path, 24...
・Cold path, Δ...Cold 1J1 efficiency, B...Mainstream gas. Applicant's agent Mr. Sato Figure 3 Figure 4 Figure 5 Figure 7

Claims (1)

【特許請求の範囲】 1、タービンケーシング内面に動翼の外周端に近接する
ように円周状に連設される中空状のシュラウドセグメン
トにおいて、上記シュラウドセグメントの内部空間には
複数の冷却孔を有する薄板がシュラウドセグメントの動
翼側周壁と所定の間隙を有して対向するように周方向に
設けられ、上記動翼側周壁には上記内部空間と動翼の上
流側とを連通する冷却路が形成されていることを特徴と
するシュラウドセグメント。 2、上記冷却路は動翼の回転方向に向けて形成されてい
ることを特徴とする特許請求の範囲第1項に記載のシュ
ラウドセグメント。
[Claims] 1. In a hollow shroud segment that is circumferentially arranged on the inner surface of the turbine casing so as to be close to the outer peripheral end of the rotor blade, a plurality of cooling holes are provided in the inner space of the shroud segment. A thin plate having a thin plate is provided in the circumferential direction so as to face the rotor blade side circumferential wall of the shroud segment with a predetermined gap, and a cooling path is formed in the rotor blade side circumferential wall to communicate the internal space with the upstream side of the rotor blade. A shroud segment characterized by: 2. The shroud segment according to claim 1, wherein the cooling passage is formed toward the rotating direction of the rotor blade.
JP29453785A 1985-12-26 1985-12-26 Shrouding segment Pending JPS62153504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29453785A JPS62153504A (en) 1985-12-26 1985-12-26 Shrouding segment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29453785A JPS62153504A (en) 1985-12-26 1985-12-26 Shrouding segment

Publications (1)

Publication Number Publication Date
JPS62153504A true JPS62153504A (en) 1987-07-08

Family

ID=17809063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29453785A Pending JPS62153504A (en) 1985-12-26 1985-12-26 Shrouding segment

Country Status (1)

Country Link
JP (1) JPS62153504A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5380150A (en) * 1993-11-08 1995-01-10 United Technologies Corporation Turbine shroud segment
US5927942A (en) * 1993-10-27 1999-07-27 United Technologies Corporation Mounting and sealing arrangement for a turbine shroud segment
US6783324B2 (en) * 2002-08-15 2004-08-31 General Electric Company Compressor bleed case
US7147431B2 (en) * 2002-11-27 2006-12-12 Rolls-Royce Plc Cooled turbine assembly
JP2007315853A (en) * 2006-05-24 2007-12-06 Chugoku Electric Power Co Inc:The Strain gauge
JP2008111441A (en) * 2006-10-30 2008-05-15 Snecma Turbomachine turbine shroud sector
US7559740B2 (en) * 2004-09-17 2009-07-14 Nuovo Pignone S.P.A. Protection device for a turbine stator
WO2013129530A1 (en) * 2012-02-29 2013-09-06 株式会社Ihi Gas turbine engine
US20130323032A1 (en) * 2012-06-04 2013-12-05 Paul M. Lutjen Blade outer air seal for a gas turbine engine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5927942A (en) * 1993-10-27 1999-07-27 United Technologies Corporation Mounting and sealing arrangement for a turbine shroud segment
US5380150A (en) * 1993-11-08 1995-01-10 United Technologies Corporation Turbine shroud segment
US6783324B2 (en) * 2002-08-15 2004-08-31 General Electric Company Compressor bleed case
US7147431B2 (en) * 2002-11-27 2006-12-12 Rolls-Royce Plc Cooled turbine assembly
US7559740B2 (en) * 2004-09-17 2009-07-14 Nuovo Pignone S.P.A. Protection device for a turbine stator
JP2007315853A (en) * 2006-05-24 2007-12-06 Chugoku Electric Power Co Inc:The Strain gauge
JP2008111441A (en) * 2006-10-30 2008-05-15 Snecma Turbomachine turbine shroud sector
WO2013129530A1 (en) * 2012-02-29 2013-09-06 株式会社Ihi Gas turbine engine
JP2013177875A (en) * 2012-02-29 2013-09-09 Ihi Corp Gas turbine engine
CN104126065A (en) * 2012-02-29 2014-10-29 株式会社Ihi Gas turbine engine
US20130323032A1 (en) * 2012-06-04 2013-12-05 Paul M. Lutjen Blade outer air seal for a gas turbine engine
US8998572B2 (en) * 2012-06-04 2015-04-07 United Technologies Corporation Blade outer air seal for a gas turbine engine

Similar Documents

Publication Publication Date Title
US5387086A (en) Gas turbine blade with improved cooling
US5823741A (en) Cooling joint connection for abutting segments in a gas turbine engine
US6887033B1 (en) Cooling system for nozzle segment platform edges
JP3316405B2 (en) Gas turbine cooling vane
US8246307B2 (en) Blade for a rotor
JP3486191B2 (en) Turbine vane with platform cavity for dual supply of cooling fluid
US5649806A (en) Enhanced film cooling slot for turbine blade outer air seals
US4893987A (en) Diffusion-cooled blade tip cap
US5997251A (en) Ribbed turbine blade tip
KR100567693B1 (en) Turbine blade with platform cooling
US3388888A (en) Cooled turbine nozzle for high temperature turbine
JP2002364306A (en) Gas turbine engine component
JPS6119804B2 (en)
JPH10238308A (en) Gas turbine stationary blade
JPH10246103A (en) Gas turbine blade
US6328532B1 (en) Blade cooling
JPH0552102A (en) Gas turbine
JPS62153504A (en) Shrouding segment
JP4520022B2 (en) Apparatus and method for impingement cooling an undercut region adjacent to a sidewall of a turbine nozzle segment
JP4315829B2 (en) Turbine vanes cooled by reducing cooling air leakage
JP2955252B2 (en) Gas turbine blade tip shroud
US4460313A (en) Heat shield for radial gas turbine
US6572329B2 (en) Gas turbine
US20110223036A1 (en) Blade for a gas turbine
US5129224A (en) Cooling of turbine nozzle containment ring