JPH05156901A - Gas turbine cooling stationary blade - Google Patents

Gas turbine cooling stationary blade

Info

Publication number
JPH05156901A
JPH05156901A JP31786391A JP31786391A JPH05156901A JP H05156901 A JPH05156901 A JP H05156901A JP 31786391 A JP31786391 A JP 31786391A JP 31786391 A JP31786391 A JP 31786391A JP H05156901 A JPH05156901 A JP H05156901A
Authority
JP
Japan
Prior art keywords
blade
trailing edge
cooling
gas turbine
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31786391A
Other languages
Japanese (ja)
Inventor
Isao Takehara
竹原  勲
Tetsuo Sasada
笹田哲男
Hajime Toritani
初 鳥谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP31786391A priority Critical patent/JPH05156901A/en
Publication of JPH05156901A publication Critical patent/JPH05156901A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To reduce a metal temperature of a trailing edge which is subjected to a high heat load and a thermal stress so as to increase reliability and service life of a gas turbine cooling stationary blade by increasing an effect of cooling the trailing edge. CONSTITUTION:A cavity in a gas turbine stationary blade 1 is divided into a trailing edge A and other front sections by a bulk head 9, the front sections are cooled by blowing cooling air which is supplied to core plugs 2, 3 inserted into the front sections from many small holes of the core plugs, 2, 3. The air is blown from blow off holes 5, 6 provided on the front surface of the blade 1 and the outside of the blade 1 is film cooled. A slit section 8 at a rear end of the core plug 3 is fitted closely in a slit of bulk head 9, and the cooling air in the core plugs 2, 3 is introduced into the trailing edge A from the slit section 8 and flown out therefrom to the outside of the blade 1. The trailing edge A is therefore, cooled, independent of the front sections of the blade 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガスタービンのタービ
ン部の静翼の冷却構造に係り、熱負荷の高い翼後縁部に
冷却効果を増すための冷却空気を供給し、少量の冷却空
気にて静翼の冷却を良好にし、ガスタービン全体の効率
を上げるガスタービン静翼の冷却構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling structure for a stationary blade of a turbine section of a gas turbine, which supplies cooling air for increasing a cooling effect to a trailing edge portion of a blade having a high heat load, and a small amount of cooling air. The present invention relates to a cooling structure for a gas turbine vane, which improves cooling of the vane and improves efficiency of the entire gas turbine.

【0002】[0002]

【従来の技術】従来型のガスタービン冷却静翼の横断面
を図2(a)に、その中心を通る曲面でとった縦断面を
図2(b)に示す。このガスタービン冷却翼(静翼)に
おいては、連通孔10のあいた隔壁4を有する静翼1内
に設けられたコアプラグ2,3内に導入された冷却空気
は、該コアプラグに無数にあけられた小孔(不図示)よ
り翼内表面に向かって高速の噴流になって吹きつけら
れ、衝突噴流により翼壁を冷却し、次いで一部の空気は
翼1にあけたフィルム孔5,6から流出して翼外表面を
冷却し、また一部の空気はコアプラグと翼内表面との間
の隙間を通った後に合流し、翼後縁部冷却用の空気15
として翼後縁部のピンフィン7の間を通り、翼後縁端よ
り翼外に流出する。
2. Description of the Related Art A cross section of a conventional gas turbine cooling vane is shown in FIG. 2 (a), and a vertical cross section taken along a curved surface passing through its center is shown in FIG. 2 (b). In this gas turbine cooling vane (vane), the cooling air introduced into the core plugs 2 and 3 provided in the vane 1 having the partition wall 4 having the communication hole 10 is innumerably opened in the core plug. It is blown as a high-speed jet toward the inner surface of the blade from a small hole (not shown), the blade wall is cooled by the impinging jet, and then some air flows out from the film holes 5 and 6 formed in the blade 1. To cool the outer surface of the blade, and some of the air merges after passing through the gap between the core plug and the inner surface of the blade to cool the air for cooling the trailing edge of the blade.
As a result, it passes between the pin fins 7 at the trailing edge of the blade and flows out of the blade from the trailing edge of the blade.

【0003】[0003]

【発明が解決しようとする課題】コアプラグに無数にあ
けられた上記小孔から吹き出された空気は翼外部から流
入する熱量と熱交換して翼部を冷却し、該空気自身は熱
交換により温度上昇する。この温度上昇割合は翼外部か
らの熱量と空気吹出し速度により異なる。従来型の静翼
冷却構造では、翼後縁部にはこの温度上昇後の空気が流
入する。他方、一般に翼外部の熱負荷の分布は図4のC
線の如くであり、この図からわかるように、翼後縁部の
熱負荷は高い。しかるに、従来型の静翼冷却構造では、
この熱負荷の高い翼後縁部を温度の高い空気で冷却する
ことになるという不具合がある。
Air blown out from the small holes innumerable in the core plug exchanges heat with the amount of heat flowing from the outside of the blade to cool the blade, and the air itself is heated by heat exchange. To rise. The rate of temperature rise depends on the amount of heat from the outside of the blade and the air blowing speed. In the conventional stationary vane cooling structure, the air after the temperature rise flows into the trailing edge of the vane. On the other hand, generally, the distribution of the heat load outside the blade is C in FIG.
It is like a line, and as can be seen from this figure, the heat load on the trailing edge of the blade is high. However, in the conventional vane cooling structure,
There is a problem in that the blade trailing edge portion having a high heat load is cooled by high temperature air.

【0004】従来型の冷却構造による静翼外表面のメタ
ル温度分布と、冷却空気温度分布は、夫々、図3のA線
とB線の如くになる。この図で横軸の数字1〜8は図2
(a)中の数字〜で示した位置を表わしている。
はコアプラグの内部を指している。図3を見ると、コア
プラグ内部から吹出した空気は翼内表面に衝突後、温度
上昇し、翼後縁部流入前までにさらに温度上昇してい
る。また翼後縁部の入口から出口に向って加速する際、
熱が流入して冷却空気温度は更に上昇している。翼外表
面メタル温度も翼後縁部入口(ポイント)から翼後縁
端(ポイント)に向って上昇し翼後縁端で最大とな
る。これにより、翼後縁部は、高温酸化による材料劣
化、また翼メタル温度が高いことによる熱応力(圧縮応
力)を受け、ガスタービンの運転状態によっては繰返し
の熱疲労によりクラック発生、クラック進展、さらには
破壊の恐れがある。
The metal temperature distribution on the outer surface of the stationary blade and the cooling air temperature distribution by the conventional cooling structure are as shown by lines A and B in FIG. 3, respectively. In this figure, the numbers 1 to 8 on the horizontal axis are shown in FIG.
The positions indicated by the numbers 1 to 3 in (a) are shown.
Indicates the inside of the core plug. As shown in FIG. 3, the temperature of the air blown from the inside of the core plug rises after colliding with the inner surface of the blade, and further rises before the inflow of the trailing edge of the blade. Also, when accelerating from the entrance of the trailing edge of the wing toward the exit,
Heat flows in and the temperature of the cooling air further rises. The metal temperature on the outer surface of the blade also rises from the inlet (point) of the trailing edge of the blade toward the trailing edge (point) of the blade, and becomes maximum at the trailing edge of the blade. As a result, the blade trailing edge is subjected to material deterioration due to high temperature oxidation and thermal stress (compressive stress) due to high blade metal temperature, and depending on the operating state of the gas turbine, cracking, crack development, and crack development due to repeated thermal fatigue, Furthermore, there is a fear of destruction.

【0005】このように、上記従来技術においては、翼
後縁部では翼外部の熱負荷が高いにもかかわらず冷却空
気温度が高いので翼後縁部のメタル温度が上昇し、高温
酸化、熱応力大によるクラック発生の問題がある。
As described above, in the above prior art, since the cooling air temperature is high at the trailing edge of the blade even though the heat load outside the blade is high, the metal temperature at the trailing edge of the blade rises, causing high temperature oxidation and heat. There is a problem of crack generation due to large stress.

【0006】本発明は、翼後縁部の冷却性能を上げて翼
後縁部のメタル温度を下げ、以て、ガスタービンの信頼
性を高めるガスタービン冷却静翼を提供することを目的
とする。
It is an object of the present invention to provide a gas turbine cooling stationary blade which improves the cooling performance of the trailing edge portion of the blade and lowers the metal temperature of the trailing edge portion of the blade, thereby improving the reliability of the gas turbine. ..

【0007】[0007]

【課題を解決するための手段】本発明のガスタービン冷
却静翼は特許請求の範囲の夫々の請求項に記載の構成を
有する。
SUMMARY OF THE INVENTION A gas turbine cooling vane according to the present invention has the construction described in each of the claims.

【0008】[0008]

【作用】本発明によれば、ガスタービン静翼後縁部に、
翼後縁部以外の翼部の冷却空気の温度と同じ温度の冷却
空気を供給することが可能である。これにより、下記式
で示される如く、従来に比較して、翼後縁部メタル温度
をΔTm だけ低くすることが可能である。 Tm =Tg −η(Tg −Tc ) Tm'=Tg −η(Tg −Tc') ΔTm =Tm −Tm'=η(Tc −Tc')=ηΔTc 但し、Tm :従来の翼後縁部メタル温度、Tm':本発明
による翼後縁部メタル温度、Tg :翼外高温ガス温度、
c :従来の翼後縁部冷却空気温度、Tc':本発明によ
る翼後縁部冷却空気温度、η:冷却効率(一定)。つま
り本発明では翼後縁部冷却空気の温度が従来のそれより
もΔTc だけ低くなり、それに応じて翼後縁部メタル温
度をΔTm だけ下げること可能であり、これにより、翼
後縁部の高温酸化、熱応力レベルを低く抑えることがで
き、ガスタービン静翼の安定性、信頼性を改善すること
が可能である。
According to the present invention, at the trailing edge of the gas turbine stationary blade,
It is possible to supply cooling air having the same temperature as the cooling air of the blades other than the blade trailing edge. As a result, as shown by the following formula, it is possible to lower the blade trailing edge metal temperature by ΔT m as compared with the conventional case. T m = T g -η (T g -T c) T m '= T g -η (T g -T c') ΔT m = T m -T m '= η (T c -T c') = ηΔT c where T m is a conventional blade trailing edge metal temperature, T m 'is a blade trailing edge metal temperature according to the present invention, T g is a high temperature gas temperature outside the blade,
T c : Conventional blade trailing edge cooling air temperature, T c ′: Blade trailing edge cooling air temperature according to the present invention, η: Cooling efficiency (constant). That is, in the present invention, the temperature of the blade trailing edge cooling air is lower than that of the conventional one by ΔT c , and the blade trailing edge metal temperature can be lowered by ΔT m accordingly, whereby the blade trailing edge portion is cooled. It is possible to suppress the high temperature oxidation and the thermal stress level of, and improve the stability and reliability of the gas turbine stationary blade.

【0009】[0009]

【実施例】本発明の1実施例のガスタービン静翼の横断
面、その中心を通る曲面でとった縦断面を夫々図1
(a),(b)に示す。図2と同様の部分は同じ符号で
示す。
1 is a cross-sectional view of a gas turbine stationary blade according to an embodiment of the present invention, and FIG. 1 is a vertical cross-section taken along a curved surface passing through the center thereof.
Shown in (a) and (b). The same parts as those in FIG. 2 are denoted by the same reference numerals.

【0010】図1において、ガスタービン圧縮機より加
圧された空気または更に外部冷却空気冷却装置にて冷却
された空気が冷却空気11として供給される。冷却空気
11は静翼1の前側を冷却する前側コアプラグ2と後側
コアプラグ3とに分岐されて供給される。これらのコア
プラグには無数の小孔(不図示)が明けられており、こ
れら無数の小孔(不図示)を通ってコアプラグから吹出
した冷却空気は翼1の内表面に衝突し、この衝突噴流に
より翼を冷却する。この際、この冷却空気は熱を吸収し
て温度上昇する。衝突後の冷却空気は翼1の内面とコア
プラグとの間の隙間にて合流しながら下流に向かって翼
1に設けられたフィルム孔5,6より翼外部に噴出し、
翼外の高温ガスと翼外表面との間に低温の空気膜を形成
し、翼の冷却効果を高める。
In FIG. 1, air pressurized by a gas turbine compressor or air further cooled by an external cooling air cooling device is supplied as cooling air 11. The cooling air 11 is branched and supplied to a front core plug 2 and a rear core plug 3 that cool the front side of the stationary blade 1. Innumerable small holes (not shown) are formed in these core plugs, and the cooling air blown out from the core plugs through these innumerable small holes (not shown) collides with the inner surface of the blade 1 and the collision jet flows. To cool the wings. At this time, this cooling air absorbs heat and its temperature rises. The cooling air after the collision merges in the gap between the inner surface of the blade 1 and the core plug, and is jetted downstream from the film holes 5 and 6 provided in the blade 1 to the outside of the blade,
A low temperature air film is formed between the high temperature gas outside the blade and the outer surface of the blade to enhance the cooling effect of the blade.

【0011】後側コアプラグ3の後縁端は幅の細いスリ
ットを形成している突設されたコアプラグ後縁フィン8
になっており、このコアプラグ後縁フィン8は、翼1内
を翼後縁部の領域とそれ以外の領域とに仕切る隔壁9に
設けたスリットに密接嵌合されている。これにより、翼
後縁部用の冷却空気13としては、前記のコアプラグの
多数の小孔(不図示)から吹出して翼内表面に衝突して
温度上昇した後の空気ではなくて、後側コアプラグ3内
部の低温の冷却空気11をコアプラグ後縁フィン8の上
記スリットから直接的に翼後縁部に導き、翼後縁端から
翼外に流出させる。これにより、翼後縁部メタル温度を
低く抑えることが可能となる。上記のスリット幅の調整
により、そこを通る冷却空気流量の調整も可能であり、
従って、翼後縁部の冷却効果が過大の場合には該スリッ
トを通る冷却空気流量を減少させることも可能となる。
The rear edge of the rear core plug 3 has a rear edge of a protruding core plug having a narrow slit formed therein.
The core plug trailing edge fins 8 are closely fitted to the slits provided in the partition wall 9 that divides the inside of the blade 1 into a blade trailing edge region and other regions. As a result, the cooling air 13 for the trailing edge portion of the blade is not the air after being blown out from a large number of small holes (not shown) of the core plug and colliding with the inner surface of the blade to raise the temperature, but the rear core plug. The low-temperature cooling air 11 inside 3 is guided to the blade trailing edge portion directly from the slits of the core plug trailing edge fins 8 and flows out from the blade trailing edge end to the outside of the blade. This makes it possible to keep the metal temperature at the trailing edge of the blade low. By adjusting the slit width above, it is also possible to adjust the flow rate of the cooling air passing through it.
Therefore, when the cooling effect of the trailing edge of the blade is excessive, the flow rate of cooling air passing through the slit can be reduced.

【0012】図5は別の実施例である。この実施例で
は、翼1内のキャビティを翼後縁部の領域とそれ以外の
領域に仕切る隔壁9を設けることは前記実施例と同じで
あるが、コアプラグには前記のスリット形コアプラグ後
縁フィン8を設けず、代りに、翼内のコアプラグ2,3
の下部に開口部20を突出させ、この開口20よりコア
プラグ2,3内部の冷却空気11の一部を翼1の下側エ
ンドウォール17内に設けた通路18内に導びいて下側
エンドウォール17の冷却を行なった後、連通孔17’
を通って翼後縁部に導びく。また、翼1の上側エンドウ
ォール16にも連通孔16’が設けられており、コアプ
ラグに入る前の冷却空気11の一部が該連通孔16’を
通って上側から翼後縁部に直接流れるようにしてある。
これらの空気は翼後縁部を冷却して翼後縁端から流出す
る。この構造により、翼後縁部の冷却が強化される。こ
の場合、翼後縁部には上側と下側とから冷却空気が流入
するので、翼径方向中心線O上には冷却空気が流れにく
くなる傾向があるから、これを防ぐために翼後縁部冷却
要素たるピンフィン7の列数を増して上側、下側の空気
抵抗を増加させることにより、翼径方向中心線O上にも
空気が良く流れる様にするのがよい。
FIG. 5 shows another embodiment. In this embodiment, the partition wall 9 for partitioning the cavity in the blade 1 into the blade trailing edge region and the other region is the same as in the above embodiment, but the core plug has the slit-shaped core plug trailing edge fins. 8 is not provided, instead, core plugs 2 and 3 in the blade are provided.
The lower end wall is formed by projecting an opening 20 below the lower end of the core plug 2 and guiding a part of the cooling air 11 inside the core plugs 2 and 3 into a passage 18 provided in the lower end wall 17 of the blade 1. After cooling 17, the communication hole 17 '
Lead to the trailing edge of the wing. Further, the upper end wall 16 of the blade 1 is also provided with a communication hole 16 ', and a part of the cooling air 11 before entering the core plug flows directly from the upper side to the blade trailing edge portion through the communication hole 16'. Is done.
These air cools the trailing edge of the blade and flows out from the trailing edge of the blade. This structure enhances cooling of the trailing edge of the blade. In this case, since the cooling air flows into the blade trailing edge portion from the upper side and the lower side, it tends to be difficult for the cooling air to flow on the blade radial center line O. To prevent this, the blade trailing edge portion is formed. By increasing the number of rows of pin fins 7 as cooling elements to increase the air resistance on the upper side and the lower side, it is preferable that the air also flows well on the blade radial center line O.

【0013】以上の各実施例では、その構造から明らか
なように、コアプラグの面に無数に設けた小孔から吹出
して翼内表面に衝突して温度上昇した冷却空気は翼後縁
部に導入される冷却空気に混じることがなく、翼後縁部
に導入される翼後縁部冷却用空気の温度はコアプラグ内
の冷却空気の温度と同じである。
In each of the above-described embodiments, as is clear from the structure, the cooling air blown out from the numerous small holes provided on the surface of the core plug and colliding with the inner surface of the blade to raise the temperature is introduced into the trailing edge of the blade. The temperature of the cooling air for cooling the trailing edge of the blade introduced into the trailing edge of the blade without mixing with the cooling air is the same as the temperature of the cooling air in the core plug.

【0014】図6は本発明実施例による翼メタル温度分
布と冷却空気温度分布を従来例と比較して示す。横軸の
数字1〜8は図1(a)、図2(a)、図5(a)の数
字〜で夫々示した位置を表わす。はコアプラグ3
内部を表わしている。本発明によれば、翼後縁部を冷却
する空気温度Tc'はコアプラグ内部(ポイント)の空
気温度と同一であり、従来の翼後縁部を冷却する空気の
温度Tc よりも約150〜200℃低くなる。これによ
り、翼後縁部のメタル温度は下記のΔTm だけ下がる。 ΔTm =η(Tc −Tc') η:冷却効率 従って、翼後縁部の高温酸化、熱応力も緩和され、翼の
寿命が延長可能になる。
FIG. 6 shows the blade metal temperature distribution and the cooling air temperature distribution according to the embodiment of the present invention in comparison with the conventional example. The numbers 1 to 8 on the horizontal axis represent the positions shown by the numbers 1 to 8 in FIGS. 1A, 2A, and 5A, respectively. Is the core plug 3
Represents the interior. According to the present invention, the air temperature T c ′ for cooling the trailing edge of the blade is the same as the air temperature inside the core plug (point), which is about 150 times the temperature T c of the air for cooling the trailing edge of the blade. ~ 200 ° C lower. As a result, the metal temperature at the trailing edge of the blade is lowered by the following ΔT m . ΔT m = η (T c −T c ′ ) η: Cooling efficiency Therefore, the high temperature oxidation and thermal stress at the trailing edge of the blade are alleviated, and the blade life can be extended.

【0015】[0015]

【発明の効果】本発明によれば、ガスタービン静翼の翼
後縁部のメタル温度を、従来のそれより低くすることが
できるので、翼の熱応力の低減、高温酸化のレベルの低
減ができ、ガスタービン静翼の信頼性を向上し、また寿
命を延ばす効果がある。
According to the present invention, the metal temperature of the blade trailing edge portion of the gas turbine stationary blade can be made lower than that of the conventional one, so that the thermal stress of the blade and the level of high temperature oxidation can be reduced. This has the effects of improving the reliability of the gas turbine stationary blade and extending its life.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のガスタービン冷却静翼の横
断面図および縦断面図、
FIG. 1 is a cross-sectional view and a vertical cross-sectional view of a gas turbine cooling vane according to an embodiment of the present invention,

【図2】従来形のガスタービン冷却静翼の横断面図およ
び縦断面図、
FIG. 2 is a transverse sectional view and a longitudinal sectional view of a conventional gas turbine cooling vane;

【図3】従来形のガスタービン冷却静翼の表面メタル温
度および冷却空気温度の分布を示す図、
FIG. 3 is a diagram showing distributions of surface metal temperature and cooling air temperature of a conventional gas turbine cooling vane;

【図4】ガスタービン静翼の外部熱負荷の分布を示す
図、
FIG. 4 is a diagram showing a distribution of an external heat load of a gas turbine stationary blade,

【図5】本発明の他の実施例のガスタービン冷却静翼の
横断面図および縦断面図、
FIG. 5 is a horizontal sectional view and a vertical sectional view of a gas turbine cooling vane according to another embodiment of the present invention,

【図6】本発明のガスタービン冷却静翼のメタル温度お
よび冷却空気温度の分布を従来技術でのそれと比較して
示す図である。
FIG. 6 is a diagram showing the distribution of the metal temperature and the cooling air temperature of the gas turbine cooling vane of the present invention in comparison with those in the prior art.

【符号の説明】[Explanation of symbols]

1…ガスタービン静翼 2,3…コアプラ
グ 4…隔壁 5,6…フィルム
吹出口 7…ピンフィン 8…コアプラグ後
縁フィン 9…隔壁 10…連通孔 11…冷却空気 12…翼内面とコアプラグとの間の隙間 16…上側エンドウォール 16’…連通孔 17…下側エンドウォール 17’…連通孔 18…空気通路 20…開口部
1 ... Gas turbine stationary blade 2, 3 ... Core plug 4 ... Partition wall 5, 6 ... Film outlet 7 ... Pin fin 8 ... Core plug trailing edge fin 9 ... Partition wall 10 ... Communication hole 11 ... Cooling air 12 ... Between blade inner surface and core plug Gap 16 ... Upper end wall 16 '... Communication hole 17 ... Lower end wall 17' ... Communication hole 18 ... Air passage 20 ... Opening part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 内部がキャビティになっており、該キャ
ビティに冷却空気を導く様にしたガスタービン冷却静翼
において、該静翼内のキャビティを翼後縁部の領域とそ
れ以外の領域とに仕切る隔壁を設け、翼後縁部の領域以
外の前記領域内にはその中に挿入されたコアプラグ内に
導入された冷却空気を該コアプラグの多数の小孔から吹
き出させることにより冷却空気を供給すると共に、他
方、翼後縁部の領域内には、翼後縁部の領域以外の領域
内に供給された前記冷却空気とは独立した翼後縁部冷却
用空気供給通路を介して冷却空気を供給する様に構成し
たことを特徴とするガスタービン冷却静翼。
1. A gas turbine cooling vane having a cavity inside for introducing cooling air to the cavity, wherein the cavity in the vane is divided into a region at the trailing edge of the vane and a region other than that. A partition wall is provided, and the cooling air introduced into the core plug inserted therein is blown out from a large number of small holes of the core plug into the region other than the region of the trailing edge of the blade to supply the cooling air. Together with the other, on the other hand, in the region of the blade trailing edge portion, cooling air is supplied via a blade trailing edge portion cooling air supply passage that is independent of the cooling air supplied into the region other than the region of the blade trailing edge portion. A gas turbine cooling vane characterized by being configured to supply.
【請求項2】 前記の翼後縁部冷却用空気供給通路は、
前記コアプラグの後縁端部を突出したスリット部として
形成し、この突出したスリット部を前記隔壁に設けたス
リットに密接嵌合して前記翼後縁部の領域内に開口させ
たことにより、構成されている請求項1のガスタービン
冷却静翼。
2. The air supply passage for cooling the blade trailing edge portion,
The rear edge end portion of the core plug is formed as a protruding slit portion, and the protruding slit portion is closely fitted to the slit provided in the partition wall and opened in the region of the blade trailing edge portion, thereby forming a structure. The gas turbine cooling stator vane according to claim 1.
【請求項3】 前記の翼後縁部冷却用空気供給通路は、
前記コアプラグの下部を突出した開口部として形成し、
この開口部を前記静翼の下側エンドウォール内に形成し
た空気通路内に開口させ、該下側エンドウォール内の空
気通路を前記の翼後縁部の領域内に連通せしめると共
に、前記静翼の上側エンドウォールから前記の翼後縁部
の領域に通ずる空気通路を設けたことにより、構成され
ている請求項1のガスタービン冷却静翼。
3. The air supply passage for cooling the blade trailing edge portion,
The lower portion of the core plug is formed as a projecting opening,
The opening is opened in the air passage formed in the lower end wall of the vane, and the air passage in the lower end wall is communicated with the trailing edge region of the vane. The gas turbine cooling stationary blade according to claim 1, wherein the gas turbine cooling stationary blade is constituted by providing an air passage extending from an upper end wall of the blade to an area of the blade trailing edge portion.
JP31786391A 1991-12-02 1991-12-02 Gas turbine cooling stationary blade Pending JPH05156901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31786391A JPH05156901A (en) 1991-12-02 1991-12-02 Gas turbine cooling stationary blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31786391A JPH05156901A (en) 1991-12-02 1991-12-02 Gas turbine cooling stationary blade

Publications (1)

Publication Number Publication Date
JPH05156901A true JPH05156901A (en) 1993-06-22

Family

ID=18092902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31786391A Pending JPH05156901A (en) 1991-12-02 1991-12-02 Gas turbine cooling stationary blade

Country Status (1)

Country Link
JP (1) JPH05156901A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1069281A3 (en) * 1999-07-16 2002-12-11 General Electric Company Pre-stressed/pre-compressed gas turbine nozzle
EP1413714A2 (en) * 2002-10-22 2004-04-28 Siemens Aktiengesellschaft Guide vane for a turbine
JP2004257390A (en) * 2003-02-27 2004-09-16 General Electric Co <Ge> Forked impingement baffle for turbine nozzle in gas turbine engine
EP1849960A2 (en) * 2006-04-27 2007-10-31 Hitachi, Ltd. Turbine blade having internal cooling passage
JP2009041433A (en) * 2007-08-08 2009-02-26 Hitachi Ltd Gas turbine blade
JP2009236115A (en) * 2008-03-25 2009-10-15 General Electric Co <Ge> Hybrid impingement cooled turbine nozzle
US7934906B2 (en) 2007-11-14 2011-05-03 Siemens Energy, Inc. Turbine blade tip cooling system
US20170114648A1 (en) * 2015-10-27 2017-04-27 General Electric Company Turbine bucket having cooling passageway
US9885243B2 (en) 2015-10-27 2018-02-06 General Electric Company Turbine bucket having outlet path in shroud
US10508554B2 (en) 2015-10-27 2019-12-17 General Electric Company Turbine bucket having outlet path in shroud

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1069281A3 (en) * 1999-07-16 2002-12-11 General Electric Company Pre-stressed/pre-compressed gas turbine nozzle
EP1413714A2 (en) * 2002-10-22 2004-04-28 Siemens Aktiengesellschaft Guide vane for a turbine
EP1413714A3 (en) * 2002-10-22 2004-12-22 Siemens Aktiengesellschaft Guide vane for a turbine
JP2004257390A (en) * 2003-02-27 2004-09-16 General Electric Co <Ge> Forked impingement baffle for turbine nozzle in gas turbine engine
JP4559751B2 (en) * 2003-02-27 2010-10-13 ゼネラル・エレクトリック・カンパニイ Gas turbine engine turbine nozzle bifurcated impingement baffle
EP1849960A3 (en) * 2006-04-27 2010-03-10 Hitachi, Ltd. Turbine blade having internal cooling passage
JP2007292006A (en) * 2006-04-27 2007-11-08 Hitachi Ltd Turbine blade having cooling passage inside thereof
EP1849960A2 (en) * 2006-04-27 2007-10-31 Hitachi, Ltd. Turbine blade having internal cooling passage
JP2009041433A (en) * 2007-08-08 2009-02-26 Hitachi Ltd Gas turbine blade
US7934906B2 (en) 2007-11-14 2011-05-03 Siemens Energy, Inc. Turbine blade tip cooling system
JP2009236115A (en) * 2008-03-25 2009-10-15 General Electric Co <Ge> Hybrid impingement cooled turbine nozzle
US20170114648A1 (en) * 2015-10-27 2017-04-27 General Electric Company Turbine bucket having cooling passageway
US9885243B2 (en) 2015-10-27 2018-02-06 General Electric Company Turbine bucket having outlet path in shroud
US10156145B2 (en) * 2015-10-27 2018-12-18 General Electric Company Turbine bucket having cooling passageway
US10508554B2 (en) 2015-10-27 2019-12-17 General Electric Company Turbine bucket having outlet path in shroud
US11078797B2 (en) 2015-10-27 2021-08-03 General Electric Company Turbine bucket having outlet path in shroud

Similar Documents

Publication Publication Date Title
JP2862536B2 (en) Gas turbine blades
US5779438A (en) Arrangement for and method of cooling a wall surrounded on one side by hot gas
JP5269223B2 (en) Turbine blade
US7033136B2 (en) Cooling circuits for a gas turbine blade
JP4509263B2 (en) Backflow serpentine airfoil cooling circuit with sidewall impingement cooling chamber
US5538394A (en) Cooled turbine blade for a gas turbine
JP4688342B2 (en) Impact cooling airfoil
JP3110227B2 (en) Turbine cooling blade
KR100705116B1 (en) Improved film cooling for microcircuits
KR20040071045A (en) Microcircuit cooling for a turbine blade tip
KR20030030849A (en) Turbine airfoil with enhanced heat transfer
JPH0392504A (en) Turbine blade
JPH0756201B2 (en) Gas turbine blades
JP2006144800A (en) Aerofoil equipped with auxiliary cooling channel and gsa turbine engine contaning it
JPS58126402A (en) Aerofoil which can be cooled
JP2005061406A (en) Cooling circuit and hollow airfoil
JP2005264934A (en) Turbine air foil and inlet arrangement method for cooling circuit
JP2005061407A (en) Turbine rotor blade and layout method of inlet of cooling circuit
US20090126335A1 (en) Cooling structure
US20010006600A1 (en) Turbine blade with actively cooled shroud-band element
JPH05156901A (en) Gas turbine cooling stationary blade
CN104675445A (en) Turbine blade with near wall microcircuit edge cooling
JP3101342B2 (en) Gas turbine cooling blade
JP3124109B2 (en) Gas turbine vane
JP4109445B2 (en) Gas turbine blade